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Analytical solution and numerical study on water hammer in a pipeline with an elastically attached valve
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The influence of dynamic fluid-structure interaction (FSI) onto water hammer (WH) run can be significant in non-rigid pipeline systems. The essence of this phenomenon is the dynamic transfer of liquid energy to the structure and back, which is important for elastic structures and can be negligible for rigid ones. This effect may significantly influence the parameters of transient flow.

In the paper a model of such behavior is analyzed. A straight pipe fixed rigidly to the floor is assumed. The transient is generated by a quickly closed valve installed at the end of the pipeline. The FSI effects are assumed to be present only at the valve which is attached with a spring-dashpot system. Analyses of the WH runs, especially transient pressure changes, for various stiffness and damping parameters of the valve attachment is presented in the paper. The solutions are found in two ways -analytically and numerically. Damping is taken into account within a numerical study. Such a system -elastically attached valve in the pipeline -can be also a real solution applicable in practice.

INTRODUCTION

Water hammer (WH) may produce various undesired effects in pipeline systems. The essence of this phenomenon is the transfer of liquid kinetic energy to the potential energy of elasticity, which, for weakly compressible liquid may produce significant pressure variations, that propagate through the system as elastic waves. For rigid or quasi-rigid structure the classic WH theory is used for description of this behavior [START_REF] Wylie | Fluid transients in systems[END_REF]. Two hyperbolic partial differential equations (PDE) of the first order are used for modeling of the liquid pressure and velocity variations in time and space (one-dimensional=1D pipeline is assumed) and govern the propagation of WH wave. For non-rigid pipeline system (elastic pipe or supports) the structure motion is possible and it takes part in the energy transfer process producing the dynamic fluidstructure interaction (FSI) effect. The liquid equations should be adequately modified and for the assumption of 1D longitudinal pipe motion additional two PDE are formulated for the structure. These equations produce the four equations model [START_REF] Wiggert | Fluid transients and fluidstructure interaction in flexible liquid-filled piping[END_REF] of WH-FSI that governs the propagation of both WH and precursor (structure) waves, which are mutually coupled. If all degrees of freedom of a pipe reach are taken into account a standard fourteen equations model of WH-FSI is used for description of the system behavior [START_REF] Wiggert | Fluid transients and fluidstructure interaction in flexible liquid-filled piping[END_REF][START_REF] Henclik | A numerical approach of the standard model of water hammer with fluid-structure interaction[END_REF]. Three FSI coupling factors can be pointed. The friction between the pipe-wall and the liquid is the weakest one. The Poisson effect produces the coupling between the liquid pressures and pipe longitudinal stresses and strains. The third coupling mechanism is the junction coupling (JC) effect that occurs in pipe bends, ends, valves etc. It is especially important if the pipe has the ability to move as a whole body, thus when the pipeline is fixed to the foundation with elastic supports. In such a case this pipe motion causes the energy outflow from the liquid to the structure, e.g. to elastic supports, which seems to give an interesting oportunity to lower the pipe pressure changes. This effect of energy transfer and its consequences are however not unambiguous and, as pointed by scientists, a pressure increase may also happen [START_REF] Wiggert | The effect of elbow restraint on pressure transients[END_REF][START_REF] Heinsbroek | The influence of support rigidity on water hammer pressures and pipe stresses[END_REF][START_REF] Adamkowski | Experimental and numerical results of the influence of dynamic Poisson effect on transient pipe flow parameters[END_REF]]. An analysis of such a case for a simple model of straight movable pipeline on viscoelastic supports was discussed by the author in [START_REF] Henclik | Numerical study on water hammer with fluidstructure interaction in a straight pipeline fixed with viscoelastic supports[END_REF].

In the current paper a different model of energy outflow to the elastic structure is discussed. A straight pipeline fixed rigidly to the foundation is assumed. The water hammer is produced by a quickly closed valve installed at the end of the pipeline. The valve is attached with a spring-dashpot system and FSI effects are assumed to be present only at the valve spring. Analyses of the WH pressure changes for various viscoelastic parameters of the spring and the dashpot is presented in the paper. The solutions are found numerically and analytically. Damping is taken into account within the numerical study. Such a system with an elastically attached valve in the pipeline can be a real solution applicable in practice. This possibility was suggested in [START_REF] Wylie | Fluid transients in systems[END_REF] though no detailed solution is presented there.

PIPELINE PHYSICAL MODEL

The physical model of the hydraulic system assumed for analyses is consisted of a pressure vessel at the beginning and a pipeline of the length L=50m, inner diameter D=50mm and the pipe wall thickness e=2.5mm. The vessel and the pipeline are fixed rigidly to the foundation. At the end of the pipeline a valve is installed and attached with a spring dashpot system. This model is presented in Figure 1. 

NUMERICAL METHOD

The four equations (4E) model [START_REF] Wiggert | Fluid transients and fluidstructure interaction in flexible liquid-filled piping[END_REF] of WH-FSI is assumed for numerical computations. The numerical method developed by the author [START_REF] Henclik | The boundary condition at the valve for numerical modeling of transient pipe flow with fluid structure interaction[END_REF] on the basis of this model was implemented in a computer code and used for numerical computations. This model and the algorithms are shortly presented herein.

Governing equations

The 4E model is governed by two PDE for the liquid and another two for the pipe. The equations for the liquid are:
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Two PDE for the pipe have the following form:
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In the above equations x and t are standard independent variables of position and time, v and p is respectively liquid velocity and pressure. Pipe section velocity is w and pipe longitudinal stresses are σ. The densities of liquid and pipe material are ρ and ρ s , E is Young modulus of pipe material and µ the Poisson coefficient. τ s is pipe-wall friction stress, g is aceleration of gravity and α is the angle between the horizon and the pipe axis. The uncoupled celerities of elastic waves in the liquid c and pipe c s are defined with:
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Though the dynamic Poisson effect is neglected in the current approach it is taken into account in Equation ( 5).

Boundary conditions

The pipeline is assumed to be fixed rigidly to the floor. Formally rigid boundary conditions (BC) are assumed at x=0,14,28,42,50 meters (measured from the vessel). In fact the pipe motion is zero all the time, thus these conditions are not crucial. The BC at the pressure vessel is p=p ves =const.

The essential BC have to be formulated at the valve. If the valve motion is y and its velocity u=dy/dt, the BC for the closed valve is v=u. For the valve partially open and the losses coefficient ζ(t), the BC defines the pressure drop with:
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The main BC at is the valve equation of motion (EOM) which is formulated in the following form:
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In the equation above A c is the pipe inner cross section area and p 0 is the pressure at the valve in the steady state.

Method of numerical solution

The method of characteristics is used for the governing equations transformation [START_REF] Henclik | A numerical approach of the standard model of water hammer with fluid-structure interaction[END_REF]. The resulting compatibility equations are integrated in time within a specific time step and the finite different equations are solved marching in time on the effectively designed space-time grid. The proper BC are taken into account. The EOM ( 8) is transformed with the Newmark method and solved for the same time step as the compatibility equations.

ANALYTHICAL SOLUTION

Analytical solution of the defined problem was found for slightly simplified assumptions. It is assumed the valve is closed instantaneously, its mass is m=0 and damping of the valve spring is zero as well (b=0). After neglecting the structure motion, the friction and for a horizontal pipe the equations ( 1) and (2) take the following form:
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The solution will be found to the wave equation equivalent to the above PDEs.

Solution to the wave equation

The wave equation being the result of ( 9) and (10) has the standard form:
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In order to solve it the initial and boundary conditions have to be formulated. For the steady initial flow we can write:
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The BC are formulated at both pipe ends. At the vessel (x=0) the condition is p=p ves =const. After differentiating in time and using continuity equation (10) we can write:
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At the opposite end of the pipe (x=L) we can write for the closed valve the balance conditions of the form pA c =ky.

After differentiating in time and using continuity equation (10) this condition takes the form:
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)
The parameter γ expresses the stiffness of the spring and is given with:
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The solution to the wave equation was found with the method of separation of variables and the initial and boundary conditions defined above. The formulas for pressure and velocity in time and space were found to be:
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The characteristic values κ n are the subsequent roots of the characteristic equation:
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On the basis of the above solutions we can define frequencies of subsequent components with:
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The amplitudes β n are given with formula:
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For the elastically attached valve its motion u(t) is also of interest. The following relation was found:
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The solutions can be computed directly with equations (17), ( 18) and (22). A computer program was developed. To determine the range of summation the condition of dropping the amplitude β n given with (21) below a certain level (say 10 -5 ) was assumed. In that way the results were found. For a specific cases the solutions could be found and analyzed in an analytical way.

Low stiffness of the spring

If the stiffness of the valve spring is low the solution can be found analytically. For γ<<1 (in practice γ<0.5) we can find that the first root of the characteristic equation is κ 0 ≈γ and the amplitude β 0 ≈1. We can calculate the circular frequency of this harmonic component to be:
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It can be observed that this is a result for a harmonic oscillator compound of a rigid column of water of mass M=A c Lρ and the valve spring of stiffness k. For the rest of the roots we can calculate that for n=1,2,3… κ n ≈nπ and β n <<1. Thus we can approximate the solution with the first harmonic and write for the pressure, velocity and valve motion the following equations:
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Thus it can be observed that for low stiffness of the spring the pressure amplitude can be really small and it is proportional to γ, reverse as the valve motion amplitude.

Classic water hammer

The other situation when analytical solution is possible is rigid valve fixing. This is just classic water hammer model, but it is interesting to calculate the solutions for that case.

When γ≈∞ then the roots of characteristics equations are:
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Using (20) the characteristic frequencies can be estimated:

( )

1 2 4 + n L c = f n (28)
Thus they are odd multiplication of classic WH frequency:

L c = f WH 4 (29) 
The amplitudes are calculated as:
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The results are just the Fourier expansions of rectangular pulse -the classic WH solution for no friction case.

RESULTS

The results were computed with both proposed methodsnumerical and analytical. Some of them are repeated and can be compared. The pressure records at the valve are presented. At some of the diagrams the valve motions are presented as well.

Assumptions for numerical computations

Some of the assumptions have already been defined. For generation of WH the valve was closed within 10 msec. The mass of the valve was assumed zero (m=0). The quasisteady model of pipe-wall friction was assumed and the Darcy-Weisbach friction factor was set at λ=0.03. The mass of the water column (and the valve) was calculated to be M≈98kg. The damping b of the spring-dashpot system was estimated with the formula used within the simple harmonic oscillator theory, where ξ is the non-dimensional damping degree (typical values of ξ are 0<ξ<1, usually closer to 0):

kM ξ = b 2 (31)
For analyzes of the computed results a reference stiffness is introduced, which is defined with:

mm N M f π = k WH WH / 170 4 2 2 ≈ (32)
This is a stiffness for which the previously mentioned simple oscillator would have its frequency equal to WH frequency. Using the above value a relative stiffness κ can be defined and used within the analyses:

WH k k κ = (33)
This parameter can be important as it can be expected that for the value of κ≈1 the transfer of WH energy to the spring can be significant (effect similar to resonance).

Numerical results

In the current section the numerical results of pressure records at the valve for various stiffness k and damping ξ are presented. In Figure 1 the pressures and valve motions for low support stiffness and no damping are presented. In Figure 4 the pressures for two stiffness of the value near reference stiffness are presented. One of them is lower κ=0.76 the other is higher κ=1.47. The damping effect for the larger stiffness k=250N/mm (κ=1.47) is presented in Figure 5. It can be noticed that even for small damping the effect is quite significant. A similar diagram for the stiffness three times higher is presented in Figure 6. The damping effect is now weaker and the valve amplitudes are quite small. In the next diagram presented in Figure 7 the pressure runs for quite large stiffness and various damping ratios are presented. The influence of damping is nearly reduced for the next case of still larger stiffness k=4kN/mm (κ=23.5), which is presented at the diagram in Figure 8. The run without damping is nearly equivalent to the classic WH record.

Analytical results

Analytical results are computed with the developed computer program. In Figure 9 the results analogue to those from Figure 2 are presented. The amplitude level is the same as for classic WH (green line). An unusual peaks appearing at the tops are probably numerical effects similarly as in Figure 8.

DISCUSSION AND SUMMARY

The general conclusion is the numerical and analytical records are similar which should sugest the developed methods are correct. Though numerical computations offered wider possibilities the analytical solutions allow, in specific cases, for better physical understanding of the WH phenomenon.

Analyses and conclusions

Though the numerical and analytical results are similar it can be observed that usually analytical records have higher amplitudes. This effect must be the result of pipe wall friction which is taken into account within a numerical study and causing lower amplitudes. The difference is more distinct for larger liquid velocities and is especially vissible for diagrams presented in Figures 5 and10, plotted for normalised stiffnes κ close to 1.

It was found the stiffness of the valve spring produces clear influence onto WH records. For the cases of very low stiffness presented at diagrams in Figures 2, 3 and9, and described with the general formulas ( 24)-( 26) we can observe that the pressure amplitudes may be significantly decreased due to absorbing of the liquid energy by the valve spring in phase with the oscillations of the liquid column. With lowering of the stiffness the pressure magnitudes is decreased and the valve motion amplitudes increases. For larger stiffness that approaches the reference one k ref the amplitudes increase and can exceed the classic WH level. It has to be said however, the shape of the waveform is far from rectangular and very close to sinusoidal, being in fact the sum of several dominant harmonic components. For the cases κ>>1 the pressure runs are very close to classic WH runs and the amplitudes of valve motion are negligible.

Structural damping present at the valve spring (dashpot) plays an important role in forming the shape of WH pressure wave. It can be observed from the presented diagrams that damping increase causes faster decaying of the transient. These effect is a natural consequence of energy dissipation at the dashpot and is especially effective for larger amplitudes of velocity. Thus it is very important and significant for stiffness κ close to 1 (compare the difference between Figures 5 and6). That also means that damping can be negligible for very large stiffness and small valve amplitudes. However it has to be said that in special circumstances damping may slightly increase the pressure amplitude of the first peak as can be observed at the diagram in Figure 3.

Summary

In the paper a water hammer in a straight pipeline closed with a valve fixed with a viscoelastic attachment is analyzed. For this purpose analytical and numerical models have been developed. Good correlation between analytical and numerical results has been pointed out. The influence of the stiffness and damping parameters of the springdashpot system on WH pressures is discussed. The possibilities of lowering of the WH pressures amplitudes were found, determined and concluded. The hydraulic system analyzed in the paper can be a physical model of a real design used in practical applications. It was found that such a design can be effective for minimizing the negative influence of transients. Its construction seems to be possible though some technological details have surely to be solved. Additional value of the presented analyses and conclusions is the possibility to generalize the results and to formulate statements on the influence of viscoelastic elements of any kind present in the pipeline structure. Obviously, any specific solution has to be designed and tested in practice.
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 1 Figure 1. Physical model of the pipeline To focus onto FSI effects at the valve the dynamic Poisson effect is neglected. The stiffness of the valve spring is k, damping coefficient is b and mass of the valve is m. The constant pressure of the pressure vessel is assumed at p ves =10 6 N/m 2 and the initial flow velocity is adjusted to the value of v=0.5 m/s by the proper initial valve opening.
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 2 Figure 2. Pressure records and valve motions for low stiffness of the spring The values of relative stiffness κ are 0.44, 0.15, 0.044 and they correspond to the stiffness presented at the diagram. At the lower part of the diagram the valve motions are plotted. It can be observed that significant reduction of the pressure amplitude can be achieved with application of low stiffness of the valve spring. In Figure 3 this effect is tested for various damping parameters of the dashpot.
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 3 Figure 3. Pressure variations and valve motions for the spring stiffness k=25N/mm (κ=0.15)
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  Figure Pressure runs for relative stiffness κ= 0.76, 1.47
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 5 Figure 5. Pressure runs and valve motions for relative stiffness κ= 1.47 and various damping ratio ξ = 0 or 0.2
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 6 Figure 6. Pressure runs and valve motions for relative stiffness κ= 4.41 and various damping ratios ξ = 0 or 0.2
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 7 Figure 7. Pressure runs and valve motions for relative stiffness κ=7.1 and various damping ratios ξ = 0 or 0.2
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 8 Figure 8. Pressure runs and valve motions for relative stiffness κ=23.5 and various damping ratios ξ = 0 or 0.2
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 9 Figure 9. Pressure records and valve motions for low stiffness of the spring, κ = 0.44, 0.15 or 0.044 It can be observed the runs are very similar besides the
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 10 Figure 10. Pressure runs and valve motions for stiffness of the spring k=250N/mm (κ=1.74) At the next diagram in Figure 11 the results for stiffness k=750N/mm (κ=4.41) are presented.
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 11 Figure 11. Pressure runs and valve motions for stiffness of the spring k=750N/mm (κ= 4.41) At the last diagram presented in Figure 12 the results for stiffness k=7.5kN/mm (κ= 44.1) are presented.
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 12 Figure 12. Pressure runs and valve motions for stiffness k=7.5kN/mm (κ=44.1); classic WH level = green line
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