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Introduction

The notion of Korselt numbers ( or α-Korselt number with α ∈ Z) was introduced by Bouallegue-Echi-Pinch [START_REF] Bouallegue | Korselt Numbers and Sets[END_REF][START_REF] Echi | [END_REF] as a generalization of Carmichael numbers [1,[START_REF] Carmichael | On composite numbers P which satisfy the Fermat congruence a P -1 ≡ 1 (mod P )[END_REF]. Korselt numbers are defined simply as numbers which meet a generalized Korselt criterion as follows. Definition 1.1. [START_REF] Korselt | Problème chinois[END_REF] Let α ∈ Z \ {0}. A positive integer N is said to be an α-Korselt number ( K α -number, for short) if N = α and p -α divides N -α for each prime divisor p of N .

Considerable progress has been made investigating Korselt numbers last years spatially in [START_REF] Bouallegue | Korselt Numbers and Sets[END_REF][START_REF] Echi | The Korselt Set of pq[END_REF][START_REF] Ghanmi | Q-Korselt Numbers[END_REF][START_REF] Echi | [END_REF]. Many properties of Carmichael numbers are extended for Korselt numbers. However, many related questions remain open until now, such as the infinitude of Korselt numbers, providing a complete characterization of the Korselt set of such a number, etc. Recently, Ghanmi proposed in [START_REF] Ghanmi | Q-Korselt Numbers[END_REF][START_REF] Ghanmi | Rationel Korselt Bases of Prime Powers[END_REF] another generalization of Carmichael numbers; he extended the notion of Korselt numbers to Q by stating the following definitions. Definition 1.2. [START_REF] Ghanmi | Q-Korselt Numbers[END_REF]Let N ∈ N \ {0, 1}, α = α 1 α 2 ∈ Q \ {0} and A be a subset of Q. Then (1) N is said to be an α-Korselt number (K α -number, for short), if N = α and α 2 p -α 1 divides α 2 N -α 1 for every prime divisor p of N . (2) By the A-Korselt set of the number N (or the Korselt set of N over A) , we mean the set A-KS(N ) of all β ∈ A \ {0, N } such that N is a K β -number. (3) The cardinality of A-KS(N ) will be called the A-Korselt weight of N ; we denote it by A-KW(N ).

It's obvious by this definition, that for α ∈ Z \ {0} (i.e α 2 = 1) we obtain the original α-Korselt numbers introduced by Bouallegue-Echi-Pinch [START_REF] Bouallegue | Korselt Numbers and Sets[END_REF]. Definition 1.3. [START_REF] Ghanmi | Rationel Korselt Bases of Prime Powers[END_REF]Let N ∈ N \ {0, 1}, α ∈ Q and B be a subset of N.

Then

(1) α is called N -Korselt base(K N -base, for short), if N is a K αnumber.

(2) By the B-Korselt set of the base α (or the Korselt set of the base α over B), we mean the set B-KS(B(α)) of all M ∈ B such that α is a K M -base. [START_REF] Carmichael | On composite numbers P which satisfy the Fermat congruence a P -1 ≡ 1 (mod P )[END_REF] The cardinality of B-KS(B(α)) will be called the B-Korselt weight of the base α; we denote it by B-KW(B(α)).

The set of all α-Korselt numbers when α varies in Q, is called the Q-Korselt numbers (or rational Korselt numbers or the set of Korselt numbers over Q ). The set of all N -Korselt bases in Q when N varies in N, is called the N-Korselt bases in Q (or N-Korselt rational bases or the set of Korselt rational bases over N).

As we know, it's not easy in general to determine the Korselt set of a given number N over Z; even for the simple case when N = pq with p and q are two distinct prime numbers. This difficulty is mentioned in [START_REF] Echi | The Korselt Set of pq[END_REF] by Ghanmi and Echi, where they characterized the Z-Korselt set of pq and left the case when q < 2p without solution. Fortunately, this problem will be solved in our present work; in fact, the set Z-KS(pq) when q < 2p, will be completely determined after studying the Korselt set of pq over Q.

In this paper, and for a given two distinct prime numbers p and q, we will discuss in section 2, the belonging sets of α 1 and α 2 in Z for which α = α 1 α 2 is a Korselt rational base of pq. In section 3 and by some results given in section 2, we will characterize completely the Korselt rational set of pq. Furthermore, this allowed us to deduce immediately the Z-Korselt set of pq when q < 2p. For all the following let α = α 1 α 2 ∈ Q, p < q be two primes, N = pq and i, j, s, t be the integers given by the Euclidean divisions of q and α 1 by p : q = ip + s and α 1 = jp + t with s, t ∈ {1, . . . , p -1}. For α = α 1 α 2 ∈ Q, we will suppose without loss of generality that

α 2 ∈ N \ {0}, α 1 ∈ Z and gcd(α 1 , α 2 ) = 1.
As the case of α ∈ Z (i.e. α 2 = 1) is discussed in [START_REF] Echi | The Korselt Set of pq[END_REF], Our attention will center in all this paper, only on the case when α 2 ≥ 2.

Properties of pq-Korselt rational bases

Proposition 2.1. [5] Let α = α 1 α 2 ∈ Q such that gcd(α 1 , N ) = 1. If α
is a K N -base, then the following inequalities hold.

q -p + 1 ≤ α ≤ q + p -1.
Now, we give informations about the Korselt set of pq over Q when gcd(α 1 , N ) = 1. Proposition 2.2. [5, Proposition 2.4] Suppose that N is a K α -number with gcd(α 1 , N ) = 1. Then the following assertions hold.

1) If α ∈ Z ( i.e. α 2 = 1; α = α 1 ), then q α, p | α and α ∈ q p p, q p p .

2)

If α ∈ Q \ Z, then q p ≤ α ≤ q + p -1. Proposition 2.3. Let α = α 1 α 2 ∈ Q be such that gcd(α 1 , N ) = 1.
If α is a K N -base, then the following properties hold.

(

) If q < 2p, then 1 ≤ α 2 ≤ p. (2) If 2p < q < 3p, then 1 ≤ α 2 ≤ 3. (3) If 3p < q < 4p, then 1 ≤ α 2 ≤ 2. ( 1 
) If q > 4p, then α 2 = 1 (i.e. α ∈ Z). 4 
Proof. By definition, α is a K N -base if and only if

(S 1 ) α 2 p -α 1 | p(q -1) α 2 q -α 1 | q(p -1)
Since gcd(α 1 , p) = gcd(α 1 , q) = 1 and q = ip + s, (S 1 ) is equivalent to

(S 2 ) α 2 p -α 1 | q -1 = ip + s -1 α 2 (ip + s) -α 1 | p -1 This implies that -α 2 p + α 1 ≤ ip + s -1 (2.1)
and

α 2 (ip + s) -α 1 ≤ p -1. (2.
2)

The sum of (2.1) and (2.2) gives

α 2 ((i -1)p + s) ≤ (i + 1)p + s -2, (2.3) as α 2 ≥ 1, it follows that α 2 (i -1)p ≤ (i + 1)p + s(1 -α 2 ) -2 < (i + 1)p. (2.4)
Two cases are to be discussed. a) If q < 2p hence q = p + s with s ≥ 2, then by (2.3) we get

1 ≤ α 2 ≤ 2p -2 s + 1 ≤ p.
b) Suppose that i ≥ 2. Then by (2.4), we obtain 1

≤ α 2 ≤ i + 1 i -1 .
Hence, the following subcases hold.

• If 2p < q < 3p (i.e. i = 2), then α 2 ≤ 3.

• If 3p < q < 4p (i.e. i = 3), then α 2 ≤ 2.

• If q > 4p (i.e. i ≥ 4), then α 2 = 1.

Each case in Proposition 2.3 will be discussed separately in the following two results.

Proposition 2.4. Let α = α 1 α 2 ∈ Q be such that gcd(α 1 , N ) = 1. If α is a K N -base with q > 2p, then α ∈ Z. Proof. Let α = α 1 α 2 ∈ Q-KS(N ).
First, let us note that if i ≥ 4, then by Proposition 2.3 α ∈ Z. Hence, we may assume that i = 2 or 3. Substituting α 1 = jp + t in (S 2 ), we get

(S 3 ) (α 2 -j)p -t | ip + s -1 (α 2 i -j)p + α 2 s -t | p -1 which implies that (j -α 2 -i)p ≤ s -t -1 α 2 s -t + 1 ≤ (j -α 2 i + 1)p As s -t -1 ≤ p -3 and -p + α 2 + 2 ≤ α 2 s -t + 1, it follows that (j -α 2 -i)p ≤ p -3 -p + α 2 + 2 ≤ (j -α 2 i + 1)p hence (S 4 ) j ≤ α 2 + i α 2 i -1 ≤ j
Now, let us show that for i = 2 or i = 3, we have α 2 = 1 (i.e. α ∈ Z). Case 1: If i = 2, then α 2 ≤ 3 by Proposition 2.5. Hence, we consider the following two subcases.

(1) Suppose that α 2 = 2. Then by (S 4 ), j = 3 or j = 4.

• If j = 3, then (S 3 ) gives As q = 2p + s, then s is odd and so α 1 = jp + t = 4p + s -1 is even. But, since α 2 = 2, we get a contradiction with the fact that gcd(α 1 , α 2 ) = 1. Finally, we conclude that α 2 = 2.

p + t | 2p + s -1 (2.5) p + 2s -t | p -1 (2.
(2) Assume that α 2 = 3. Since i = 2, then (S 4 ) gives j ≤ 5 5 ≤ j hence j = 5 and so (S 3 ) becomes

2p + t | 2p + s -1 (2.9) p + 3s -t | p -1
(2.10) By (2.9) we must have 2p + t = 2p + s -1, therefore t = s -1. Hence p + 3s -t = p + 2s + 1 > p -1, which against (2.10). Thus α 2 = 3. So, we conclude that in case 1, α 2 = 1.

Case 2: Now, assume that i = 3. Then, by Proposition 2.5, we get α 2 ≤ 2. Suppose by contradiction that α 2 = 2. Then (S 4 ) yields j ≤ 5 5 ≤ j which implies that j = 5. Therefore (S 3 ) gives

3p + t | 3p + s -1 (2.11) p + 2s -t | p -1
(2.12) By (2.11) we must have 3p+t = 3p+s-1, hence t = s-1. Therefore p + 2s -t = p + s + 1 > p -1, which contradicts (2.12). So, α 2 = 2 which means α 2 = 1.

Proposition 2.5. Let α = α 1 α 2 ∈ Q be such that gcd(α 1 , N ) = 1. If α is a K N -base with q < 2p, then α 2 ∈ {j -1, j, j + 1}.
Proof. If α is a K N -base such that gcd(α 1 , p) = gcd(α 1 , q) = 1, q = p+s and α 1 = jp + t, then by (S 3 ) we get

(S 5 ) (α 2 -j)p -t | p + s -1 (α 2 -j)p + α 2 s -t | p -1 Hence -p -s + 1 ≤ (α 2 -j)p -t ≤ p + s -1 -p + 1 ≤ (α 2 -j)p + α 2 s -t ≤ p -1 so that -p -s + t + 1 ≤ (α 2 -j)p ≤ p + s + t -1 -p -α 2 s + t + 1 ≤ (α 2 -j)p ≤ p -α 2 s + t -1 This implies that -p -s + t + 1 ≤ (α 2 -j)p ≤ p -α 2 s + t -1.
Since, in addition

-2p + 3 = -p -(p -1) + 1 + 1 ≤ -p -s + t + 1 and p -α 2 s + t -1 ≤ p -1 + p -1 -1 = 2p -3, it follows that -2p < -2p + 3 ≤ (α 2 -j)p (α 2 -j)p ≤ 2p -3 < 2p hence -2 < α 2 -j < 2. So, we deduce that α 2 ∈ {j -1, j, j + 1}.
The previous proposition leads us to discuss separately in the next three lemmas, each case of α 2 ∈ {j -1, j, j + 1} in order to fully determine the K N -base α. For the rest of this paper, let us define for an integer m the set Div(m

-1) = {d m ∈ N * ; d m | (m -1)}. Lemma 2.6. Let α = α 1 α 2 ∈ Q be such that gcd(α 1 , N ) = 1.
Suppose that q < 2p and α 1 = (α 2 + 1)p + t (i.e. α 2 = j -1). Then the following assertions hold.

(

) If α is a K N -base then α 2 is odd and 1 ≤ α 2 ≤ p. 1 
(2) α is a K N -base if and only if there exist ε ∈ {-1, 1} and an even

integer d p ∈ Div(p-1) such that t = s-1 and α 2 = q -1 -εd p s .
Proof.

(1) First, let us show that p = 2. Since α is a K N -base with gcd(α 1 , p) = gcd(α 1 , q) = 1, q = p + s and α 1 = (α 2 + 1)p + t, we get by (S 5 )

p + t | p + s -1 (2.13) (S 6 ) p + t -α 2 s | p -1 (2.14) By (2.13) we must have p + t = p + s -1, hence t = s -1.
Suppose by contradiction that p = 2. As 1 ≤ s ≤ p-1 = 1, it follows that s = 1 hence t = 0 and so α 1 = (α 2 +1)p. Therefore, p = 2 | α 1 , which contradicts the fact that gcd(α 1 , p) = 1. Now, since p ≥ 3 and q = p + s, it follows that s is even and so t is odd. Further, we claim that α 2 is odd, else if α 2 is even and as t is odd then α 1 = (α 2 + 1)p + t will be even, hence

2 | gcd(α 1 , α 2 ) = 1, which is impossible. Now, let us show that 1 ≤ α 2 ≤ p. Since t = s -1, then by (2.14) we get -p -s + 1 + α 2 s = -p -t + α 2 s ≤ p -1, hence 0 ≤ (α 2 -1)s ≤ 2p -2, which implies that 0 ≤ α 2 -1 ≤ 2p -2 s ≤ p -1.
Thus,

1 ≤ α 2 ≤ p.
(2) Since p ≥ 3 and s is even, we obtain by (S 6 ) the equivalence: α ∈ Q-KS(N ) if and only if there exist ε ∈ {-1, 1} and an even integer d p ∈ Div(p -1) such that

t = s -1 p -1 -(α 2 -1)s = εd p This is equivalent to t = s -1 and α 2 = q -1 -εd p s . Lemma 2.7. Let α = α 1 α 2 ∈ Q be such that gcd(α 1 , N ) = 1. Suppose that q < 2p and α 1 = α 2 p + t (i.e. α 2 = j). Then, α is a K N -base if and only if there exist ε ∈ {-1, 1}, d p ∈ Div(p-1) and d q ∈ Div(q -1)
such that t = d q and α 2 = d q + εd p s > 0.

Proof. Suppose that α ∈ Q-KS(N ) with gcd(α 1 , p) = gcd(α 1 , q) = 1, α 1 = α 2 p + t and q = p + s. Then (S 5 ) becomes

t | q -1 α 2 s -t | p -1 It follows that, α is a K N -base if and only if there exist ε ∈ {-1, 1}, d p ∈ Div(p -1) and d q ∈ Div(q -1) such that t = d q α 2 s -t = εd p which is equivalent to t = d q and α 2 = d q + εd p s > 0. Lemma 2.8. Let α = α 1 α 2 ∈ Q be such that gcd(α 1 , N ) = 1.
Suppose that q < 2p and α 1 = (α 2 -1)p + t (i.e. α 2 = j + 1). Then, α is a K Nbase if and only if there exist d p ∈ Div(p -1) ≥ 2 and d q ∈ Div(q -1)

such that t = p -d q > 0 and α 2 = d p -d q s > 0.
Proof. If α ∈ Q-KS(N ) such that gcd(α 1 , p) = gcd(α 1 , q) = 1, q = p+s and α 1 = (α 2 -1)p + t, then (S 5 ) becomes

p -t | q -1 p -t + α 2 s | p -1
Therefore, α is a K N -base if and only if there exist d p ∈ Div(p -1) and d q ∈ Div(q -1) such that

p -t = d q α 2 s + p -t = d p ≥ 2 this is equivalent to t = p -d q > 0 and α 2 = d p -d q s > 0.
By the next result, we give bounds for

α 2 when α = α 1 α 2 is a K N -base
where gcd(α 1 , N ) = q.

Proposition 2.9.

Let α = α 1 α 2 ∈ Q-KS(N ) be such that gcd(α 1 , N ) = q.
Then the following assertions hold.

(

) If q < 2p, then 1 ≤ α 2 < p(p + 2) 2 . 1 
(

) If q > 2p, then 1 ≤ α 2 < p(i + 1) i -1 . 2 
Proof. Suppose that α ∈ Q-KS(N ) such that gcd(α 1 , N ) = q, so that gcd(α 1 , p) = 1. Then, by (S 1 ) we get

α 2 p -α 1 | q -1 α 2 q -α 1 | q(p -1) Therefore -α 2 p + α 1 ≤ q -1 (2.15) α 2 q -α 1 ≤ q(p -1) (2.16)
hence, by summing (2.15) and (2.16) we get

α 2 (q -p) ≤ qp -1 < qp.
(2.17)

Two cases are to be discussed.

(1) If q = ip + s > 2p, then by (2.17) we get

α 2 (i -1)p < α 2 ((i -1)p + s) = α 2 (q -p) < qp < (i + 1)p 2 . hence α 2 < (i + 1)p i -1 .
(2) If i = 1, then q = p + s. We distinguish two subcases.

• If s is even (i.e s ≥ 2), then by (2.17) we obtain

α 2 s = α 2 (q -p) < qp = (p + s)p.
As s ≥ 2, it follows that

α 2 < (p + s)p s ≤ (p + 2)p 2 .
(2.18)

• If s is odd (i.e s = 1, q = 3 and p = 2), then easily we can

prove that α ∈ 3 2 , 9 4 
, and so α 2 verify (2.18). Now, by the following two results, we determine all K N -bases α ∈ Q such that gcd(α 1 , N ) = q and q < 2p.

Proposition 2.10. Let α = α 1 α 2 ∈ Q-KS(N ) such that gcd(α 1 , N ) = q.
Suppose that α 1 = α 1 q and q < 2p. Then the following assertions hold.

(1) α 1 < α 2 .

( Proof.

) If α 1 = 1 then α 2 ∈ {2, 2 
(1) Let α = α 1 α 2 ∈ Q-KS(N ) be such that gcd(α 1 , p) = 1, α 1 = α 1 q and q = p + s . Then (S 1 ) is equivalent to

(α 2 -α 1 )p -α 1 s | p + s -1 (2.19) (S 7 ) α 2 -α 1 | p -1 (2.20)
First as gcd(α 1 , α 2 ) = 1, we have α 1 = α 2 . Now, we claim that α 1 < α 2 . If is not the case and as α 1 > 0, then by 2.2 we get (α 1 -α 2 )p + α 1 s ≥ p + s > 0, which contradicts (2.19).

(2) Suppose that α 1 = 1. Then by (2.19) we obtain

(α 2 -1)p -s ≤ p + s -1. As s ≤ p -1, it follows that (α 2 -2)p ≤ 2s -1 < 2p, hence α 2 < 4. But, since α 2 > α 1 = 1, it yields that α 2 ∈ {2, 3}. (a) If α 2 = 2, then since α 1 = 1, (S 7 ) will be reduced to (p -s) | (p + s -1) = p -s + 2s -1, which is equivalent to (p -s) | (2s -1). (b) Now, suppose that α 2 = 3. Then (S 7 ) is simply reduced to (2p -s) | (p + s -1). Since p + s -1 < 2(2p -s), it follows that (S 7 ) is equivalent to 2p -s = p + s -1, so s = p + 1 2 .
Now, in the next result where q < 2p and α 1 = α 1 q ≥ 2q, we consider the Euclidean division of α 2 by α 1 :

α 2 = mα 1 + r with m ≥ 1 and 1 ≤ r ≤ α 1 -1. Lemma 2.11. Let α = α 1 α 2 ∈ Q-KS(N ) be such that gcd(α 1 , N ) = q.
Suppose that α 1 = α 1 q ≥ 2q and q < 2p. Then the following hold.

(1) m ∈ {1, 2}.

(

) If m = 2, then r = 1, α 1 = s -1 p -s and α 2 = q -2 p -s . 2 
(3) If m = 1, then there exist d p ∈ Div(p -1), d q ∈ Div(q -1) and

ε ∈ {-1, 1} such that α 1 = pd p -εd q s and α 2 = qd p -εd q s .
Proof.

( 

) Let α = α 1 α 2 ∈ Q-KS(N ) be such that α 1 = α 1 q, q = p+s 1 
((m -2)α 1 + r)p + α 1 (p -s) = (α 2 -α 1 )p -α 1 s ≤ p + s -1 < 2p. As α 1 (p -s) > 0, we get (m -2)α 1 + r ≤ 1, hence (m -2)α 1 ≤ 1 -r ≤ 0. (2.22)
This implies that m ≤ 2.

(2) Assume that m = 2. Then by (2.22) we obtain r = 1 and so

α 2 = 2α 1 + 1. Therefore (2.21) becomes p + α 1 (p -s) | p + s -1. But since 2(p + α 1 (p -s)) > 2p > p + s -1, it follows that p + α 1 (p -s) = p + s -1. Hence α 1 = s -1 p -s and so α 2 = q -2 p -s .
(3) Suppose that m = 1. Then

α 2 = α 1 + r with 1 ≤ r ≤ α 1 -1. Therefore (S 7 ) becomes rp -α 1 s | q -1 r | p -1
So, α ∈ Q-KS(N ) if and only if there exist d q ∈ Div(q -1), d p ∈ Div(p -1) and ε ∈ {-1, 1} such that rp -α 1 s = εd q r = d p This is equivalent to α 1 = pd p -εd q s and α 2 = qd p -εd q s .

The remaining case where gcd(α 1 , N ) = q and q > 2p will be treated in the following lemma. Lemma 2.12. Let α = α 1 α 2 ∈ Q be such that gcd(α 1 , N ) = q. Suppose that α 1 = α 1 q and q > 2p. Then, α is a K N -base if and only if there exist ε ∈ {-1, 1}, d p ∈ Div(p -1) and d q ∈ Div(q -1) such that α 1 = pd p -εd q q -p and α 2 = qd p -εd q q -p .

Proof. Let α ∈ Q-KS(N ) be such that gcd(α 1 , p) = 1, α 1 = α 1 q and q = ip + s. Then (S 1 ) is equivalent to

α 2 p -α 1 q | q -1 (2.23) (S 8 ) α 2 -α 1 | p -1 (2.24)
Let us show that α 2 > α 1 . First, it's clear by (2.24) that α 2 = α 1 . Now, suppose by contradiction that α 2 < α 1 . Then by (2.23) we have α 1 q -α 2 p ≤ q -1, hence q < (α 2 + 1)q -α 2 p ≤ α 1 q -α 2 p ≤ q -1, which impossible.

Since α 2 -α 1 > 0, it follows by (S 8 ) that α is a K N -base if and only if there exist d p ∈ Div(p -1), d q ∈ Div(q -1) and ε ∈ {-1, 1} such that

α 2 p -α 1 q = εd q α 2 -α 1 = d p
This is equivalent to α 1 = pd p -εd q q -p and α 2 = qd p -εd q q -p . Now, the case where gcd(α 1 , N ) = p will be studied in the next two results.

Proposition 2.13. Let α = α 1 α 2 ∈ Q-KS(N ) be such that gcd(α 1 , N ) =
p. Suppose that α 1 = α 1 p. Then the following assertions hold.

(

) If α 2 = 1 then α 1 ∈ {i, i + 1}. (2) If α 2 ≥ 2 then iα 2 + 1 ≤ α 1 ≤ (i + 1)α 2 -1. 1 
Proof. Let α ∈ Q-KS(N ) be such that gcd(α 1 , q) = 1, α 1 = α 1 p and q = ip + s. Then, (S 1 ) is equivalent to

α 2 -α 1 | ip + s -1 (2.25) (S 9 ) (iα 2 -α 1 )p + α 2 s | p -1 (2.26)
We claim that iα 2 -α 1 ≤ 0.

(2.27) Indeed, if is not the case, we get (iα 2 -α 1 )p + α 2 s ≥ p + α 2 s > p, which contradicts (2.26). Also, we claim that

α 1 -(i + 1)α 2 ≤ 0.
(2.28) Indeed, if is not the case, we obtain

(α 1 -iα 2 )p -α 2 s = (α 1 -(i + 1)α 2 )p + α 2 (p -s) ≥ p + α 2 (p -s) > p,
which contradicts (2.26). Now, we consider the two following cases.

(1) If α 2 = 1, then by (2.27) and (2.28) we get i ≤ α 1 ≤ i + 1

(2) Assume that α 2 ≥ 2. We claim that iα 2 -α 1 = 0. Indeed if not, then iα 2 = α 1 . Hence 1 = gcd(α 1 , α 2 ) = gcd(α 1 , α 2 ) = α 2 ≥ 2, which is impossible. Therefore by (2.27) we get 

iα 2 + 1 ≤ α 1 . ( 2 
iα 2 + 1 ≤ α 1 ≤ (i + 1)α 2 -1. (2.31) Lemma 2.14. Let α = α 1 α 2 ∈ Q be such that gcd(α 1 , N ) = p. Assume that α 1 = α 1 p.
Then, α is a K N -base if and only if there exist ε ∈ {-1, 1}, d p ∈ Div(p -1) and d q ∈ Div(q -1) such that α 1 = qd q + εd p q -p and α 2 = pd q + εd p q -p .

Proof. Let α ∈ Q-KS(N ) be such that gcd(α 1 , q) = 1, α 1 = α 1 p and q = ip + s. As by (2.31)

α 1 = iα 2 + α 3 with 1 ≤ α 3 < α 2 , (S 9 ) becomes (i -1)α 2 + α 3 | ip + s -1 = q -1 (2.32) α 3 p -α 2 s | p -1 (2.33)
It follows that, α is a K N -base if and only if there exist ε ∈ {-1, 1}, d p ∈ Div(p -1) and d q ∈ Div(q -1) such that

(i -1)α 2 + α 3 = d q α 2 s -α 3 p = εd p
This is equivalent to α 2 = pd q + εd p q -p , α 3 = sd q + ε(1 -i)d p q -p and so

α 1 = qd q + εd p q -p .
In the rest of this section, we will discuss the case where pq | α 1 .

Proposition 2.15.

Let α = α 1 α 2 ∈ Q-KS(N ) be such that α 1 = α 1 pq.
Then the following assertions hold.

(1) α 1 < α 2 .

(2) q ≤ 4p -3.

Proof. Let α = α 1 α 2 ∈ Q-KS(N ) be such that α 1 = α 1 pq. Then (S 1 )
becomes 2) By (S 10 ) we can write

α 2 p -α 1 pq = α 2 p -α 1 | p(q -1) α 2 q -α 1 pq = α 2 q -α 1 | q(p -1) which is equivalent to α 1 q -α 2 | q -1 (2.34) (S 10 ) α 1 p -α 2 | p -1 (2.35) (1) By (2.34) we have α 1 q -α 2 ≤ q -1. As in addition q > 1, it follows that α 1 -1 < (α 1 -1)q ≤ α 2 -1. Thus, α 1 < α 2 . (
α 1 q -α 2 | α 1 (q -1) = α 1 q -α 2 + α 2 -α 1 α 1 p -α 2 | p -1 hence α 1 q -α 2 | α 2 -α 1 α 1 p -α 2 | p -1 This implies that α 1 q -α 2 ≤ α 2 -α 1 -p + 1 ≤ α 1 p -α 2 therefore (q + 1)α 1 2 ≤ α 2 (2.36) α 2 ≤ (α 1 + 1)p -1 (2.37)
So, by combining (2.36) and (2.37), we get

(q + 1)α 1 2 ≤ α 2 ≤ (α 1 + 1)p -1.
Hence α 1 (q -2p + 1) ≤ 2(p -1). As in addition α 1 ≥ 1, we get

q -2p + 1 ≤ α 1 (q -2p + 1) ≤ 2(p -1). Thus q ≤ 4p -3. Lemma 2.16. Let α = α 1 α 2 ∈ Q be such that α 1 = α 1 pq. Suppose that 2p < q < 3p.
Then, α is a K N -base if and only if one of the following assertions is verified.

(1) q = 9p -5 4 or q = 3p -2, α 1 = 1 and α 2 = 3p -1 2 .

(2) s + 1 2 | (p -1), α 1 = 1 and α 2 = q + 1 2 .

Proof. Suppose that α ∈ Q-KS(N ) . Then by (2.34) and (2.35) we get respectively α 1 q -α 2 ≤ q -1 (2.38) and -α 1 p + α 2 ≤ p -1.

(2.39) Adding (2.38) to (2.39), we obtain

α 1 (q -p) ≤ q + p -2.
(2.40)

Since q = 2p + s, it follows that

α 1 ≤ q + p -2 q -p = 3(p + s) -2s -2 p + s < 3.
Therefore, α 1 ∈ {1, 2}. Let us show that α 1 = 1. Suppose by contradiction that α 1 = 2. Then by (2.38) and (2.39) we get 2p + s

+ 1 = q + 1 ≤ α 2 ≤ 3p -1. Hence, the Euclidean division of α 2 by p is α 2 = 2p + u with s + 1 ≤ u ≤ p -1.
As by (2.34) we have 2(2q -α 2 ) -(q -1) = 2(p -u) + 3s + 1 > 0 and (2q -α 2 ) | (q -1), then we must have 2q -α 2 = q -1 that is

α 2 = q + 1. But, 2 | gcd(q + 1, 2) = gcd(α 2 , α 1 ) = 1, which is not true. So, α 1 = 1. Now, let us show that p < α 2 ≤ 2p -1. As α 1 = 1, (S 10 ) becomes q -α 2 | q -1 (2.41) (S 11 ) α 2 -p | p -1 (2.42)
By (2.42), it follows immediately that α 2 ≤ 2p -1. Hence, we can write α 2 = kp + u with k ∈ {0, 1} and 0 < u ≤ p -1.

We claim that k = 0 (i.e. k = 1 and so p < α 2 ). Indeed, if not, then α 2 = u and as 2u < 2p < q, we get

2(q -α 2 ) = q + (q -2u) ≥ q + 1 > q -1.
Therefore, by (2.41) we must have q -α 2 = q -1, so that α 2 = 1. This implies that α = pq = N , which is not possible by definition. Thus,

p < α 2 ≤ 2p -1 < q (2.43)
Since q -α 2 > 0 and α 2 -p > 0 by (2.43) it follows by (S 11 ) that α is a K N -base if and only if there exist d p ∈ Div(p-1) and d q ∈ Div(q -1) such that

q -α 2 = d q (2.44) α 2 -p = d p (2.45) Let us show that d p = p -1 2 or d q = q -1 2 .
Adding (2.44) to (2.45), we get

q -p = d q + d p . (2.46) 
• If d p = p -1 and d q = q -1, then by (2.46) we obtain

p + s = q -p = d q + d p = q + p -2 = 3p + s -2.
Hence p = 1, which is not possible.

• Now, assume that d p ≤ p -1 3 and d q ≤ q -1 3 . Then by (2.46)

p + s = q -p = d q + d p ≤ p + q -2 3 . Hence 2s ≤ -2, which is not true. So, we conclude that d p = p -1 2 or d q = q -1 2
. this yields to consider the two following cases: (2.44). Knowing that 4(q -α 2 )-(q -1) = 3s+3 > 0 and q -α 2 -(q -1) = 1-α 2 < 0, it follows that q -1 = k(q -α 2 ) with k ∈ {2, 3} . This implies that k = 2 hence s = p -2 and q = 3p -2 or k = 3 which gives s = p -5 4 and q = 9p -5 4 .

(1) If d p = p -1 2 , then by (2.45) we have α 2 = 3p -1 2 . Therefore q -α 2 = p + 2s + 1 2 | q -1 = 2p+s-1 by
(2) Now, suppose that d q = q -1 2 . Then by (2.44) we obtain

α 2 = q + 1 2 , this yields by (2.45) that α 2 -p = s + 1 2 | p -1.
This ends the forward direction of the proposition. The backward direction is clearly satisfied. Lemma 2.17.

Let α = α 1 α 2 ∈ Q be such that α 1 = α 1 pq. Suppose that 3p < q < 4p. Then, α is a K N -base if and only if q = 4p -3, α 1 = 1 and α 2 = 2p -1. Proof. Suppose that α ∈ Q-KS(N ), α 1 = α 1 pq and 3p < q < 4p.
Let us show that α 1 = 1. As q = 3p + s we get by (2.40)

α 1 ≤ q + p -2 q -p = 2(2p + s) -s -2 2p + s < 2.
Thus, α 1 = 1. Now, since α 1 = 1 and with the same proof of (2.43), we may write

p < α 2 = p + u ≤ 2p -1 < q.
Hence, (S 10 ) becomes

2p + s -u = q -α 2 | q -1 = 3p + s -1 (2.47) u = α 2 -p | p -1 (2.48) As 3(2p + s -u) = 3p + s -1 + 3(p -u) + 2s -1 > 3p + s -1 and 2p+s-u < 3p+s-1, it follows by (2.47) that 2(2p+s-u) = 3p+s-1. Hence, u = p + s + 1 2 .
By (2.48), we have u = p + s + 1 2 | (p -1). Since, in addition, 2u = p + s + 1 > p -1, it follows that p + s + 1 2 = p -1. Hence s = p -3; so that q = 4p -3 and α 2 = 2p -1.

This ends the forward direction of the proposition. The backward direction is clearly satisfied. Now, for the next two results, we consider α 2 = kp + u with 1 ≤ u ≤ p -1; The Euclidian division of α 2 by p. Proposition 2.18. Let α = α 1 α 2 ∈ Q-KS(N ) be such that α 1 = α 1 pq.

If q < 2p, then the following assertions hold.

(1) α 1 ≤ p + 1.

(2) α 1 ∈ {k, k + 1}.

Proof. Suppose that α ∈ Q-KS(N ) and q = p + s.

(1) By (2.40) we have α 1 ≤ q + p -2 q -p = 2p + s -2 s . Hence, two cases are to be considered:

• If s = 1 and so q = 3, p = 2, then α 1 ≤ 3 = p + 1.

• If s ≥ 2, then α 1 ≤ 2p + s -2 s ≤ p.
(2) Substituting q = p + s and α 2 = kp + u in (2.38), we get

(α 1 -k)p + α 1 s -u = α 1 q -α 2 ≤ q -1 = p + s -1, therefore (α 1 -k -1)p + (α 1 -1)s ≤ u -1 ≤ p -2. Since, in addition, α 1 ≥ 1 hence (α 1 -1)s ≥ 0, it follows that α 1 -k -1 ≤ 0, that is α 1 ≤ k + 1.
Also, by (2.39) we have (α ∈ Q be such that α 1 = kpq and q < 2p.

1 -k)p -u = α 1 p -α 2 ≥ -p + 1, hence (α 1 -k + 1)p ≥ u + 1 ≥ 2. Therefore, α 1 -k + 1 ≥ 1, that is α 1 ≥ k. So, we deduce that α 1 ∈ {k, k + 1}.
Then, α is a K N -base if and only if there exist ε ∈ {-1, 1}, d p ∈ Div(p -1) and d q ∈ Div(q -1) such that k = d p + εd q s and α 2 = qd p + εpd q s .

Proof. Replacing α 2 = kp + u, q = p + s and α 1 = kpq in (S 10 ), we obtain

ks -u | q -1 -u | p - 1 
Hence, α is a K N -base if and only if there exist d q ∈ Div(q -1), d p ∈ Div(p -1) and ε ∈ {-1, 1} such that ks -u = εd q u = d p This is equivalent to k = d p + εd q s and α 2 = qd p + εpd q s . Lemma 2.20. Let α = α 1 α 2 ∈ Q be such that α 1 = (k+1)pq and q < 2p.

Then, α is a K N -base if and only if there exist d p ∈ Div(p -1) and d q ∈ Div(q -1) such that k +1 = d q -d p s > 0 and α 2 = pd q -qd p s > 0.

Proof. Substituting α 2 = kp + u, q = p + s and α 1 = (k + 1)pq in (S 10 ), we get

(k + 1)s + p -u | q -1 p -u | p - 1 
Therefore, α is a K N -base if and only if there exist d p ∈ Div(p -1) and d q ∈ Div(q -1) such that

(k + 1)s + p -u = d q p -u = d p This is equivalent to k + 1 = d q -d p s > 0 and α 2 = pd q -qd p s > 0.

The Korselt Set of pq

First, let us give the Korselt set of pq over Z when q < 2p.

Corollary 3.1. Let α ∈ Z such that gcd(α, N ) = 1. Assume that q < 2p. Then, α is a K N -base if and only if there exist d q ∈ Div(q -1) and ε ∈ {-1, 1} such that α = p + εd q and s -εd q divides p -1.

Proof. Let α ∈ Z (i.e. α 2 = 1) such that gcd(α, N ) = 1. Suppose that q < 2p. Then, we have by Lemmas 2.6, 2.7 and 2.8, respectively, α is a K N -base if and only if

• α = q + p -1, • α = p + d q such that (s -d q ) | (p -1), • α = p -d q > 0 such that (s + d q ) | (p -1).
This is equivalent to the existence of d q ∈ Div(q -1) and ε ∈ {-1, 1} such that α = p + εd q > 0 and (s -εd q ) | (p -1).

By Corollary 3.1, we derive immediately the following.

Theorem 3.2. Let p < q be two prime numbers, N = pq and q

= p + s such that 1 ≤ s ≤ p -1. Then Z-KS(N ) =     dq|q-1 ε∈{-1,1} {p + εd q ; s -εd q | p -1}     ∪ {2p}.
Example 3.3. Let n, p = 2n -1 and q = 2n + 1 be three prime numbers such that n ≡ 1 (mod 3). By Theorem 3.4 we get Z-KS(pq) = {p -2, p -1, p + 1, 2p, 2p + 1}. Now, before giving the mean result in this paper, we set for a given two distinct prime numbers p and q the following:

A p,q = dq|q-1, dp|p-1 ε∈{-1,1} qd q + εpd p d q + εd p ; (q -p) | (d q + εd p ) B p,q = dq|q-1, dp|p-1 ε∈{-1,1}
(pd p -εd q )q qd p -εd q ; (q -p) | (qd p -εd q )

C p,q = dq|q-1, dp|p-1 ε∈{-1,1}

(qd q + εd p )p pd q + εd p ; (q -p) | (pd q + εd p )

D p,q = dq|q-1, dp|p-1 ε∈{-1,1}
(d p + εd q )pq qd p + εpd q ; (q -p) | (d p + εd q ) Theorem 3.4 (Structure of the Rational Korselt Set of pq). Let p < q be two prime numbers, N = pq and q = ip + s such that 1 ≤ s ≤ p -1.

Then the following properties hold.

(

) If q > 4p, then Q-KS(N ) = B p,q ∪ C p,q ∪ {p + q -1}. ( 1 
) Assume that 3p < q < 4p. Then the following assertions hold.

(a) If q = 4p -3, then

Q-KS(N ) = B p,q ∪ C p,q ∪ q -p + 1, p + q -1, pq 2p -1 . (b) If q = 4p -3, then Q-KS(N ) = B p,q ∪ C p,q ∪ {p + q -1}. ( 3 
) Suppose that 2p < q < 3p. Then the following conditions are satisfied.

(a) If s = p -5 4 , then

Q-KS(N ) = B p,q ∪C p,q ∪ 3q -5p + 3, q -p + 1, p + q -1, 2p + q -1 2 , 2pq 3p -1 .
(b) If s + 1 2 divides p -1 and s = p -5 4 , then Q-KS(N ) = B p,q ∪ C p,q ∪ q -p + 1, p + q -1, 2p + q -1 2 , 2pq q + 1 .

(c) If s + 1 2 not dividing p -1, then Q-KS(N ) = B p,q ∪ C p,q ∪ {p + q -1} . (4) Assume that q < 2p. Then the following assertions hold.

(i) If q = 5, then Q-KS(N ) = A p,q ∪ B p,q ∪ C p,q ∪ D p,q ∪ q 2 , q 3 .

(ii) Suppose that q = 5. Then the following subcases hold.

(a) If s = p + 1 2 , then Q-KS(N ) = A p,q ∪ B p,q ∪ C p,q ∪ D p,q ∪ q 3 , (s -1)q q -2 .

(b) If s = p -1, then Q-KS(N ) = A p,q ∪ B p,q ∪ C p,q ∪ D p,q ∪ (s -1)q q -2 , q 2 .

(c) Assume p -s divides 2s -1 and s = p -1. Then Q-KS(N ) = A p,q ∪ B p,q ∪ C p,q ∪ D p,q ∪ q 2 .

(d) If p -s divides s -1, s = p + 1 2 and s = p -1, then Q-KS(N ) = A p,q ∪ B p,q ∪ C p,q ∪ D p,q ∪ (s -1)q q -2 .

(e) If p -s divides neither s -1 nor 2s -1, then Q-KS(N ) = A p,q ∪ B p,q ∪ C p,q ∪ D p,q .

Proof. For N = pq, let the sets Clearly, we have Q-KS(N ) = A ∪ B ∪ C ∪ D. First, note that if q > 2p, then by Lemmas 2.12 and 2.14 we have respectively C = C p,q and B = B p,q . Also, by Proposition 2.4 A = {α ∈ Z-KS(N ) ; gcd(α, N ) = 1} .

A = α = α 1 α 2 ∈ Q-KS ( 
(1) If q > 4p, then we have by [START_REF] Echi | The Korselt Set of pq[END_REF]Theorem 14] and Proposition 2.15, respectively, A = {q + p -1} and D = ∅. Therefore, Q-KS(N ) = B p,q ∪ C p,q ∪ {q + p -1} . (2) Assume that 3p < q < 4p. Then by [4, Theorem 14] we consider the following two subcases. (a) Suppose that q = 4p -3. Then A = {q -p + 1, q + p -1}.

Since D = pq 2p -1 by Lemma 2.17 it follows that Q-KS(N ) = B p,q ∪ C p,q ∪ q -p + 1, p + q -1, pq 2p -1 .

(b) If q = 4p -3, then A = {q + p -1}. Also, since D = ∅ by Lemma 2.17 we deduce that Q-KS(N ) = B p,q ∪ C p,q ∪ {p + q -1} . (3) Now, suppose that 2p < q < 3p. Then by Lemma 2.16 several subcases are to be discussed. A = 3q -5p + 3, q -p + 1, p + q -1, 2p + q -1 2 .

Thus, we conclude that Q-KS(N ) = B p,q ∪C p,q ∪ 3q -5p + 3, q -p + 1, p + q -1, 2p + q -1 2 , 2pq 3p -1 .

(b) If s + 1 2 divides p -1 and s = p -5 4 , then D = 2pq q + 1 . Now, let S = q -p + 1, p + q -1, 2p + q -1 2 . We will prove that A = S.

Since q -1 = 2(p -1) + s + 1 and s + 1 2 | (p -1), it follows that (s+1) | (q-1). This implies by definition that S ⊆ A.

  3} and we have (a) α 2 = 2 if and only if (p -s) | (2s -1). (b) α 2 = 3 if and only if s = p + 1 2 .

and gcd(α 1

 1 , p) = 1. Then by(2.19) we obtain(α 2 -α 1 )p -α 1 s | p + s -1.(2.21)Since α 2 = mα 1 + r and s ≤ p -1, it follows that

  Now, the next two lemmas deal with the two cases of α 1 ∈ {k, k +1}. Lemma 2.19. Let α = α 1 α 2

B = α = α 1 α 2 ∈D = α = α 1 α 2 ∈

 22 N ) ; gcd(α 1 , N ) = 1 , Q-KS(N ) ; gcd(α 1 , N ) = q , C = α = α 1 α 2 ∈ Q-KS(N ) ; gcd(α 1 , N ) = p , Q-KS(N ) ; gcd(α 1 , N ) = pq .

Also, as s = p -5 4 , it follows according to [START_REF] Echi | The Korselt Set of pq[END_REF]Lemma 12], that A ⊆ S and so A = S. Thus, Q-KS(N ) = B p,q ∪ C p,q ∪ q -p + 1, p + q -1, 2p + q -1 2 , 2pq q + 1 .

(c) Now, suppose that s + 1 2 doesn't divide p -1. Then D = ∅

and by [START_REF] Echi | The Korselt Set of pq[END_REF]Lemma 12] we have

(4) Assume that q < 2p. Then by Lemmas 2.6, 2.7 and 2.8 we have A = A p,q . Further, C = C p,q by Lemma 2.14 and by Proposition 2.19 and lemma 2.20 we have D = D p,q . Now, let us determine the set B. First, we remark by Lemmas 2.11 and 2.10 that

Also, we need to state the next four assertions which can be verified easily, in order to determine completely B.

⊆ B if and only if q = 5.

This leads us to consider the following cases.

. Thus,

(ii) Suppose that q = 5. Then the following subcases hold.

(a) If s = p + 1 2 , then q 3 ∈ B and so (s -1)q q -2 ∈ B.

Since in addition q = 5, we have

Since in addition q = 5, we have

. So, we deduce that

(c) Assume that (p-s) | (2s-1) and s = p-1. Then by Lemma 2.10 we have q 2 ∈ B. Also, as p -s not dividing s -1 (else s = p -1), it follows that (s -1)q q -2 / ∈ B and as q = 5, we have q 3 / ∈ B. Consequently, we get by (3.1), B = B p,q ∪ q 2 . This implies that

Hence, B = B p,q ∪ (s -1)q q -2 , therefore Q-KS(N ) = A p,q ∪ B p,q ∪ C p,q ∪ D p,q ∪ (s -1)q q -2 .

(e) Now, suppose that p -s divides neither s -1 nor 2s-1. Then by Lemmas 2.11 and 2.10 each of the rational numbers (s -1)q q -2 , q 2 and q 3 is not in B. Hence, B = B p,q . So, we conclude that Q-KS(N ) = A p,q ∪ B p,q ∪ C p,q ∪ D p,q .