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Abstract

A two-dimensional shallow water model with depth-dependent porosity is presented. The pur-
pose is the coarse grid simulation of shallow �ows over complex topographies and geometries. Two
�ux closures are examined: the Integral Porosity (IP) and Dual Integral Porosity (DIP) closures.
Energy losses are described using a subgrid scale model that accounts for bottom and wall friction,
transient momentum dissipation and energy losses induced by obstacle submersion. A complete
wave propagation property analysis is provided for the IP and DIP closures, yielding more accur-
ate numerical stability constraints than published previously. Five computational examples are
presented, including transients in compound and meandering channels, urban dambreak problems
with building submersion and runo� over variable microtopography. The ability of the model
to deal with subgrid-scale features is con�rmed. The DIP �ux is shown to be superior to the
IP closure. The transient dissipation term is essential in reproducing the e�ect of obstacles and
microtopography. Distinguishing between the building wall- and building roof-induced friction is
seen to be essential. The model is validated successfully against a scale model experimental dataset
for the submersion of a coastal urban area by a tsunami wave.

Keywords Flood modelling; shallow water model; upscaling; porosity model; �ux closure; source
term

1 Introduction

Over the past decade, porosity-based shallow water models have become increasingly popular in dealing
with subgrid-scale geometric and topographic features in shallow water �ows. Typical applications
include urban �ood modelling and the modelling of shallow �ows over complex topographies [1, 13].
In the Single Porosity (SP) approach, a single porosity is used to account for both the storage and
the connectivity properties of the subgrid-scale geometry. While early developments [1, 13] used a
depth-dependent SP �eld, most of the developments and applications of the SP approach presented
to date have focused on depth-independent SP versions of the shallow water equations [2, 8, 15, 17,
21, 25, 38, 42, 47]. This restriction of the original approach is easily justi�ed by the fact that these
models were developed for urban �ood modelling purposes, where the buildings are assumed not to
be submerged by the �ood in practice. One of the main limitations of the original SP approach [13]
is that it does not allow anisotropy e�ects to be accounted for. Two ways of introducing anisotropy
e�ects using the SP approach are known so far from the literature. In the Multiple Porosity (MP)
model [21], the �ow region is broken into several subregions, each having its own, single porosity. Some
of the regions are applied momentum corrections to account for preferential �ows and stagnant water
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in dead zones. More recently, anisotropy is incorporated directly in the �ux functions of the SP model
[48].

The Integral Porosity (IP) approach [38, 39], originally designed for urban �ood modelling, incor-
porates anisotropy by de�ning two types of porosity: a storage (or areal) porosity and a connectivity
(or frontal) porosity. The storage and connectivity porosities express the statistical properties of the
urban geometry over the domain of interest and its boundary respectively. While the storage poros-
ity does not include information on the anisotropy of the geometry, the connectivity porosity does
because it is a function of the orientation of the boundary. The IP approach has been extended to
depth-dependent porosity �elds [34, 35]. The Building Coverage Ratio/Conveyance Reduction Factor
(BCR/CRF) approach [10, 11] also uses two statistical indicators of the urban geometry that act in a
similar fashion to that of the storage and conveyance porosities. The multilayer de�nition [11] makes
the approach very similar to that of the MP model. The IP and BCR/CRF approaches share the com-
mon feature that they allow the in�uence of buildings on the wave propagation speeds to be accounted
for. Such e�ects are also obtained by including multiple �ow regions, as in [21, 32].

The Dual Integral Porosity (DIP) model [24] has been proposed as an improved version of the
IP model. The accuracy of the �uxes is improved by enforcing mass �ux invariance between the
interior points of the domain and the boundaries. The superiority of the DIP model over the IP
has been con�rmed by numerical experiments involving the comparison of the IP and DIP models to
shallow water solutions obtained on re�ned grids [24, 23]. The IP model is known to underestimate
the wave propagation speeds of transients in the presence of obstacles, a drawback that is eliminated
to a large extent by the DIP model. A depth-independent porosity model derived from independent
considerations [6] has also been shown to achieve improved wave propagation properties when made
consistent with the DIP �uxes. The DIP model also incorporates a transient momentum dissipation
mechanism, active only for positive waves. A consistency analysis of the IP and DIP equations indicates
that the DIP model is less sensitive to the design of the computational grid than is the IP model [22].
Moreover, benchmarking the SP, IP and DIP models against a simulation base of 96 scenarios shows
that the DIP gives the more accurate mass and momentum �uxes of the three models, although some
issues remain when the geometry is strongly anisotropic and exhibits preferential directions [23]. So
far, however, the DIP model has been developed and applied only for depth-independent porosity
�elds.

The purpose of the present paper is to present a shallow water model based on the DIP approach,
with depth-variable porosity �elds. This model is called the Depth-Dependent Porosity (DDP) model
hereafter. It has several novel features: (i) the DIP closure presented in [24] is generalized to depth-
dependent storage and connectivity porosities, (ii) the transient momentum dissipation model and the
drag source term models are adapted to re�ect the possible submersion of the topography by the �ow
(a feature that is absent from the original DIP model), (iii) the governing equations are discretized over
unstructured grids (while [6, 35, 34] involve only rectangular or square grids), (iv) the depth-dependent
porosity laws can be made totally arbitrary and be discretized with an arbitrary degree of accuracy.

This paper is organized as follows. Section 2 presents the underlying assumptions and governing
equations of the model. Section 3 details the discretization of the �uxes and source terms in the
framework of an explicit, shock-capturing discretization, as well as the CFL stability constraint. Section
4 presents �ve test cases devoted to the veri�cation and validation of speci�c features of the proposed
model. Section 5 presents a validation of the model against scale model experiments. Sections 6 and
7 are devoted respectively to a discussion and conclusions.

2 Model

2.1 Depth-dependent porosity laws

The purpose is to model two-dimensional shallow water �ows over a solid, non-erodible topography,
that is, in the presence of an impermeable bottom, with a bottom level �eld zb (x, y) that is a function
only of the horizontal coordinates (x, y). Consider a two-dimensional domain Ω with boundary Γ,
normal unit vector n in the (x, y) plane. Such a domain may be e.g. a cell in a computational
mesh, but may also be any arbitrary-shaped domain. A phase indicator ε (x, y, z) is de�ned as follows:
ε (x, y, z) = 0 if the point (x, y, z) is in the solid phase, ε (x, y, z) = 1 otherwise. The phase indicator is
a purely geometric descriptor. A such, it is independent of the �ow �eld. Two porosities φΩ and φΓ are
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de�ned respectively for the domain and its boundary. They represent the amount of water that can
be stored per unit domain and boundary respectively for a unit variation in the free surface elevation
zs. Assuming that the function zs (x, y) is known, storage and connectivity porosities are de�ned as

φΩ (zΩ) =
1

Ω

�
Ω

ε (x, y, zs (x, y)) dΩ (1a)

φΓ (zΓ) =
1

Γ

�
Γ

ε (x, y, zs (x, y)) dΓ (1b)

zD =

�
D
zs (x, y) ε (x, y, zs (x, y)) dD�
D
ε (x, y, zs (x, y)) dD

, D = Ω,Γ (1c)

Note that equation (1c) is valid as long as the integral of ε (x, y, zs (x, y)) is non-zero, that is, as long
as D includes a subdomain with non-zero measure where there is a free surface. If the entire domain
is �lled with the solid phase, ε = 0 everywhere and both the numerator and denominator of the ratio
(1c) are zero. In this case, D being entirely dry, it can be considered not being a part of the �ow
domain and the computation of zD becomes meaningless.

The average elevation zD (D = Ω,Γ) de�ned in Equation (1c) depends directly on the subgrid-
scale free surface elevation function zs (x, y). Consequently, the functions φΩ (zΩ) and φΓ (zΓ) are not
unique in the general case. Consider the simple example of a uniform bottom slope in the x−direction
(Figure 1) with a given zΩ. In Figure 1a, the free surface is horizontal, below the upper bound of the
bottom elevation over Ω (as for e.g. water at rest in a pond). The domain is partially dry, which
results in φΩ < 1, and φΓ = 0 along the right-hand boundary. In Figure 1b, the free surface is tilted,
roughly parallel to the bottom (as in the case of e.g. runo� over a steep slope). This results in ε = 1
at all points in Ω and consequently φΩ = 1. The boundary porosity φΓ is also equal to unity at the
right-hand boundary. While zΩ is identical in both situations, the porosity φΩ is not.
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Figure 1: Depth-dependent porosity. De�nition sketch for two di�erent free surface pro�les.

This simple example shows that the porosity φD is not a single-valued function of zD because
di�erent φD values may be computed for a given average water level zD depending on the shape of
the free surface on the subgrid scale. Laws in the form φD (zD) , D = Ω,Γ are thus meaningful only
provided that a subgrid-scale model for the free surface elevation is speci�ed. It is worth noting that, in
the �rst presentation of a depth-dependent porosity model by De�na [13], two di�erent zs (x, y) models
were implicitly assumed. For the Venice lagoon application, a model similar to that of Figure 1a was
used, while for the runo� simulations, sheet �ow with a free surface roughly parallel to the mean
bottom surface is assumed, which corresponds to Figure 1b.

The developments presented hereafter are based on the assumption that the free surface is nearly
horizontal, therefore zs (x, y) is independent of x and y, thus zΩ = zΓ over the domain Ω. In this
case, the porosities φ and their integrals θ become single-valued functions of the vertical coordinate
zD (D = Ω,Γ). Since the elevations zs (x, y) = zΩ = zΓ are identical, they can be replaced with the
same argument z in Equations (1a-1c). This yields the following formulae for the porosities and their
integrals

φD (z) =
1

D

�
D

ε (x, y, z) dD, D = Ω,Γ (2a)
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θD (z) =

� z

zb

φD (ζ) dζ, D = Ω,Γ (2b)

0 ≤ φΓ (z) ≤ φΩ (z)∀z (2c)

0 ≤ θΓ (z) ≤ θΩ (z)∀z (2d)

Equation (2c) stems from the assumption that the connectivity porosity is smaller than the storage
porosity by de�nition [38]. Equation (2d) is obtained directly by integrating (2c) with respect to z.

In the present work, the laws φD (z) (D = Γ,Ω) are derived from statistical properties of the topo-
graphy. Consequently, their support is assumed to have a lower bound zb,D. Note that this is not the
case in all approaches. In [13, 48], an error function-based law is used, and φD is non-zero even for
elevations lower than the lowest point within the sampling domain. While physically unrealistic, such
laws have the advantage that they allow wetting/drying issues to be eliminated. This is an advantage
when numerical methods particularly sensitive to wetting/drying issues are used, as e.g. Galerkin �nite
element methods [13, 48].

2.2 Mass conservation

A mass balance over Ω yields

dtV +Q = 0 (3)

where V and Q are respectively the volume of water in Ω and the out�owing discharge across the
boundary. As in [13], V is obtained by integrating ε over the cylinder with base surface Ω extending
from zb to zs

V =

� zs

zb

�
Ω

εdΩ dz = Ω

� zs

zb

φΩ (z) dz = ΩθΩ (zs) (4)

The discharge Q is obtained by integrating the normal �ow velocity over the boundary of the same
cylinder

Q =

� zs

zb

�
Γ

εu.ndΓ dz =

�
Γ

θΓu.ndΓ =

�
Γ

qΓ.ndΓ (5)

where qΓ = θΓu is the unit discharge vector at the boundary. This boundary unit discharge is related
to the domain-averaged unit discharge via a closure model presented in Subsection 2.4. Substituting
(4,5) into (3) yields

dt (ΩθΩ) +

�
Γ

qΓ.ndΓ = 0 (6)

2.3 Momentum conservation

The underlying assumptions of the shallow water model are retained: the �ow velocity �eld is assumed
nearly horizontal, the slopes and curvature of the bottom and free surface are assumed small, leading
to a hydrostatic pressure �eld. Applying Newton's second law of motion to the domain yields

dt

� zs

zb

�
Ω

εudΩ dz +

� zs

zb

�
Γ

ε (u.n)udΓ dz = fw + fs + ff (7)

where ff , fw, fs are respectively the speci�c forces stemming from friction and drag, the hydrostatic
pressure exerted by the water along the boundary and the reaction from the solid phase to the pressure
force along the solid-liquid interface within the domain Ω (Figure 2). Figure 2 shows a horizontal slice
of height dz drawn at an elevation z.

The pressure force fw is active only along the part of the boundary in the water phase, that is, only
at the boundary points with ε = 1:

fw = −
� zs

zb

�
Γ

εg (zs − z)ndΓ dz (8)

where g is the gravitational acceleration. Since the porosity φΓ is considered in a statistical sense as
the mathematical expectation of ε over Γ, the following property is assumed to hold�

Γ

εg (zs − z) dΓ =

�
Γ

φΓg (zs − z) dΓ (9)
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because the hydrostatic pressure �eld p = g (zs − z) is assumed uncorrelated with the phase indicator
ε. Inserting the above expression into Equation (8), swapping the integrals yields

fw = −
�

Γ

� zs

zb

φΓ (z) g (zs − z) dz ndΓ (10)

n

n'

G
G'

Liquid

Solid

Figure 2: Momentum balance. De�nition sketch for a given elevation z.

The reaction from the solid-liquid interface accounts for the e�ects of topography. This includes the
bottom slope, as well as emergent vertical surfaces such as building walls in the presence of buildings,
etc.

fs = −
� zs

zb

�
Γ′
εg (zs − z)n′dΓ′ dz (11)

where the shape and extension of Γ′ varies with z. It is not possible to �nd a general expression for the
above integral for an arbitrary obstacle distribution. The following model is proposed hereafter: the
density of solid obstacles is assumed the same along the boundary Γ as within the domain Ω. Since
the free surface is assumed horizontal (Equation (2a)), the pressure force stemming from the reaction
along solid/liquid interfaces entirely contained within the domain (as the central island in Figure 2) is
zero and only the pressure force onto the solid/liquid interface at the boundary remains. The balance
of the pressure forces along the boundary is obtained by isolating a small domain delineated by a
boundary segment dΓ, extending by an in�nitesimal length dl into the domain (Figure 3).

Liquid

Solid

dG

n

dl

W

f
L

f
R

Figure 3: Pressure force balance. De�nition sketch.

In the limit dl→ 0, one has
dfs + dfL + dfR = 0 (12)

where dfL and dfR are respectively the pressure forces exerted onto the left- and right-hand sides of
the control volume:

dfL =

� zs

zb

εg (zs − z)ndz dΓ⇒ fL =

�
Γ

� zs

zb

φΩg (zs − z)ndz dΓ (13a)

dfR = −
� zs

zb

εg (zs − z)ndz dΓ⇒ fR = −
� zs

zb

φΓg (zs − z)ndz dΓ (13b)
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Note that φΩ and φΓ are used respectively for fL and fR because fL is exerted onto a surface that is
located within Ω, while fR is exerted onto a surface that belongs to Γ. The following expression is
obtained for the pressure force:

fs = −fL − fR = −
�

Γ

� zs

zb

(φΩ − φΓ) g (zs − z)ndz dΓ (14)

The friction force is assumed to result from both friction against the bottom and head losses
stemming from the presence of obstacles obstructing the �ow within the domain Ω.

ff = −
� zs

zb

�
Ω

εgsfdΩ dz = −
�

Ω

gθΩsfdΩ (15)

where g is the gravitational acceleration and sf is the energy slope vector. Various formulations have
been proposed for sf [18, 25, 24, 38, 34]. Numerical experiments and simulations of �eld-scale hydraulic
transients show that energy losses are best described by introducing two types of momentum source
terms [24]. The �rst is a steady-sate, turbulent source term arising from bottom friction and building
drag. The second is a momentum dissipation source term active only under transient conditions
involving positive waves. This momentum dissipation source term accounts for the dissipation of
moving bores arising from the positive waves into dead zones or low velocity areas. The following
formulae are used in the DIP model [24]:

ff = fb + fD + fT (16a)

fb = −
�

Ω

gn2
M

θΩ

h
4/3
Ω

|u|udΩ, h = zs − zb (16b)

fD = −
�

Ω

gCD |u|udΩ (16c)

fT = −M
(� zs

zb

�
Γ

φΓ (u.n)udΓ dz − fw

)
(16d)

M =


 0 0 0

0 µxx µxy
0 µyx µyy

 if ∂th > 0

0 if ∂th ≤ 0

(16e)

where fb, fD and fT are respectively the bottom friction, the drag and transient momentum dissipation
terms, h is the water depth, nM is Manning's friction coe�cient, CD is the building drag tensor, and
the coe�cients µij(i, j = x, y) are momentum dissipation coe�cients between zero and unity. The
transient momentum dissipation model was �rst introduced in [24] and its existence and expression
have been validated using re�ned two-dimensional �ow simulations [23]. The drag and transient
source terms used in the present model are modi�ed versions of the models presented and used in
[24, 23, 35, 34, 38, 39]. The modi�ed models are presented in Subsection 2.5.

2.4 Domain/boundary closure model

IP closure. The IP model [38] uses the following closure model

zs,Γ = zs,Ω (17a)

uΓ = uΩ (17b)

This closure is shown to violate mass conservation across the boundary and yield erroneous wave
propagation speeds [24].
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DIP closure. The DIP model [24] was proposed as a correction to the IP closure:

zs,Γ = zs,Ω (18a)

uΓ =
φΩ

φΓ
uΩ (18b)

with the necessary condition φΓ ≤ φΩ for problem well-posedness. The DIP closure is seen to provide
more accurate solutions than the IP model [6, 24] and to be less sensitive to the design of the mesh
[22]. Transposing this closure to the present depth-variable model gives

zs,Γ = zs,Ω (19a)

uΓ =
θΩ

θΓ
uΩ, θΓ ≤ θΩ (19b)

However, this de�nition poses problems in the case of water tending to the minimum level for φΓ,
because it yields an in�nite speed uΓ as the water level reaches the elevation for which θΓ = 0.
This clearly induces a violation of the principle of conservation of energy, because the kinetic term
‖uΓ‖2 / (2g) tends to in�nity over Γ while it is �nite within Ω. Energy would thus increase along a
streamline from a �nite value within Ω to an in�nite value over Γ. This non-physical behaviour is
eliminated using an energy-based limiting of the �ow velocity. When the water depth at the boundary
drops below a given prede�ned value hmin, the normal �ow velocity is bounded by the maximum
possible value umax that satis�es energy invariance along a streamline:

2gzs,Ω + u2
Ω = 2gzs,Γ + u2

Γ (20)

The maximum permissible value for uΓ is obtained by setting zs,Γ to its minimum possible value, that
is, zΓ,min. The �ow velocity at the boundary is limited as follows

zs,Γ ≤ zΓ,min + hmin ⇒ uΓ,n 7→ max (−umax,min (uΓ,n, umax)) (21a)

umax =
(
max

(
0, (zs,Ω − zΓ,min) 2g + u2

Ω,n

)) 1
2 (21b)

uΩ,n = uΩ.n, uΓ,n = uΓ.n (21c)

where zΓ,min is the lower bound of the support of φΓ (z). The formula (21b) for umax is obtained
by applying Bernoulli's theorem along a streamline connecting the interior points of Ω to Γ. The
maximum possible value for the velocity is achieved by setting zs,Γ = zΓ,min in Equation (21b). For
all the applications presented in this paper, hmin is set to 10−3m. Note that this problem is not met
in the depth-independent DIP model [24], where θ is replaced with φ (that is assumed non-zero).

2.5 Momentum source terms

The purpose of the present section is to propose a momentum source term that can be used in two
types of situations. The �rst is the modelling of urban �oods, with the eventuality that obstacles (such
as vehicles, but also possibly houses or buildings) may be submerged. The second is the modelling of
�ows over strongly variable topography, that may be only partially or fully submerged. This is a major
upscaling challenge, in that the purpose is to cover a wide range of �ow con�gurations and regimes.

As far as the bottom friction model (16b) is concerned, a constant nM as used in Equation (16b) is
deemed insu�cient. The e�ect of rainfall and small water depths are known to in�uence the roughness
coe�cient signi�cantly [7, 18, 27, 44]. Experimental studies indicate threshold e�ects with respect
to the water depth and Reynolds number for the roughness coe�cient, with a predominant e�ect of
the Reynolds number [18]. Moreover, the e�ects of surface roughness on free surface �ows have been
identi�ed to depend strongly on the inundation ratio Λ [31], that is the ratio of the �ow depth to the
characteristic roughness scale. In [31], a three-stage behaviour is proposed for the resistance model:
when the �ow is shallower than the characteristic roughness scale (the so-called partial inundation
range), the friction factor follows a drag force law and is proportional to the inundation ratio. In
the marginal inundation range (when Λ is of the order of magnitude of unity), the resistance factor
transitions from the drag model to a mixing length model, where the friction factor is proportional
to Λ−1/2. For well-inundated �ow (Λ > 10), roughness models such as Colebrook-type laws are valid.
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Acknowledging the salient importance of the inundation ratio Λ, upscaled roughness formulations have
been proposed with inundation ratio-dependent Manning coe�cients [36].

Concerning the modelling of building drag forces, a general formulation is still to be proposed.
In [38, 39, 35, 34], isotropic models based on drag coe�cient or Chezy-Manning laws are used. A
number of these models are inspired from formulae on vegetation-induced drag forces. A large body of
literature is available for the study of drag forces induced by submerged or emergent vegetation (see
e.g. [9, 14, 33, 40]). However, the urban context is very speci�c in that a strong anisotropy is often
observed in terms of building layout, shape and alignment. Isotropic drag formulae are not su�cient
in such situations. They were generalized into the tensor formulation (16c) in [24]. A similar tensor
formulation is presented in [6], with the simpli�cation that the computational grid is Cartesian and the
principal directions of the drag tensor are assumed aligned with those of the grid. As a consequence
of this simpli�cation, the drag tensor is very sensitive to the �ow directions (see subsection 4.2.4 in
[6]). A more general approach has been introduced by Velickovic et al. [47]. The tensor formulation
arises as a particular case of this approach. Velickovic et al.'s model has the advantage that it allows
directions of minimal head loss to be easily incorporated in the drag model, a feature that the tensor
formulation does not handle. However, in [23], systematic, re�ned 2D �ow simulations over idealized
street networks are shown to invalidate all previously proposed drag models (including [47]) when the
�ow is not aligned with the main directions of the street network.

Lastly, in [23, 24], numerical experiments dealing with the propagation of simple waves in idealized
urban networks provide evidence for the existence of an additional dissipation mechanism in the re�ned
2D shallow water solutions. This mechanism is active only under transient conditions involving the
propagation of positive waves. It is attributed to the dissipation of shocks and multiple wave re�ections
onto the building walls when a positive �ood wave propagates into the urban layout. In contrast with
the drag force fD, the transient term fT does not obey an equation of state with respect to the �ow
variables. It acts on the inertia of the water phase via the dissipation tensor M in Equations (16d-16e).
When the �ow is aligned with the main directions of the street network, this dissipation model alone
su�ces to reproduce the momentum losses observed in the re�ned 2D model [23, 24], without the need
for additional terms. Attempting to reproduce the e�ects of the term fT using an arti�cially increased
drag coe�cient only contributes to degrade the accuracy of the porosity solution [24].

Bearing in mind that all drag models are inaccurate when the �ow is not aligned with the main
directions of the obstacles, the purpose here is to provide a source term model that provides satisfactory
results at least when the �ow is aligned with the main directions of the geometry. While intentionally
limited, the objective is to propose a model with minimal complexity that allows the main features
of the �ow to be reproduced. The generalisation of the model to account for arbitrarily complex �ow
features is clearly beyond the scope of the present work. It is left for future research.

The proposed source term model is assumed to arise from three mechanisms, illustrated by Figure
4.

h
D,0

h – h
D,0

(a) (b) (c)

Figure 4: The three momentum dissipation mechanisms. a: Transient, positive wave dissipation (term
fT ). b: drag induced by obstacle walls (term fD,1). c: drag induced by obstacle over�ow (term fD,2).
Top: plan view. Bottom: side view.

The �rst mechanism is the transient momentum dissipation mechanism (Figure 4a), active only
in the presence of positive waves (rising water levels). Since the dissipation arises from the multiple
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wave re�ections against the obstacle walls, the source term takes e�ect only over the smaller of the
two depths h, hD,0, where hD,0 is the height of the obstacles. The source term (16d) is thus revised
into

fT = −min (h, hD,0)

h
M

(� zs

zb

�
Γ

ε (u.n)udΓ dz − fw

)
(22)

where the ratio min(h,hD,0)
h accounts for the fact that the dissipation mechanism is exerted over the

depth min (h, hD,0), while the momentum source term is applied to the overall water column with
height h. Note that The ratio h/hD,0 may be interpreted as the inundation ratio Λ.

The second mechanism stems from the drag forces exerted by the obstacle walls onto the �uid. Such
drag forces are mainly due to the swirls dissipating energy and the reaction of the obstacle walls onto
the water (Figure 4b). Bearing in mind that no satisfactory mathematical model has been proposed
so far for this term when the �ow is not aligned with the main street axes [23], the drag formula (16c)
is retained, with the same proportionality ratio as for the transient source term

fD,1 = −min (h, hD,0)

h

�
Ω

gCD,1 |u|udΩ (23)

The third mechanism is present only when the obstacles are submerged, that is, when the water
depth h is larger than the height hD,0 of the obstacles (Figure 4c). Submerged obstacles are assumed
to act as a �macro-roughness� onto the �ow layer �owing above. The additional drag is induced by
the friction onto the top of the obstacles and by the disturbances created by the uneven free surface
levels and non-uniform depth-averaged velocity �eld. This additional drag term is activated only if
the overtopping �ow depth h− hD,0 is larger than zero. It is assumed independent of the over�owing
depth h−hD,0, proportional to the square of the �ow velocity as usual turbulent head loss terms, and
scaled by a second drag tensor CD,2

fD,2 =

{
−
�

Ω
gCD,2 |u|udΩ if h > hD,0

0 if h ≤ hD,0
(24)

The last two mechanisms bear similarities with the multi-stage behaviour of the friction coe�cient
identi�ed in [31]. Equations (16a-16e) are replaced with Equations (22-24) and fD = fD,1 + fD,2.

2.6 Di�erential form

The di�erential form of the equations is obtained by applying the divergence theorem to Equations
(6, 7). The integrals in the equation are removed by noticing that the equation holds for all Ω.
Incorporating the pressure force fw at the water-water interface in the �ux tensor, grouping the solid-
water force fs and the friction term ff into the source term gives

∂tv + (I−M)∇.F = s (25a)

v =

 θΩ

qΩ

rΩ

 , F =

 qΓ rΓ
q2
Γ

θΓ
+ fw,Γ

qΓrΓ
θΓ

qΓrΓ
θΓ

r2
Γ

θΓ
+ fw,Γ

 , s =

 0
∂xfs − gθΩsf,x
∂yfs − gθΩsf,y

 (25b)

fw,Γ =

� zs,Γ

zb

φΓ (ζ) g (z − ζ) dζ (25c)

where q and r are respectively the x− and y−components of the unit discharge. The non-conservation
form follows

∂tv + (I−M)Ax∂xv + (I−M)Ay∂yv = s (26a)

Ax = ∂vfx, Ay = ∂vfy (26b)

where fx and fy are respectively the �rst and second column of the �ux tensor F. Straightforward
algebra yields the following expressions for the IP and DIP closures (see the details in Appendix A)

Ax,IP =


(
φΓ

φΩ
− θΓ

θΩ

)
uΩ

θΓ
θΩ

0(
φΓ

φΩ
− 2 θΓθΩ

)
u2

Ω + θΓ
θΩ
c2Ω 2 θΓθΩuΩ 0(

φΓ

φΩ
− 2 θΓθΩ

)
uΩvΩ

θΓ
θΩ
vΩ

θΓ
θΩ
uΩ

 (27a)

9



Ax,DIP =


0 1 0

θΓ
θΩ
c2Ω −

φΓ

φΩ

θ2
Ω

θ2
Γ
u2

Ω 2 θΩθΓ uΩ 0

− φΓ

φΩ

θ2
Ω

θ2
Γ
uΩvΩ

θΩ
θΓ
vΩ

θΩ
θΓ
uΩ

 (27b)

cΩ =

(
g
θΩ

φΩ

) 1
2

(27c)

The eigenvalues of the matrices are (see Appendix A)

λ
(p)
IP =

1

2

(
φΓ

φΩ
+
θΓ

θΩ

)
uΩ + (p− 2)

(
1

4

(
φΓ

φΩ
− θΓ

θΩ

)
u2

Ω +

(
θΓ

θΩ

)2

c2Ω

) 1
2

, p = 1, 3 (28a)

λ
(2)
IP =

θΓ

θΩ
uΩ (28b)

λ
(p)
DIP =

θΩ

θΓ
uΩ + (p− 2)

((
θΩ

θΓ

)2(
1− φΓ

φΩ

)
u2

Ω +
θΓ

θΩ
c2Ω

)1/2

, p = 1, 2, 3 (28c)

These formulae are generalizations of the wave speed formulae given in [24]. Assume indeed that both
φΩ and φΓ are independent of z. Then, φΓ

φΩ
= θΓ

θΩ
and the above equations simplify to

λ
(p)
IP =

φΓ

φΩ
(uΩ + (p− 2) cΩ) , p = 1, 2, 3 (29a)

λ
(p)
DIP =

φΓ

φΩ
uΩ + (p− 2)

(
φΩ

φΓ

(
φΩ

φΓ
− 1

)
u2

Ω +
φΓ

φΩ
c2Ω

)1/2

, p = 1, 2, 3 (29b)

that are the wave speed formulae derived in [24]. Another simpli�cation arises when φΓ (z) = φΩ (z)∀z.
Then,

λ
(p)
IP = λ

(p)
DIP = uΩ + (p− 2) cΩ, p = 1, 2, 3 (30)

and the wave propagation speeds of the SP equations are obtained.

3 Numerical aspects

3.1 Finite volume discretization

The governing equations are discretized using an unstructured �nite volume grid. A �rst-order time
splitting procedure [43, 45] is used, with the following solution sequence [24]

vn+1
i = SMHvni (31)

where vni is the averaged variable vector over the computational cell i at the time level n, H, M and
S are respectively the hyperbolic operator, the momentum dissipation tensor in Equations (16d, 16e)
and the friction/building drag operator. The application of the momentum dissipation operator M is
straightforward. The bottom and drag source term operator uses an unconditionally stable, linearised
approach presented in [24] and are not detailed here.

The terms accounted for by the operator H are the mass and momentum �uxes, as well as the
geometric source term fs under the form (14):

Hvni =
∆t

Ai

∑
j∈N(i)

WijFijnij + (fs)ij,i (32)

where Ai is the plan view area of the computational cell i, N (i) is the set of neighbour cells of the cell
i, the subscript ij denotes the interface between the cells i and j, Wij , Fij and nij are respectively the
width, the �ux tensor and the normal unit vector for the interface ij. (fs)ij,i is the part of the geometric
source term fs distributed to the cell i in the momentum balance process. The �ux tensor and the
source term are computed in a local coordinate system attached to the interface. In such a coordinate
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system, the problem is one-dimensional with respect to the normal direction to the interface. The �ux
Fij is computed as the solution of a Riemann problem. The approximate HLLC formulation [46] is
used. The following �ux formulae are obtained (see Appendix B for a detailed derivation)

qij =
φΓ,Rλ

+qL − φΓ,Lλ
−qR

φΓ,Rλ+ − φΓ,Lλ−
− φΓ,Lλ

−φΓ,Rλ
+

φΓ,Rλ+ − φΓ,Lλ−
(zs,Γ,L − zs,Γ,R) (33a)

Mij =
λ+ML − λ−MR

λ+ − λ−
− λ+λ−

λ+ − λ−
(qL − qR) (33b)

(qv)ij =
qij + |qij |

2
vL +

qij − |qij |
2

vR (33c)

φΓ,S = φΓ,ij (zs,Γ,S) , S = L,R (33d)

where the subscripts L and R denote the left and right states of the Riemann problem. The speeds
λ± are computed using Davis's wave speed estimates [12]. Equations (33a, 33b) are obtained from the
HLL relationships, while Equation (33c) stems from the contact surface restoration method [46] that
contributes to minimize numerical di�usion. In the numerical implementation of the method, both the
�rst-order, Godunov approach [19] and the MUSCL-EVR reconstruction [41] are implemented. Note
that formulae (33a-33d) ful�l the so-called C -property [3]

(zs,Γ)L = (zs,Γ)R
qL = qR = 0

}
⇒
{

qij = 0
Mij = ML = MR

(34)

that is, the preservation of equilibrium states.

3.2 Porosity law discretization

The laws φD (z) (D = Ω,Γ) are discretized with an arbitrary level of accuracy as follows. Assume
that the law φ (z) is known (the subscript D is dropped for the sake of readability). A sample law is
illustrated by the dashed line on Figure 5a. Integrating φ with respect to z yields the law θ (z) (solid
line on Figure 5b). The law θ (z) is tabulated using N points

(
ztab
i , θtab

i

)
, i = 1, . . . , N (Figure 5b). The

tabulated values for θ are de�ned so as to preserve mass conservation, θtab
i = θ

(
ztab
i

)
. Approximating

the tabulated θ function with a piecewise linear law, using z = ∂zθ gives:

θtab (z) =


0 if z < ztab

1

θtab
i +

θtab
i+1−θ

tab
i

ztab
i+1−ztab

i

(
z − ztab

i

)
if ztab

i ≤ z < ztab
i+1

θtab
N if ztab

N ≤ z
(35a)

φtab (z) =


0 if z < ztab

1

φtab
i =

θtab
i+1−θ

tab
i

ztab
i+1−ztab

i

if ztab
i ≤ z < ztab

i+1

φtab
N = φ

(
ztab
N

)
if ztab

N ≤ z
(35b)

The tabulated porosity law φtab(z) is thus piecewise constant, as shown on Figure 5a (bold line).
The tabulated value φtab

i is equal to the average value of the exact function φ (z) over the interval[
ztab
i , ztab

i+1

]
. This approach has the advantage that the tabulated law θtab (z) is exact for the N values

of z=ztab
i . The accuracy of the tabulated laws is limited only by the number N of discretization levels.

Compared to previously presented approaches [49, 35, 34], the accuracy of the discretization can be
adapted to the complexity of the geometry. Moreover, non-monotone φ (z) functions can be de�ned.
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q
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tab

z
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z
i+1
tab

f
i

tab

(a) (b)

Figure 5: Tabulated porosity laws. De�nition sketch. a: exact φ (z) law (dashed line) and discretized
law φtab (z) (bold line). b: θ (z) law inferred from φ (z) and sampling points

(
θtab
i , ztab

i

)
.

The in�uence of the number N of tabulation entries is illustrated by Figure 6. A hypothetical,
piecewise linear law φ (z) is generated using a random distribution for 28 couples (z, φ) (dots on
Figure 6, left) and connecting these points with straight lines. The resulting φtab (z) law is illustrated
by the solid line on the (φ, z) graph. The corresponding exact law θ (z) and the tabulated law θtab (z)
are shown on Figure 6, right-hand side (θ, z) graphs. The following values are used for N : N = 5
(Figure 6, top), N = 9 (Figure 6, middle) and N = 15 (Figure 6, bottom). While N = 5 yields a crude
approximation of the �true� law φ (z), it allows for a fairly accurate discretization of the law θ (z),
except in the neighbourhood of the in�ection point of φ. With N = 9, the law θ (z) is approximated
with satisfactory accuracy, while the tabulated porosity law φtab (z) is inaccurate only in the central
part of the discretization interval. N = 15 yields a very good approximation for both φ and θ. For
practical applications, 5 ≤ N ≤ 10 might appear as a satisfactory trade-o� between computational
e�ciency and accuracy. This point is illustrated by test cases presented in Section 4.
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Figure 6: Sample tabulated porosity laws. Top: N = 5. Middle: N = 9. Bottom: N = 15.

4 Computational examples

4.1 Test 1: dambreak problem in a triangular valley

The purpose of this test is to assess the in�uence of the tabulated porosity laws on the accuracy of
the computational solution. The Riemann, initial value problem is solved for a triangular cross-section
(Figure 7). The storage and conveyance porosities are identical, linear functions of the elevation

φΩ (z) = φΓ (z) =
tanα

2

z

zmax
= φmax

z

zmax
(36a)

zs (x, 0) =

{
zL if x < x0

zR if x > x0
(36b)

The analytical solution is made of a region of constant state connected to the left and right states
by a rarefaction wave and a shock respectively. The water depth h∗ and the �ow velocity u∗ in the
intermediate region of constant state satisfy the following 3× 3 non-linear system:

u∗ + 4c∗ = 4cL (37a)
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(
h2u

)
∗ =

(
h2
∗ − h2

R

)
s (37b)(

h2u2

2
+
g

6
h3

)
∗
− g

6
h3
R =

(
h2u

2

)
∗
s (37c)

where c = (gh/2)
1/2 is the propagation speed of waves in still water for a triangular channel and s is

the speed of the shock wave.

-c
L

hh
L

h
R

x/t

h*

s

z

a

Figure 7: Test 1: dambreak in a triangular valley. De�nition sketch.

Equation (37a) stems directly from the Riemann invariant u + 4c across the wave dx/dt = u + c
[20]. Equations (37b-37c) are the Rankine-Hugoniot conditions for mass and momentum respectively.
Solving the above system for (h∗, u∗, s) yields the solution

h (x, t) =


hL if −xt ≤ −cL

2c2(x/t)
g if −cL ≤ x

t < u∗ − c∗
h∗ if u∗ − c∗ ≤ x

t < s
hR if s < x

t

(38a)

u (x, t) =


0 if −xt ≤ −cL

4
5

(
cL + x

t

)
if −cL ≤ x

t < u∗ − c∗
u∗ if u∗ − c∗ ≤ x

t < s
0 if s < x

t

(38b)

c
(x
t

)
=

1

5

(
4cL −

x

t

)
(38c)

Since the functions φΓ (z) and φΩ (z) are identical, the IP and DIP closures give identically uΓ = uΩ,
thus yielding the same numerical results. The solution is shown on Figure 8 for the parameter set in
Table 1. Three di�erent levels of accuracy are tested. For N = 5, 10 and 20, the discretization levels
ztab
i are set every 2m, 1m and 0.5m respectively.

Parameter Meaning Numerical value
g Gravitational acceleration 9.81m s−2

hL Upstream water depth 10 m
hR Downstream water depth 0.5 m
N Number of tabulation levels 5, 10, 20
t Simulated time 10 s

zmax Maximum water depth 10 m
φmax Maximum porosity value 1

Table 1: Test 1: dambreak in a triangular valley. Parameter set.
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Figure 8: Test 1: dambreak in a triangular valley. Simulation results.

The in�uence of N is clearly visible on Figure 8. For N = 5, the water depth and velocity pro�les in
the rarefaction wave clearly exhibit sudden slope variations as the free surface elevation pro�le crosses
the tabulated levels ztab

i . While the analytical solution is smooth, the strong porosity variations across
the tabulated water levels induce strong variations in the derivatives of the �ux functions, hence the
slope breaks observed in the numerical pro�les. For N = 10, the numerical pro�le becomes smoother
and closer to the analytical solution. For N = 20, the numerical water depth and velocity pro�les
are smooth and in very good agreement with the analytical solution. The reader's attention is drawn
to the accuracy of the numerical solution in the intermediate region of constant state. For N = 5
and N = 10, the water depth is signi�cantly overestimated compared to the analytical one. This
could be expected because, with the parameters in Table 1, h∗ = 2.505m. For N = 5, the shock is
captured by only two tabulated levels. For N = 10, only 3 tabulation levels are used to span the
range [0m , 2.5m]. With N = 20, there is a tabulation level every 50 cm, and h∗ is captured by 6
tabulation levels. Therefore, the storage function θ (z) and the pressure function fw,Γ are signi�cantly
better described with N = 20 than with N = 5 or N = 10, hence a more accurate estimation of the
shock speed. It should also be noted that, for N = 20, the location of the numerical shock is wrong
by approximately 4 computational cells. However, with h∗ ≈ hL/4 and the triangular shape of the
channel, θ (h∗) ≈ θ (hL) /16 and the error in the location of the shock is equivalent to an error of less
than 1/4 cell in the initial location of the discontinuity.

4.2 Test 2: dambreak in a compound channel

The purpose is to assess the validity of the depth-dependent porosity approach to model transients
in the presence of two-dimensional �ow patterns. A frictionless dambreak problem is simulated in a
compound channel comprising a rectangular main channel of width W1 and depth h0 and a �ood plain
of width W2 (Figure 9). The parameters of the test case are given in Table 2. This con�guration
is similar to that presented in [49], with the di�erence that no transient analysis is reported in [49].
Two di�erent values are considered for the downstream water level zR. In the �rst con�guration (Test
2a), zR =0.5 m is four times as small as the height of the main channel. This is expected to trigger
strongly two-dimensional �ow patterns in the vicinity of the advancing front, with water spilling from
the �oodplain into the main channel. In the second con�guration (Test 2b), zB = 2.5 m is above the
�oodplain, which is expected to yield milder �ow patterns.
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Parameter Meaning Numerical value
g Gravitational acceleration 9.81m s−2

h0 Main channel depth 2 m
hL Upstream water depth 10 m
hR Downstream water depth 0.5 m (Test 2a), 2.5 m (Test2b)
L Domain length 2000 m
N Number of tabulation levels 1
W1 Main channel width 50 m
W2 Floodplain width 200 m

Table 2: Test 2: dambreak in a compound channel. Parameter set.

W
1

W
2

h
0

Figure 9: Test 2: dambreak in a compound channel. Geometry de�nition sketch.

The breaking of the dam is �rst simulated over 50 seconds by solving the two-dimensional shallow
water equations over a 2.5m × 2.5m square grid using the second-order MUSCL-EVR scheme [41].
Since only half of the channel is meshed from symmetry considerations, the computational mesh
counts 16,000 cells. Figure 10 shows the simulated free surface at t = 50s. The di�erence between the
speeds of the advancing fronts in the main channel and over the �oodplain is clearly visible.

Figure 10: Test 2: dambreak in a compound channel. Bird's eye view of the free surface computed by
the 2D shallow water equations at t =50s for Test 2a. z−mag 50.

The dambreak is also simulated using the DDP model. The cross-sectional area of the model is
represented using a single cell, while the cell spacing in the longitudinal direction is 20m. The model
thus counts only 100 cells. The geometry of the cross-section is represented using a piecewise constant
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porosity law:

φΓ (z) = φΩ (z) =

{
W1

W2
if 0 < z < h0

1 if z > h0
(39)

With N = 2 the discretization (35a, 35b) is exact. As in the previous test case, the IP and DIP
closures yield identical results. Figures 11 and 12 show respectively the results for Test 2a and Test
2b. All pro�les are represented as functions of the x/t coordinate. The results of the two-dimensional
shallow water model are averaged over the coarse grid of the DDP model, a standard procedure for
re�ned model and porosity model comparison [29].
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Figure 11: Test 2: dambreak in a compound channel. Simulation results for Test 2a (hR = 0.5m). Free
surface and unit discharge pro�les at t = 10s (top) and t = 50s (bottom). Dots: free surface elevations
and unit discharges computed by the 2D shallow water model, averaged over the computational grid
of the DDP model. Solid line: DDP model solution.
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Figure 12: Test 2: dambreak in a compound channel. Simulation results for Test 2b (hR = 2.5m). Free
surface and unit discharge pro�les at t = 10s (top) and t = 50s (bottom). Dots: free surface elevations
and unit discharges computed by the 2D shallow water model, averaged over the computational grid
of the DDP model. Solid line: DDP model solution.

Overall, the DDP model provides a satisfactory, large scale description of the free surface and
unit discharge pro�les obtained from the shallow water model. For Test 2a, however, the DDP model
underestimates the smearing of the shock in the averaged 2D solution. The ratio of the 2D to DDP
shock width is between 2 and 3. This is identically true for t = 10s (Figure 11, top) and t = 50s (Figure
11, bottom). The reason for shock smearing is easy to identify: the shock travels at di�erent speeds in
the main channel and the �oodplain. Part of the water in the �oodplain spills into the main channel,
as can be seen on Figure 10. As a result, the free surface in the �oodplain exhibits a milder shock
pro�le than it would if there was no exchange with the main channel. This interpretation is con�rmed
by the examination of Test 2b (Figure 12). In this con�guration, owing to the higher downstream
water level (zR = 2.5m), the exchange between the �oodplain and the main channel is limited and the
shock remains sharper.

4.3 Test 3: urban dambreak problem

The purpose of this test, originally proposed in [21], is to investigate the accuracy of the domain-
boundary closure models. It has been used to check the validity of the SP, IP and DIP closures
(17a-19b) in a number of publications [21, 22, 23, 24, 35]. It has also been used to validate the
transient momentum dissipation term embedded in the DIP model [23, 24]. The IP closure has been
reported to yield underestimated wave propagation speeds with respect to those of the re�ned �ow
solutions [21, 24, 35]. The DIP closure allows the accuracy of the porosity model solution to be
improved to a large extent [23, 24]. However, in all the abovementioned references, the urban dambreak
problem has been applied using depth-independent porosity functions. Even in the depth-dependent
integral porosity model proposed in [35], the building blocks in the simulation are made taller than the
maximum water depth. This does not allow the closure to be tested over the full range of possible �ow
con�gurations. For this reason, the present urban dambreak problem involves �ow con�gurations where
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the buildings are submerged by the water wave, at least over part of the domain. This con�guration
also allows the proposed momentum source term models to be tested and their relevance to be assessed.

The geometry is illustrated by Figure 13 (Table 3). An idealized neighbourhood made of equally
spaced, square buildings is generated. The street width and building width are taken identical, equal to
l/2, where l is the spatial period. The height of the buildings is hD,0. The bottom is horizontal, friction
is neglected. The water depths on the left- and right-hand sides of the dam are denoted by hL and hR
respectively (Table 4). Using symmetry considerations, only half a period is meshed in the transverse
direction. The re�ned 2D shallow water model uses 1m×1m square cells, for a total 20,000 cells in the
model. In contrast, the DDP model uses 20m×20m cells, with the following depth-dependent porosity
laws:

φΩ (z) =

{
3
4 if z < hD,0
1 if z > hD,0

(40a)

φΓ (z) =

{
1
2 if z < hD,0
1 if z > hD,0

(40b)

zh
L

h
R

x

l/2

l

0

h
D,0

Figure 13: Test 3: urban dambreak problem. De�nition sketch.

Parameter Meaning Numerical value
g Gravitational acceleration 9.81m s−2

hD,0 Building height 5 m
L Domain length 2000 m
l Spatial period 20 m
N Number of tabulation levels for φΩ (z) and φΓ (z) 1
W Domain width 20 m

Table 3: Test 3: urban dambreak problem. Geometric parameters.

Test hL hR
3a 10 m 0.1 m
3b 10 m 2 m
3c 5 m 0.1 m
3d 5 m 2 m

Table 4: Test 3: urban dambreak problem. Con�guration nomenclature.

Since the laws φΓ (z) and φΩ (z) are di�erent, the IP and DIP closures give di�erent numerical
results. Figure 14 provides a comparison between the re�ned two-dimensional model results and those
given by the DDP model. The results of the 2D model are averaged over the computational grid of
the DDP model [29]. The transient source term (16d, 16e) in the DDP model is calibrated so as to
achieve the best trade-o� between shock speed and post-shock water depths. Since the �ow is parallel
to the x−axis, µy = µyy = 0 and only µxx is to be calibrated. The calibrated values are given in Table
5. Note that the building height hD,0 is used in Equation (24) without calibration.
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Test µxx IP closure CD,2 IP closure µxx DIP closure CD,2 DIP closure
3a 0. 10−2 0.27 9× 10−3

3b 0. 8× 10−3 0.25 4.5× 10−3

3c 0. 5× 10−3 0.30 0.
3d 0. 0. 0.25 0.

Table 5: Test 3: urban dambreak problem. Calibrated momentum dissipation parameters.
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Figure 14: Test 3: urban dambreak problem. Simulation results at t = 70s. Dots: water depths and
unit discharges computed by the 2D shallow water model, averaged over the computational grid of the
DDP model. Solid lines: DDP model solutions.
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The following conclusions can be drawn. First, the IP closure consistently yields underestimated
shock speeds, overestimated water depths behind the shock and overestimated unit discharge pro�les.
For this reason, µxx is consistently set to zero for this closure because a non-zero µxx would increase
the post-shock water depth and reduce the shock speed even further. This feature of the IP closure
was already known from test involving depth-independent porosity �elds [24]. Second, the DIP closure
yields signi�cantly improved water depths and unit discharge pro�les compared to the IP closure.
However, while the average water depth pro�les can be reconstructed with a satisfactory accuracy,
the unit discharge pro�les are overestimated by approximately 20% (against more than 50% with the
IP closure). It must be noted however that in Tests 3c-d, the DIP model provides less accurate unit
discharge pro�les than in Tests 3a-b. Since the depth-dependent drag term is active in Tests 3a-b and
inactive in Tests 3c-d, it may be argued that the transient source term model is ine�cient and that
the better agreement obtained with Tests 3a-b is only due to the activation of the depth-dependent
drag term, that provides an additional degree of freedom for model calibration.

To answer this question, a sensitivity analysis to the structure of the model is carried out. Figure
15 shows the water depths and unit discharge pro�les obtained for Test 3a in the following four
con�gurations. The pro�les on Figure 15a-b are obtained by setting CD,2 = µxx = 0. With this
parameter combination, the speed of the shock is overestimated by a factor 3. The unit discharge
pro�le is also overestimated by approximately 25%. Moreover, the DDP model fails to replicate the
concavity of the water depth pro�le for −5 ≤ x

t ≤ 0 and the breaking slope in the unit discharge
pro�le in the rarefaction wave. Activating the transient momentum source term while keeping the
drag coe�cient CD,2 = 0 leads to the pro�les shown on Figures 15c-d. The best compromise between
shock location and post-shock water depth is obtained for µxx = 0.27. While the transient source
term allows for a better reconstruction of the shock, the model again fails to replicate the concavity
in the water depth pro�le and the slope break in the unit discharge pro�le. The pro�les on Figure
15e-f are obtained by setting µxx = 0 and calibrating CD,2 = 9 × 10−3. The free surface and unit
discharge pro�les are better replicated over the entire rarefaction wave, but the speed of the shock
is again overestimated by a factor approximately equal to 3. Only using non-zero drag coe�cient
and momentum dissipation terms(CD,2, µxx) =

(
7× 10−3, 0.25

)
allows correct pro�les to be obtained

in both the rarefaction wave and behind the shock (Figure 15g-h). None of the two models alone
allows correct pro�les to be obtained and the two source term models must be combined in order
to reconstruct the re�ned model solution accurately. Lastly, the relevance of the threshold hD,0 in
Equation (24) is checked. Figures 15i-j show the optimal pro�les obtained by setting hD,0 = 0 in the
equation. In other words, the drag term is applied at all points, regardless of the respective positions
of the free surface and the top of the obstacles. With the optimal value CD,2 = 5 × 10−3, the model
successfully reproduces the maximum value of the unit discharge pro�le and a correct shock location.
However, as far as the water depth pro�le is concerned, the variations in the curvature of the pro�le is
not reproduced accurately. Concerning the unit discharge pro�le, the slope break in the upstream part
of the rarefaction wave is missed. The unit discharge is consistently underestimated in the downstream
part of the pro�le.

As a conclusion of this sensitivity analysis, only the combination of the transient source term model
(22) and the threshold-based drag model (24) allows accurate solutions to be achieved. Dropping any
of the features of these two models yields substantial errors in the solutions.
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Figure 15: Test 3: urban dambreak problem. Sensitivity of the DDP solution to the energy loss
parameters for Test 3a. Pro�les at t = 70s. (a, b): CD = 0, µxx = 0. (c, d): CD = 0, µxx 6= 0. (e, f):
CD 6= 0, µxx = 0. (g, h): CD 6= 0, µxx 6= 0. (i, j): CD 6= 0, hD,0 = 0, µxx = 0.
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4.4 Test 4: dambreak over microtopography

Test 4 consists in simulating the propagation of a dambreak wave over a highly irregular, periodic
topography. The objectives of this test are (i) to check the accuracy and stability of the solution
obtained with the modi�ed DIP closure in the presence of drying bottoms, (ii) to assess the accuracy
of the storage and connectivity porosities as statistical descriptors of the microscale topography. This
test is adapted from that originally presented in [34]. While the test presented in [34] uses a sinusoidal
topography, the bottom geometry used in the present test follows an asymmetric sawtooth pro�le with
height h0 and wavelength l (Figure 16, Table 6). This test is instrumental in assessing the ability of
the DDP model to model �ows over series of furrows, as in the single, depth-dependent porosity model
used in [48].

Two di�erent bottom level functions are de�ned:

zb,1 (x) = mod
(x
l
, 1
)
h0 (41a)

zb,2 (x) = mod
(
−x
l
, 1
)
h0 (41b)

With function zb,1 the sawtooth discontinuity faces the direction of positive x, while it faces the
direction of negative x with function zb,2. These two bottom pro�les are described by the same depth-
dependent porosity functions:

φΩ (z) = max

(
0,min

(
1,

z

h0

))
=


0 for z ≤ 0
z
h0

for 0 ≤ z ≤ h0

1 for z ≥ h0

(42a)

φΓ (z) = H (z − h0) =

{
0 for z ≤ h0

1 for z > h0
(42b)

where H () is Heaviside's step function.

Symbol Parameter Numerical value
h0 Microtopography height 0.05 m
L Domain length 20 m
l Microtopography wave length 0.5 m
T simulated time 5 s
W Domain width 0.5 m

Table 6: Test 4: dambreak over microtopography. Simulation parameters.

The initial conditions are given by Equation (36b). Four con�gurations are tested (see Table 7).
In con�gurations 4a and 4c the combination (zL, zR) is such that the �ow remains subcritical at all
points. In con�gurations 4b and 4d, the water level on the right-hand side of the discontinuity is equal
to the elevation of the crest of the sawtooth, therefore the top of the sawtooth is dry and part of the
rarefaction wave is supercritical. Con�gurations 4a-b use the bottom elevation pro�le zb,1 (x), while
con�gurations 4c-d use the pro�le zb,2 (x).

Test zb (x) function zL zR
4a zb,1 (x) 0.2 m 0.1 m
4b zb,1 (x) 0.2 m 0.05 m
4c zb,2 (x) 0.2 m 0.1 m
4d zb,2 (x) 0.2 m 0.05 m

Table 7: Test 4: dambreak over microtopography. Con�guration nomenclature.
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Figure 16: Test 4: dambreak over microtopography. De�nition sketch for bottom pro�le zb,1 (x).

The DDP model is used with the IP and DIP closures. The drag coe�cient CD,1 and the momentum
dissipation coe�cient µxx are calibrated so as to obtain an optimal �t of the front speed against the
period-averaged output of the re�ned two-dimensional shallow water model (Table 8).

Test Closure CD,2 µxx
4a, 4c IP 0. 0.
4a, 4c DIP 0. 0.
4b, 4d IP 0. 0.2
4b, 4d DIP 0. 0.5

Table 8: Test 4: dambreak over microtopography. Calibrated momentum dissipation parameters.

The resulting average water depth and unit discharge pro�les computed at T = 5 s are shown on
Figure 17. The following remarks can be made on the respective performance of the IP and DIP
closures.

For Tests 4a and 4c, the IP closure consistently yields an underestimated shock speed and over-
estimated post-shock unit discharge compared to the re�ned 2D model simulation. This is true for
CD,2 = µxx = 0. Increasing any of the two coe�cients only contributes to slow down the shock in the
DDP-IP solution, thus increasing the discrepancy with the re�ned 2D solution. For Tests 4b and 4d,
the IP closure allows a correct shock speed to be recovered by setting µxx = 0.2. While an accurate
water depth shock pro�le is obtained (see second and fourth left-hand side graphs on Figure 17), the
post-shock water depths are underestimated compared to the re�ned 2D shallow water solution. The
post-shock unit discharge remains overestimated by approximately 25%.

The DIP closure allows more accurate average water depths and unit discharge pro�les to be
obtained. Calibrating µxx = 0 for Tests 4a,c and µxx = 0.5 for Tests 4b,d yields accurate shock speeds
and unit discharge pro�les. It is noted, however, that the water depth in the post-shock region is
slightly underestimated compared to the reference, re�ned 2D solution.

It is also worth noting that the re�ned 2D shallow water model yields di�erent water depth and
unit discharge pro�les depending on the bottom functions used (zb,1 (x) or zb,2 (x)). This is clearly
visible on Figure 17. The period-averaged water depth and unit discharge pro�les (dotted pro�les on
the Figure) are di�erent for Tests 4a and 4c. The same is observed for Tests 4b and 4d. The bottom
pro�le function zb,1 (x) yields sharper re�ned 2D pro�les than does the bottom pro�le function zb,2 (x).
Moreover, the unit discharge pro�le exhibits a plateau in Test 4a, while it slightly decreases with (x/t)
in Test 4c. However, from a macroscopic point of view, the two con�gurations zb,1 (x) an zb,2 (x)
(41a, 41b) are described by exactly the same porosity functions (42a, 42b). This shows that (i) the
porosity alone is not a su�cient descriptor of the subgrid-scale feature of the �ow �eld, (ii) di�erent
momentum source terms model may be needed depending on the direction of the �ow with respect to
the topographical/geometric �uctuations on the subgrid scale.
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Figure 17: Test 4: dambreak over microtopography. Average water depth and unit discharge pro�les
at t =5s. Dots: re�ned 2D shallow water model solution, averaged over the wavelength l. dashed line:
DDP-IP model. Solid line: DDP-DIP model.
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Lastly, one may question the method of calibrating the model via the coe�cient µxx, while the drag
coe�cient CD,2 is set to zero in all four con�gurations. That the best �t would be achieved by tuning
µxx was unexpected. In the light of Subsection 2.5, the e�ect of the roughness induced by the sawtooth
bottom pro�le should be expected to be accounted for by the obstacle over�ow drag coe�cient CD,2.
However, calibrating the porosity model using this coe�cient is seen to be ine�cient: the drag term
fD,2 fails to reconstruct the water depth and unit discharge pro�les of the period-averaged re�ned 2D
model. This is illustrated by Figure 18. On this �gure, µxx is set to zero in the DDP-DIP model,
while three di�erent values (namely 0.1, 0.5 and 1.2) are used for CD,2. While increasing CD,2 yields
a more accurate shock speed, it does not allow a correct shape to be recovered for the water depth
pro�le. Moreover, the unit discharge is reduced dramatically compared to the solution computed by
the re�ned 2D model.
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Figure 18: Test 4: dambreak over microtopography. Calibration of the obstacle over�ow drag coe�cient
CD,2.

4.5 Test 5: wave propagation in a meandering channel

The �fth test consists in simulating the propagation of a surge wave in a meandering channel with
sharp bends. The purpose is to check the discretization of boundary conditions and the ability of
the model to take into account the in�uence of abrupt direction changes in the �ow geometry. Such
channels are found in e.g. coastal lagoons. In such systems, the connection dynamics between two
given lagoons, or between the lagoons and the sea, may be primarily driven by such channels [5, 16].

A similar test was presented in [49], with water �owing in a U-bend. However, in [49] only a single
bend was modelled, with a smooth geometry. In the present test, the bends are intentionally made
sharp, so as to induce more complex �ow patterns than with a smooth geometry. A two metre wide
channel with 45 degrees and 90 degrees bends is de�ned, with the geometry shown on Figure 19. The
bottom is �at, motion is assumed frictionless. The water is initially at rest, with a uniform water
level z0. At t = 0, the water level at the upstream end of the channel (left-hand side of the sketch on
Figure 19) is set instantaneously to zus. The water level at the downstream end (right-hand side of
the sketch) is kept to the constant value zds = z0. The parameters of the test case are given in Table
9.
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Figure 19: Test 5: wave propagation in a meandering channel. Plan view de�nition sketch.

Symbol Parameter Numerical value
W Channel width 2 m
z0 Initial water level 1 m
zb Bottom level 0 m
zds Prescribed downstream water level 1.0 m
zus Prescribed upstream water level 1.1 m

Table 9: Test 5: wave propagation in a meandering channel. Test case parameters.

Two models are built using two di�erent meshes. The �rst model uses a high-resolution mesh to
solve the two-dimensional shallow water equations. The channel is meshed by 20 cells across (Figure
20, top). The second model uses the DDP approach, and the mesh cells are three times as wide as the
actual channel (thus 6 metres instead of 2 metres, see Figure 20, bottom), with both the storage and
connectivity porosities set to 1/3:

φΩ (z) = φΓ (z) =

{
0 if z < zb
1
3 if z ≥ zb

(43)

Multiplying the cell size by 3 compared to the actual size of the channel allows the number of cells
used to mesh the model to be divided by 3 while keeping the cells as close to square cells as possible,
a key issue to minimize numerical di�usion.
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20 m

Figure 20: Test 5: wave propagation in a meandering channel. Top: zoomed view of the re�ned 2D
mesh. Bottom: DDP model mesh.

Six points are de�ned in the middle of the six rectilinear reaches of the channel (see Figure 19).
They are labelled from M1 to M6. Figures 21 and 22 show the free surface elevations and the unit
discharges computed at these points from t = 0 to t = 300 s. The DDP model is very successful in
reproducing the variations in the water levels computed by the re�ned 2D model (Figure 21). Quite
expectedly, the coarse grid of the DDP model yields a smoother zs (t) signal than that of the re�ned
2D model. This is explained by the much coarser grid and the inevitable numerical di�usion, that has
much stronger and more visible e�ects in the DDP solution than in the re�ned 2D solution. This slight
damping excepted, the DDP model reproduces successfully the time lag between the multiple wave
re�ections caused by the bends of the channel. Transient damping by the DDP model is con�rmed
by the examination of the unit discharges computed at points M1-6 (Figure 22). Until t = 100 s, the
DDP solution is in remarkable agreement with that of the re�ned 2D model. After this time, the unit
discharge computed by the DDP model is consistently underestimated compared to that of the 2D
model. The DDP model starts deviating from the re�ned 2D model at point M6 �rst, at approximately
t = 100 s. This coincides with the time at which the return wave, triggered by the re�ection of the
impinging wave against the downstream boundary, passes at the point M6. The time for which the
DDP solution starts departing from the re�ned 2D solution increases as the wave travels back from
point M6 to M1. The time lag of 100s between the two points M6-M1 is in agreement with the 300m
covered by the wave between the two points at a speed c = (gh0)

1/2 ≈ 3.1 ms−1. This con�rms that the
deviation of the DDP model from the re�ned 2D model is due to an underestimation of the transient
generated by the re�ection of the wave against the downstream boundary. This is not surprising in
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that the backward wave originating from the downstream boundary is a rarefaction wave, that tends
to spread over time. The spreading (thus the damping of the dynamics) is obviously overestimated by
the DDP model due to the coarse mesh.
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Figure 21: Test 5: wave propagation in a meandering channel. Free surface elevations computed by
the re�ned 2D model and DDP model at Points M1-6.
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Figure 22: Test 5: wave propagation in a meandering channel. Unit discharges computed by the
re�ned 2D model and the DDP model at Points M1-6.

4.6 Model CPU performance

The present subsection is devoted to an analysis of the CPU time gain provided by the DDP model
over the re�ned 2D models used in Tests 1 to 5. All simulations were on an i7-core(TM) processor
with 16GB RAM and 2.5GHz frequency. Table 10 shows the CPU times for the re�ned 2D and the
DDP models for all the con�gurations. The DDP model is between 300 times and 3000 times as fast
as the re�ned 2D model. In all applications, the CPU time required by the DDP model is two orders
of magnitude smaller than the simulated time. In contrast, the re�ned 2D model sometimes requires
more time than the simulated time.
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Test Simulated time CPU time re�ned 2D model DDP closure CPU time DDP 2D/DDP CPU ratio
2a 50 s 53.4 s IP / DIP 5.6× 10−2s 945
2b 50 s 35.86 s IP / DIP 5.4× 10−2 s 997
3a 100 s 69.66 s IP 0.36 s 385
3a 100 s 69.66 s DIP 0.31 s 450
3b 100 s 143.3 s IP 0.39 s 734
3b 100 s 143.3 s DIP 0.38 s 763
3c 100 s 46.1 s IP 0.28 s 327
3c 100 s 46.1 s DIP 0.26 s 360
3d 100 s 42.9 s IP 0.27 s 317
3d 100 s 42.9 s DIP 0.28 s 310

4a, 4c 10 s 49.4 s IP 4.06× 10−2 s 1215
4a, 4c 10 s 49.4 s DIP 3.48× 10−2 s 1415
4b, 4d 10 s 49.8 s IP 3.59× 10−2 s 1390
4b, 4d 10 s 49.8 s DIP 4.21× 10−2 1180

5 300 s 857 s IP / DIP 0.295 s 2900

Table 10: Performance of porosity vs. re�ned 2D model. Note: the plan view area of the 2D model
for Tests 3a-d is half that of the DDP model. This is accounted for in the CPU time ratio.

5 Experimental validation

5.1 Experimental and model setup

In this section the depth-dependent porosity model is tested against an experimental data set involving
topography submersion. The experiment consists in simulating the e�ect of a tsunami wave on an urban
area next to the shoreline. The experiment is described in detail in [37], only an overview is given
here for the sake of conciseness. A 1:50 undistorted scale model of the Seaside (Oregon) area was built
at the O.H. HinsdaleWave Research Laboratory, Oregon State University. The scale model includes a
portion of the sea bottom up to 1km from the shore line. A 500m×600m fraction of the urbanized
area located along the shore is also included in the scale model. A schematic side view of the model
is shown in Figure 23 (bottom). A high resolution lidar-surveyed topographical data set is available
from the experiments. The topography within the 10 m×12 m urban area in the model is described
by over 3× 106 lidar points (Figure 23).
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Figure 23: Seaside undistorted 1:50 scale model. Top: plan view of the lidar-based topography over
the urban area. Bottom: de�nition sketch of the scale model.

The tsunami wave was simulated by a single move of a wave maker located approximately 30 m
from the shoreline. The displacement of the wave maker vertical wall followed an error function of
time. The water level was recorded as a function of time using 4 surface piercing resistive gauges in
the basin. Within the urban area, 4 pairs of ultrasonic gauges were used to measure the water depth.
These gauges were moved in unison over 9 transects. A total 31 measurement locations are available
in the water level data set. Replicating the experiments led to ensemble-averaged water depth time
series.

The experiment reported in [37] is simulated using two models. The �rst is the classical two-
dimensional shallow water model with a detailed meshing of the geometry. The second is the proposed
DDP-DIP model, with a much coarser mesh (the computational cells may be bigger than some of
the buildings). The purpose is to assess (i) whether the depth-dependent porosity model is able to
reproduce the experimental results satisfactorily, and (ii) the amount of information lost by the DDP
model compared to the more detailed shallow water model. Table 11 gives the main characteristics of
the two meshes. The DDP model has almost 30 times as few cells as the shallow water model. Figure
24 shows a zoomed view of the �ne mesh within the urban area. The main streets are meshed using 5
to 10 cells across. Since the buildings may be submerged, they are included in the mesh.
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Item Re�ned 2D model Porosity model
Total number of cells 92615 3305
Average cell area 5.75× 10−3 m2 1.61× 10−1 m2

Number of cells in urban area 63557 1457
Average cell area 2.39× 10−3 m2 1.04× 10−1 m2

Table 11: Seaside scale experiment. Model characteristics. The urban area is de�ned as the rectangular
area (x, y) ∈ [33.08, 43.50]× [−6.053, 8.45] (coordinates in metres as in Park et al. (2013)).

1 m

Figure 24: Seaside scale experiment. Re�ned 2D shallow water model. Detailed view of the mesh.

Figure 25 shows the computational grid of the DDP model over the entire urban area. The depth-
dependent porosity laws are de�ned piecewise uniform over 16 polygons. These polygons (bold lines
in the Figure) are de�ned as areas of uniform building geometry and density.
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2 m

Figure 25: Seaside scale experiment. DDP model. Mesh of the urban area and polygons delinating
the zones of uniform porosity law pairs.

A single (φΩ (z) , φΓ (z)) law pair is de�ned for each of the 16 polygons. This (φΩ (z) , φΓ (z)) pair
is applied to all the cells and interfaces that belong to the polygon. Since the building roofs are almost
�at, the φ (z) laws are de�ned as piecewise constant. φ is constant from the ground level to the roof
level. Above the roof level, it is equal to unity. The values of φΩ and φΓ are obtained by measuring
the areas and base lengths of the buildings on the edges of the polygons. Subtracting these areas and
lengths from those of the polygons yield the storage and connectivity area. Normalizing by the polygon
area and perimeter yields the φΩ (z) and φΓ (z) laws. Note that using a uniform (φΩ (z) , φΓ (z)) law
pair over prede�ned polygons is not the only possible way of deriving the porosity laws. For depth-
independent integral porosity models, the building footprint approach is more often used (see e.g.
[39, 24]). In the present study, the uniform law pair approach was preferred for the following reasons.
Firstly, the building footprint approach is known to induce signi�cant mesh dependency when the
connectivity porosity �eld is not uniform [22]. The piecewise uniform porosity approach minimizes
this issue. Secondly, the purpose was also to assess the in�uence of the resolution of the porosity
�eld on model accuracy. Two meshing approaches were used for this. The �rst consists in including
the main streets within the porosity polygons. This is the case with gauges A1-6 (Figure 26). The
second approach consists in excluding the main streets from the porosity polygons, as done with the
streets B1-6 and C1-6 in Figure 26. In the streets, depth-independent, unity porosity values are used.
The �rst approach induces milder meshing constraints than the second one, but is expected to be less
accurate in predicting point values of the �ow �eld. Indeed, the porosity approach is known to be
e�cient in simulating averaged �ow �elds over spatial extents at least as large (if not larger) than the
building period [23].

5.2 Model results and performance

In the experiment reported in [37], the movement of the wave maker started at t = 15 s. Therefore, the
time interval [0 s, 15 s] was not simulated and the simulation period is [15 s, 40 s]. Bearing in mind the
1:50 scale and assuming Froude similarity, the simulated 25 s would correspond to 25×501/2 = 177 s for
the full scale transient. Table 12 gives the CPU times for the re�ned 2D and DDP models. The CPU
time ratio between the two is over 70. The Manning friction coe�cient was calibrated in the re�ned 2D
model so as to obtain the best possible �t with the experimental water depth time series. The optimal
value was found to be nM = 10−3 m1/3s−1, which is approximately 20 times as small than typical
Manning coe�cient values in urban areas. It should be kept in mind however that (i) the magnitude
of �ow velocities, water depths and transient durations involved in the present experiment are much
smaller than those of typical full scale events, (ii) the friction factor reported in [37] is commensurate

35



Figure 26: Seaside scale experiment. Locations of the experimental gauges and meshing approaches.

with such Manning values. The friction formula used in [37] involves a quadratic function of the �ow
velocity for the shear stress [28]. Identifying this model with the Manning bottom friction model yields:

f

4ρ
‖u‖u = gh−1/3n2

M ‖u‖u =⇒ nM =

(
fh1/3

4ρg

)1/2

(44)

where f is the friction factor and ρ is the water density. In [37], the optimal values for f are reported
to be in the range from 10−3 to 10−2. With typical h values of 0.1 m, this corresponds to nM values
ranging from 10−4 to 3 × 10−4 m1/3s−1. This is even smaller than the optimal nM value found for
the re�ned 2D model. However, the model used in [37] incorporates dispersive stresses that are not
accounted for in the shallow water model. This may explain the di�erence between the two models.
The calibrated nM = 10−3 m1/3s−1 was used directly in the DDP model. Another point worth noting
is that the porosity model results were found insensitive to the momentum dissipation coe�cient. This
is attributed to the small velocities generated by the transient.

Table 12 about here
Model CPU time

Re�ned 2D 1490 s
DDP-DIP 20.5 s

Table 12: Seaside experiment. CPU times for the re�ned 2D and DDP models. Simulated time: 25 s.

Figure 27 shows the simulation results at six locations. Gauges A1 and A6 are located along a
main street that is not meshed explicitly in the DDP model. In contrast, gauges B1, B6, C1 and C6
are located in two streets accounted for explicitly in the porosity model mesh. Gauges A1, B1 and C1
are located within the front row of buildings, while gauges A6, B6 and C6 are located well into the
urban area. The Following conclusions can be drawn from the �gure.

Firstly, both the re�ned 2D and the porosity model overestimate the propagation speed of the
incoming wave. The simulated wave arrives at gauges A1-C1 1 s to 1.5 s earlier than the recorded
wave. This could be attributed to the shallow water model, that fails to incorporate the dispersive
stresses induced by non-hydrostatic e�ects. However, a similar shift is observed in the water depth
simulated by the non-hydrostatic COULWAVE model (see e.g. Figure 7 in [37]). Another explanation
for this is that the zs (t) boundary condition supplied at the Western boundary of the model is not
accurate enough owing to non-hydrostatic e�ects.
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Figure 27: Seaside experiment. Water depths as functions of time at six depth gauges. Dots: experi-
mental values. Thin line: re�ned 2D model. Bold line: depths-dependent porosity model. The rising
water levels at the end of the simulation period are due to backwater e�ects from the model boundary.
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Secondly, the accuracy of the porosity model is similar to that of the re�ned 2D model. The only
exception is Gauge B6, where the water depth is strongly underestimated by the DDP model. The
reason for this was found to be an overestimated �ow into the lateral streets in the neighbourhood of
gauge B6. This shows the limitations of assigning uniform porosity laws over large areas.

Thirdly, the water levels simulated by the porosity model at gauges A1 and A6 are surprisingly
accurate considering that the street A1-6 is not meshed explicitly. This is all the more surprising as
comparing the results of the porosity model (that results from an averaging) to point values is known
to induce errors [29]. This is interpreted as a con�rmation that major urban axes may be included in
porosity models without degrading signi�cantly the accuracy of the simulations.

6 Discussion

The tests presented in Sections 4-5 illustrate the potential of the DDP model to account for the
large scale features of shallow water �ows in the presence of complex geometries. As far as �ood
hazard mapping is concerned, however, the pore scale averaged values of the �ow variables provide an
incomplete insight into the actual distribution of the �ood risk. Maximum risk is usually encountered
at points of large water depths and/or large �ow velocities. Flood hazard mapping thus requires an
assessment not only of the average �ow �elds, but also of extreme �ow �eld values on the local scale
[4]. The question arises whether the average values provided by the DDP model are su�cient for this.
This question is partly answered by examining the results of Tests 2 and 3. A similar analysis could
be carried out for the other tests presented in this paper. For the sake of conciseness, the discussion
is restricted to these two tests. The free surface elevation, �ow velocity and depth-velocity product
pro�les computed by the DDP model are compared to those computed by the 2D model on Figures
28 and 29 for Test 2a and Test 2b respectively.

0

5

10

-10  0  10  20

zs (m)

x/t (ms-1)

2D
Porosity

0

5

10

-10  0  10  20

zs (m)

x/t (ms-1)

0

5

10

15

-10  0  10  20

u (ms-1)

x/t (ms-1)

0

5

10

15

-10  0  10  20

u (ms-1)

x/t (ms-1)

0

10

20

30

40

-10  0  10  20

hu (m2s-1)

x/t (ms-1)

0

10

20

30

40

-10  0  10  20

hu (m2s-1)

x/t (ms-1)

Figure 28: Dambreak in a compound channel. Simulation results for test 2a (hR = 0.5m) at t = 10s
(top) and t = 50s (bottom). Dots: free surface elevations, �ow velocities and unit discharges computed
by the re�ned 2D model. Solid lines: DDP model results.
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Figure 29: Dambreak in a compound channel. Simulation results for test 2b (hR = 2.5m) at t = 10s
(top) and t = 50s (bottom). Dots: free surface elevations, �ow velocities and unit discharges computed
by the re�ned 2D model. Solid lines: DDP model results.

Quite expectedly, the dispersion of the �ow variables from the average values is larger in Test 2a
than in Test 2b. As far as the free surface elevations are concerned (Figure 28, left), the re�ned 2D
results clearly show the dual structure of the shock wave, with one front travelling over the �oodplain
(hence the �oor value z = h0 = 2m in the pro�les) and the other travelling within the main channel.
The DDP model, that uses a single free surface elevation variable, can obviously not capture such
a feature. As a consequence, the large �ow velocities in the advancing front over the �oodplain are
missed by the DDP model (Figure 28, middle). The maximum, point values of the �ow velocity are
underestimated by approximately 30% in the DDP �ow velocity pro�les. Lastly, the unit discharge
hu pro�le in the re�ned 2D model is compared to the product hu obtained from the DDP model on
Figure 28, right. Note that the unit discharge in the DDP model is not hu but θu (plotted on Figure
11, right). hu in the DDP model is fairly representative of the hu values in the re�ned 2D model, while
θu coincides with the average 2D model values for hu. Similar, albeit smaller, deviations of the point
values from the DDP averages are also observed in the simulation results for Test 2b (Figure 29). This
was also to be expected in that Test 2b represents a less extreme hydraulic con�guration than Test
2a, with smaller �oodplain-channel exchanges.

As in test 2, the DDP-IP and DDP-DIP simulation results are compared to the cell values of the
re�ned 2D shallow water model. The results for Test 3 are shown on Figure 30. The water levels in
the re�ned 2D model are grouped into two sets, forming roughly parallel clouds. The lower of the two
sets (ranging from 0 m to 5 m in Tests 3a-b and equal to 0 m in Tests 3c-d) corresponds to the water
depths over the buildings, while the higher of the two clouds (ranging from 0 m to 10 m in Tests 3a-b
and 0 m to 5 m in Tests 3c-d) corresponds to the water depths over the streets. The variability in the
unit discharges is much stronger than in Test 2.
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Figure 30: Urban dambreak problem (Test 3). Simulation results at t = 70s. Dots: water depths and
unit discharges computed by the 2D shallow water model. Solid lines: DDP model solutions. Note
that h is the water depth for the 2D shallow water model.
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7 Conclusions

A depth-dependent porosity model has been presented. Compared to similar models previously presen-
ted in the literature [13, 48, 35, 34], the proposed model has the following features.

(i) The �ux closure model between the domain- and the boundary-based �ow variables uses
the DIP closure proposed in [24], while the previously published DDP models use either
the Single Porosity (SP) closure [13, 48] or the Integral Porosity (IP) closure [35, 34].
When used in depth-independent porosity models, the DIP closure is known to be more
accurate than the SP and IP laws [23, 24]. The computational examples presented in the
present paper allow this conclusion to be extended to depth-dependent porosity models.
Compared to the depth-independent closure, the depth-dependent DIP closure requires an
energy-based limiting of the �ow velocity as the connectivity porosity tends to zero.

(ii) Obstacle-induced drag forces are broken into two terms. The �rst is due to the drag forces
induced by the lateral walls of the obstacles, and acts only on the part of the �ow that
is lower than the height h0 of the obstacles. The second is due to the friction and energy
losses induced by the top of the obstacles when these are submerged. Consequently, it is
not active at all times. Test 3 shows that this term is essential to an accurate reconstruction
of the pore scale-averaged �ow �elds in the presence of submerged obstacles.

(iii) The DDP model also incorporates the transient momentum dissipation term fT �rst in-
troduced in the depth-independent DIP model [24]. This term is seen to be essential to a
correct reconstruction of the �ow �elds computed by re�ned 2D models. This transient mo-
mentum dissipation mechanism was initially proposed to account for the energy dissipation
triggered by positive waves �owing between series of obstacles. However, Test 4 shows that
this mechanism is also more e�cient than drag coe�cient-based models in reproducing the
energy losses caused by the sawtooth-shaped microtopography. This can be attributed to
the momentum dissipation induced by the mobile bores generated as the wave propagates
onto the microscale topography.

The tests presented in Section 4 show that all these features are essential to the DDP-IP model
performance. Dropping one of them entails a strong degradation in model performance for one or
several of the tests presented in Section 4. The Seaside test case presented in Section 5 shows that the
accuracy of the DDP model in reproducing the general features of the �ow is similar to that of the
re�ned 2D shallow water model, with a much cheaper computational cost.

Future research includes several paths. The �rst is obviously the parametrization of the models
for the terms fD,1, fD,2 and fT . While the models presented in Subsection 2.5 allow for a successful
modelling of the large scale �ow �elds (see Section 4), how they should be parameterized as func-
tions of the subgrid-scale geometric properties is still unclear. As a result, the drag and momentum
dissipation tensors must be calibrated. Simulation bases such as that presented in [23] should be
extended so as to allow for the parametrization of these energy dissipation models, thus eliminating
the need for calibration. The second research path concerns the modelling of bottom friction. The
Chezy-Manning-Strickler approach remains widely popular. However, experimental studies involving
complex topographies and small depths indicate that alternative models, such as Reynolds-dependent
friction models [18], might be more appropriate. For applications in natural environments, drag models
incorporating vegetation mechanical properties [30, 50] will be needed too. Test 4 also shows that, for
a given �ow direction, the drag term may change as the �ow is reverted. As illustrated by Section 5, a
third research path should be devoted to the development of subgrid-scale models, that will allow the
subgrid-scale features of the �ow to be inferred from the large scale �ow �elds computed by the DDP
models.
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Appendix A. Wave propagation speeds

A.1 IP model

For the IP model, the �rst column of the �ux tensor is

fx =

[
θΓ

θΩ
qΩ,

θΓq
2
Ω

θ2
Ω

+ fw,Γ,
θΓqΩrΩ

θ2
Ω

]T
(45)

It is �rst noticed that the water level closure (17a) induces a one-to-one relationship between θΓ and
θΩ. Consequently, the derivative of θΓ with respect to θΩ is derived as

dθΓ

dθΩ
=

dθΓ

dz

dz

dθΩ
=
φΓ

φΩ
(46)

For the Jacobian matrix, the following quantities must be determined

∂

∂θΩ

(
θΓ

θΩ
qΩ

)
=

(
φΓ

φΩ
− θΓ

θΩ

)
uΩ (47a)

∂

∂qΩ

(
θΓ

θΩ
qΩ

)
=
θΓ

θΩ
(47b)

∂

∂r

(
θΓ

θΩ
qΩ

)
= 0 (47c)

∂

∂θΩ

(
θΓq

2
Ω

θ2
Ω

)
=

(
φΓ

φΩ
− 2

θΓ

θΩ

)
u2

Ω

∂

∂qΩ

(
θΓq

2
Ω

θ2
Ω

)
= 2

θΓ

θΩ
uΩ (47d)

∂

∂rΩ

(
θΓq

2
Ω

θ2
Ω

)
= 0 (47e)

∂fw,Γ
∂θΩ

=
∂fw,Γ
∂θΓ

∂θΓ

∂θΩ
=
φΓ

φΩ
c2Γ =

θΓ

θΩ
c2Ω (47f)

∂

∂θΩ

θΓqΩrΩ

θ2
Ω

=

(
φΓ

φΩ
− 2

θΓ

θΩ

)
uΩvΩ (47g)

∂

∂qΩ

θΓqΩrΩ

θ2
Ω

=
θΓ

θΩ
vΩ (47h)

∂

∂rΩ

θ2
ΓqΩrΩ

θ3
Ω

=
θΓ

θΩ
uΩ (47i)

hence the matrix Ax

Ax =


(
φΓ

φΩ
− θΓ

θΩ

)
uΩ

θΓ
θΩ

0(
φΓ

φΩ
− 2 θΓθΩ

)
u2

Ω + θΓ
θΩ
c2Ω 2 θΓθΩuΩ 0(

φΓ

φΩ
− 2 θΓθΩ

)
uΩvΩ

θΓ
θΩ
vΩ

θΓ
θΩ
uΩ

 (48)

The eigenvalue θΓ
θΩ
uΩ stems directly from the last column of the matrix. The remaining two eigenvalues

are those of the following 2× 2 matrix

Bx =

 (
φΓ

φΩ
− θΓ

θΩ

)
uΩ

θΓ
θΩ(

φΓ

φΩ
− 2 θΓθΩ

)
u2

Ω + θΓ
θΩ
c2Ω 2 θΓθΩuΩ

 =

 (
φΓ

φΩ
− θΓ

θΩ

)
uΩ

θΓ
θΩ(

φΓ

φΩ
− 2 θΓθΩ

)
u2

Ω + θΓ
θΩ
c2Ω 2 θΓθΩuΩ

 (49)
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The solution is

λ =
1

2
trBx ±

((
1

2
trBx

)2

− detBx

) 1
2

(50a)

detBx =
φΓ

φΩ

θΓ

θΩ
u2

Ω −
(
θΓ

θΩ

)2

c2Ω

=

trBx =

(
φΓ

φΩ
+
θΓ

θΩ

)
uΩ (50b)

hence

λ =
1

2

(
φΓ

φΩ
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θΓ

θΩ

)
uΩ ±

(
1

4

(
φΓ

φΩ
− θΓ

θΩ

)
u2

Ω +

(
θΓ

θΩ

)2

c2Ω

) 1
2

(51)

hence the three eigenvalues given in Equation (28a-28b).

A.2 DIP model

The �rst column of the �ux tensor is

fx =

[
qΩ,

q2
Ω

θΓ
+ fw,Γ,

qΩrΩ

θΓ

]T
(52)

Following the same developments as in Subsection A.1, one obtains

Ax =


0 1 0
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 (53a)

The eigenvalue θΩ
θΓ
uΩ stems directly from the third column of the matrix. The remaining two are those

of the 2× 2 matrix

Bx =

[
0 1

θΓ
θΩ
c2Ω −
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Ω
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Ω 2 θΩθΓ uΩ

]
(54)

with determinant

detBx =
φΓ

φΩ

θ2
Ω

θ2
Γ

u2
Ω −

θΓ

θΩ
c2Ω (55)

and eigenvalues

λ =
θΩ

θΓ
uΩ ±

((
θΩ

θΓ

)2(
1− φΓ

φΩ

)
u2

Ω +
θΓ

θΩ
c2Ω

)1/2

(56)

hence the eigenvalues given in Equation (28c). Hyperbolicity is guaranteed provided that φΓ ≤ φΩ. If
the porosity is depth-independent, the above expression simpli�es to:

λ =
φΩ

φΓ
uΩ ±

((
φΩ

φΓ

)(
φΩ

φΓ
− 1

)
u2

Ω +
φΓ

φΩ
c2Ω

)1/2

(57)

Appendix B. Approximate Riemann solver

The purpose of this Appendix is to present a justi�cation for the mass �ux formula (33a) in the
modi�ed HLLC [46] Riemann solver. The principles of the Riemann solver can be found elsewhere [45]
and will not be recalled here. This formula is developed bearing two objectives in mind. Firstly, the
C -property [3]

zs,Γ,L = zs,Γ,R
qL = qR = 0

}
⇒ qij = 0 (58)
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must be veri�ed. Secondly, the particular situations where one of the domain porosities φΓ,L, φΓ,R is
zero must yield a zero discharge. From a physical point of view, a zero porosity is the sign that no
additional mass can be stored within the domain under a unit rise in the water level. This is the case
when the water level is below the bed level in free surface �ow, or above the lid of a conduit for pipe
�ow. Applying the HLL [26] approach to the continuity equation gives the following two conditions

qL − qij = (θΓ,L − θij)λ− (59a)

qij − qR = (θij − θΓ,R)λ+ (59b)

θΓ,S = θΓ (zs,Γ,S) , S = L,R (59c)

where λ± are the (a priori estimated) speeds of the discontinuities that separate the intermediate
region of constant state from the left and right states of the Riemann problem. Solving the above
equations for qij yields

qij =
λ+qL − λ−qR
λ+ − λ−

− λ+λ−

λ+ − λ−
(θΓ,L − θΓ,R) (60)

Equation (60) satis�es the C -property because the condition (zs,Γ,L = zs,Γ,R) automatically yields
θΓ,L = θΓ,R.

However, this equation is not entirely satisfactory in that it does not allow the following particular
case to be accounted for. Assume the following situation

zb,Γ,L < zs,Γ,L < zs,Γ,R (61a)

zs,Γ,R = zb,Γ,R (61b)

qL 6= 0, qR = 0 (61c)

In this situation the left-hand side of the interface is immersed, while the right-hand side is emerged.
In such a case, a zero discharge should be obtained because the water cannot �ow across the interface.
However, Equation (60) allows for qij 6= 0 in such a case. Indeed, one has

λ− = λ1 (qL, zs,Γ,L) < 0 (62a)

λ+ = λ3 (qL, zs,Γ,L) > 0 (62b)

θΓ,L = θΓ,R = 0 (62c)

leading to a non-zero discharge qij . Note that the third equation is obtained from the condition (2d),
with θΩ,R = 0.

The solver is modi�ed as follows. Noticing that dθ = φdz and that the laws φ (z) are discretized as
piecewise constant functions (Subsection 3.2, Equations (35a, 35b)), the balance equations are replaced
with the following approximate relationships

qL − qij = (zs,Γ,L − zs,ij)φΓ,Lλ
− (63a)

qij − qR = (zs,ij − zs,Γ,R)φΓ,Rλ
+ (63b)

Solving this system for qij leads to Equation (33a). With this formula, the con�guration (61a-61c)
leads to φΓ,R = 0, thus yielding qij = 0. The C -property (58) is also veri�ed.
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