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A two-dimensional shallow water model with depth-dependent porosity is presented. The purpose is the coarse grid simulation of shallow ows over complex topographies and geometries. Two ux closures are examined: the Integral Porosity (IP) and Dual Integral Porosity (DIP) closures. Energy losses are described using a subgrid scale model that accounts for bottom and wall friction, transient momentum dissipation and energy losses induced by obstacle submersion. A complete wave propagation property analysis is provided for the IP and DIP closures, yielding more accurate numerical stability constraints than published previously. Five computational examples are presented, including transients in compound and meandering channels, urban dambreak problems with building submersion and runo over variable microtopography. The ability of the model to deal with subgrid-scale features is conrmed. The DIP ux is shown to be superior to the IP closure. The transient dissipation term is essential in reproducing the eect of obstacles and microtopography. Distinguishing between the building wall-and building roof-induced friction is seen to be essential. The model is validated successfully against a scale model experimental dataset for the submersion of a coastal urban area by a tsunami wave.

Introduction

Over the past decade, porosity-based shallow water models have become increasingly popular in dealing with subgrid-scale geometric and topographic features in shallow water ows. Typical applications include urban ood modelling and the modelling of shallow ows over complex topographies [START_REF] Bates | Development and testing of a subgrid-scale model for moving-boundary hydrodynamic problems in shallow water[END_REF][START_REF] Dena | Two-dimensional shallow ow equations for partially dry areas[END_REF].

In the Single Porosity (SP) approach, a single porosity is used to account for both the storage and the connectivity properties of the subgrid-scale geometry. While early developments [START_REF] Bates | Development and testing of a subgrid-scale model for moving-boundary hydrodynamic problems in shallow water[END_REF][START_REF] Dena | Two-dimensional shallow ow equations for partially dry areas[END_REF] used a depth-dependent SP eld, most of the developments and applications of the SP approach presented to date have focused on depth-independent SP versions of the shallow water equations [START_REF] Benkhaldoun | A non-homogeneous Riemann solver for shallow water equations in porous media[END_REF][START_REF] Cea | Unstructured nite volume discretization of two-dimensional depth-averaged shallow water equations with porosity[END_REF][START_REF] Ferrari | A 1D-2D shallow water equation solver for discontinuous porosity eld based on a Generalized Riemann problem[END_REF][START_REF] Finaud-Guyot | An approximate-state Riemann solver for the two-dimensional shallow water equations with porosity[END_REF][START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Flux and source term discretization in shallow water models with porosity on unstructured grids[END_REF][START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF][START_REF] Soares-Frazão | Twodimensional shallow water models with porosity for urban ood modelling[END_REF][START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF]. This restriction of the original approach is easily justied by the fact that these models were developed for urban ood modelling purposes, where the buildings are assumed not to be submerged by the ood in practice. One of the main limitations of the original SP approach [START_REF] Dena | Two-dimensional shallow ow equations for partially dry areas[END_REF] is that it does not allow anisotropy eects to be accounted for. Two ways of introducing anisotropy eects using the SP approach are known so far from the literature. In the Multiple Porosity (MP) model [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF], the ow region is broken into several subregions, each having its own, single porosity. Some of the regions are applied momentum corrections to account for preferential ows and stagnant water in dead zones. More recently, anisotropy is incorporated directly in the ux functions of the SP model [START_REF] Viero | Modeling anisotropy in free-surface overland and shallow inundation ows[END_REF].

The Integral Porosity (IP) approach [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF][START_REF] Schubert | Building treatments for urban ood inundation models and implications for predictive skill and modeling eciency[END_REF], originally designed for urban ood modelling, incorporates anisotropy by dening two types of porosity: a storage (or areal) porosity and a connectivity (or frontal) porosity. The storage and connectivity porosities express the statistical properties of the urban geometry over the domain of interest and its boundary respectively. While the storage porosity does not include information on the anisotropy of the geometry, the connectivity porosity does because it is a function of the orientation of the boundary. The IP approach has been extended to depth-dependent porosity elds [START_REF] Özgen | Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[END_REF][START_REF] Özgen | Urban ood modeling using shallow water equations with depth-dependent anisotropic porosity[END_REF]. The Building Coverage Ratio/Conveyance Reduction Factor (BCR/CRF) approach [START_REF] Chen | A coarse-grid approach to representing building blockage eects in 2D urban ood modelling[END_REF][START_REF] Chen | Multi-layer coarse-grid modelling in 2D urban ood simulations[END_REF] also uses two statistical indicators of the urban geometry that act in a similar fashion to that of the storage and conveyance porosities. The multilayer denition [START_REF] Chen | Multi-layer coarse-grid modelling in 2D urban ood simulations[END_REF] makes the approach very similar to that of the MP model. The IP and BCR/CRF approaches share the common feature that they allow the inuence of buildings on the wave propagation speeds to be accounted for. Such eects are also obtained by including multiple ow regions, as in [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Liang | Coupling surface and subsurface ows in a depth averaged ood wave model[END_REF].

The Dual Integral Porosity (DIP) model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] has been proposed as an improved version of the IP model. The accuracy of the uxes is improved by enforcing mass ux invariance between the interior points of the domain and the boundaries. The superiority of the DIP model over the IP has been conrmed by numerical experiments involving the comparison of the IP and DIP models to shallow water solutions obtained on rened grids [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF][START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF]. The IP model is known to underestimate the wave propagation speeds of transients in the presence of obstacles, a drawback that is eliminated to a large extent by the DIP model. A depth-independent porosity model derived from independent considerations [START_REF] Bruwier | Shallow-water models with anisotropic porosity and merging for ood modelling on Cartesian grids[END_REF] has also been shown to achieve improved wave propagation properties when made consistent with the DIP uxes. The DIP model also incorporates a transient momentum dissipation mechanism, active only for positive waves. A consistency analysis of the IP and DIP equations indicates that the DIP model is less sensitive to the design of the computational grid than is the IP model [START_REF] Guinot | Consistency and bicharacteristic analysis of integral shallow water models with porosity. Explaining model oversensitivity to mesh design[END_REF].

Moreover, benchmarking the SP, IP and DIP models against a simulation base of 96 scenarios shows that the DIP gives the more accurate mass and momentum uxes of the three models, although some issues remain when the geometry is strongly anisotropic and exhibits preferential directions [START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF]. So far, however, the DIP model has been developed and applied only for depth-independent porosity elds.

The purpose of the present paper is to present a shallow water model based on the DIP approach, with depth-variable porosity elds. This model is called the Depth-Dependent Porosity (DDP) model hereafter. It has several novel features: (i) the DIP closure presented in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] is generalized to depthdependent storage and connectivity porosities, (ii) the transient momentum dissipation model and the drag source term models are adapted to reect the possible submersion of the topography by the ow (a feature that is absent from the original DIP model), (iii) the governing equations are discretized over unstructured grids (while [START_REF] Bruwier | Shallow-water models with anisotropic porosity and merging for ood modelling on Cartesian grids[END_REF][START_REF] Özgen | Urban ood modeling using shallow water equations with depth-dependent anisotropic porosity[END_REF][START_REF] Özgen | Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[END_REF] involve only rectangular or square grids), (iv) the depth-dependent porosity laws can be made totally arbitrary and be discretized with an arbitrary degree of accuracy.

This paper is organized as follows. Section 2 presents the underlying assumptions and governing equations of the model. Section 3 details the discretization of the uxes and source terms in the framework of an explicit, shock-capturing discretization, as well as the CFL stability constraint. Section 4 presents ve test cases devoted to the verication and validation of specic features of the proposed model. Section 5 presents a validation of the model against scale model experiments. Sections 6 and 7 are devoted respectively to a discussion and conclusions.

2 Model

Depth-dependent porosity laws

The purpose is to model two-dimensional shallow water ows over a solid, non-erodible topography, that is, in the presence of an impermeable bottom, with a bottom level eld z b (x, y) that is a function only of the horizontal coordinates (x, y). Consider a two-dimensional domain Ω with boundary Γ, normal unit vector n in the (x, y) plane. Such a domain may be e.g. a cell in a computational mesh, but may also be any arbitrary-shaped domain. A phase indicator ε (x, y, z) is dened as follows: ε (x, y, z) = 0 if the point (x, y, z) is in the solid phase, ε (x, y, z) = 1 otherwise. The phase indicator is a purely geometric descriptor. A such, it is independent of the ow eld. Two porosities φ Ω and φ Γ are dened respectively for the domain and its boundary. They represent the amount of water that can be stored per unit domain and boundary respectively for a unit variation in the free surface elevation z s . Assuming that the function z s (x, y) is known, storage and connectivity porosities are dened as 

φ Ω (z Ω ) = 1 Ω ¢ Ω ε (x, y, z s (x, y)) dΩ (1a) φ Γ (z Γ ) = 1 Γ ¢ Γ ε (x,
Note that equation (1c) is valid as long as the integral of ε (x, y, z s (x, y)) is non-zero, that is, as long as D includes a subdomain with non-zero measure where there is a free surface. If the entire domain is lled with the solid phase, ε = 0 everywhere and both the numerator and denominator of the ratio (1c) are zero. In this case, D being entirely dry, it can be considered not being a part of the ow domain and the computation of z D becomes meaningless.

The average elevation z D (D = Ω, Γ) dened in Equation (1c) depends directly on the subgridscale free surface elevation function z s (x, y). Consequently, the functions φ Ω (z Ω ) and φ Γ (z Γ ) are not unique in the general case. Consider the simple example of a uniform bottom slope in the x-direction (Figure 1) with a given z Ω . In Figure 1a, the free surface is horizontal, below the upper bound of the bottom elevation over Ω (as for e.g. water at rest in a pond). The domain is partially dry, which results in φ Ω < 1, and φ Γ = 0 along the right-hand boundary. In Figure 1b, the free surface is tilted, roughly parallel to the bottom (as in the case of e.g. runo over a steep slope). This results in ε = 1 at all points in Ω and consequently φ Ω = 1. The boundary porosity φ Γ is also equal to unity at the right-hand boundary. While z Ω is identical in both situations, the porosity φ Ω is not. This simple example shows that the porosity φ D is not a single-valued function of z D because dierent φ D values may be computed for a given average water level z D depending on the shape of the free surface on the subgrid scale. Laws in the form φ D (z D ) , D = Ω, Γ are thus meaningful only provided that a subgrid-scale model for the free surface elevation is specied. It is worth noting that, in the rst presentation of a depth-dependent porosity model by Dena [START_REF] Dena | Two-dimensional shallow ow equations for partially dry areas[END_REF], two dierent z s (x, y) models were implicitly assumed. For the Venice lagoon application, a model similar to that of Figure 1a was used, while for the runo simulations, sheet ow with a free surface roughly parallel to the mean bottom surface is assumed, which corresponds to Figure 1b.

The developments presented hereafter are based on the assumption that the free surface is nearly horizontal, therefore z s (x, y) is independent of x and y, thus z Ω = z Γ over the domain Ω. In this case, the porosities φ and their integrals θ become single-valued functions of the vertical coordinate z D (D = Ω, Γ). Since the elevations z s (x, y) = z Ω = z Γ are identical, they can be replaced with the same argument z in Equations (1a-1c). This yields the following formulae for the porosities and their integrals

φ D (z) = 1 D ¢ D ε (x, y, z) dD, D = Ω, Γ (2a) 
θ D (z) = ¢ z z b φ D (ζ) dζ, D = Ω, Γ (2b) 0 ≤ φ Γ (z) ≤ φ Ω (z) ∀z (2c) 0 ≤ θ Γ (z) ≤ θ Ω (z) ∀z (2d)
Equation (2c) stems from the assumption that the connectivity porosity is smaller than the storage porosity by denition [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF]. Equation (2d) is obtained directly by integrating (2c) with respect to z.

In the present work, the laws φ D (z) (D = Γ, Ω) are derived from statistical properties of the topography. Consequently, their support is assumed to have a lower bound z b,D . Note that this is not the case in all approaches. In [START_REF] Dena | Two-dimensional shallow ow equations for partially dry areas[END_REF][START_REF] Viero | Modeling anisotropy in free-surface overland and shallow inundation ows[END_REF], an error function-based law is used, and φ D is non-zero even for elevations lower than the lowest point within the sampling domain. While physically unrealistic, such laws have the advantage that they allow wetting/drying issues to be eliminated. This is an advantage when numerical methods particularly sensitive to wetting/drying issues are used, as e.g. Galerkin nite element methods [START_REF] Dena | Two-dimensional shallow ow equations for partially dry areas[END_REF][START_REF] Viero | Modeling anisotropy in free-surface overland and shallow inundation ows[END_REF].

Mass conservation

A mass balance over Ω yields

d t V + Q = 0 (3)
where V and Q are respectively the volume of water in Ω and the outowing discharge across the boundary. As in [START_REF] Dena | Two-dimensional shallow ow equations for partially dry areas[END_REF], V is obtained by integrating ε over the cylinder with base surface Ω extending from z b to z s

V = ¢ zs z b ¢ Ω εdΩ dz = Ω ¢ zs z b φ Ω (z) dz = Ωθ Ω (z s ) (4) 
The discharge Q is obtained by integrating the normal ow velocity over the boundary of the same cylinder

Q = ¢ zs z b ¢ Γ εu.ndΓ dz = ¢ Γ θ Γ u.ndΓ = ¢ Γ q Γ .ndΓ (5) 
where q Γ = θ Γ u is the unit discharge vector at the boundary. This boundary unit discharge is related to the domain-averaged unit discharge via a closure model presented in Subsection 2.4. Substituting (4,5) into (3) yields

d t (Ωθ Ω ) + ¢ Γ q Γ .n dΓ = 0 (6) 

Momentum conservation

The underlying assumptions of the shallow water model are retained: the ow velocity eld is assumed nearly horizontal, the slopes and curvature of the bottom and free surface are assumed small, leading to a hydrostatic pressure eld. Applying Newton's second law of motion to the domain yields

d t ¢ zs z b ¢ Ω εudΩ dz + ¢ zs z b ¢ Γ ε (u.n) udΓ dz = f w + f s + f f (7) 
where f f , f w , f s are respectively the specic forces stemming from friction and drag, the hydrostatic pressure exerted by the water along the boundary and the reaction from the solid phase to the pressure force along the solid-liquid interface within the domain Ω (Figure 2). Figure 2 shows a horizontal slice of height dz drawn at an elevation z.

The pressure force f w is active only along the part of the boundary in the water phase, that is, only at the boundary points with ε = 1:

f w = - ¢ zs z b ¢ Γ εg (z s -z) ndΓ dz (8)
where g is the gravitational acceleration. Since the porosity φ Γ is considered in a statistical sense as the mathematical expectation of ε over Γ, the following property is assumed to hold

¢ Γ εg (z s -z) dΓ = ¢ Γ φ Γ g (z s -z) dΓ (9)
because the hydrostatic pressure eld p = g (z s -z) is assumed uncorrelated with the phase indicator ε. Inserting the above expression into Equation [START_REF] Cea | Unstructured nite volume discretization of two-dimensional depth-averaged shallow water equations with porosity[END_REF], swapping the integrals yields The reaction from the solid-liquid interface accounts for the eects of topography. This includes the bottom slope, as well as emergent vertical surfaces such as building walls in the presence of buildings, etc. [START_REF] Chen | Multi-layer coarse-grid modelling in 2D urban ood simulations[END_REF] where the shape and extension of Γ varies with z. It is not possible to nd a general expression for the above integral for an arbitrary obstacle distribution. The following model is proposed hereafter: the density of solid obstacles is assumed the same along the boundary Γ as within the domain Ω. Since the free surface is assumed horizontal (Equation (2a)), the pressure force stemming from the reaction along solid/liquid interfaces entirely contained within the domain (as the central island in Figure 2) is zero and only the pressure force onto the solid/liquid interface at the boundary remains. The balance of the pressure forces along the boundary is obtained by isolating a small domain delineated by a boundary segment dΓ, extending by an innitesimal length dl into the domain (Figure 3). In the limit dl → 0, one has

f w = - ¢ Γ ¢ zs z b φ Γ (z) g (z s -z) dz ndΓ (10) n n' G G' Liquid Solid
f s = - ¢ zs z b ¢ Γ εg (z s -z) n dΓ dz

Liquid

df s + df L + df R = 0 (12) 
where df L and df R are respectively the pressure forces exerted onto the left-and right-hand sides of the control volume:

df L = ¢ zs z b εg (z s -z) ndz dΓ ⇒ f L = ¢ Γ ¢ zs z b φ Ω g (z s -z) ndz dΓ (13a) df R = - ¢ zs z b εg (z s -z) ndz dΓ ⇒ f R = - ¢ zs z b φ Γ g (z s -z) ndz dΓ (13b)
Note that φ Ω and φ Γ are used respectively for f L and f R because f L is exerted onto a surface that is located within Ω, while f R is exerted onto a surface that belongs to Γ. The following expression is obtained for the pressure force:

f s = -f L -f R = - ¢ Γ ¢ zs z b (φ Ω -φ Γ ) g (z s -z) ndz dΓ (14) 
The friction force is assumed to result from both friction against the bottom and head losses stemming from the presence of obstacles obstructing the ow within the domain Ω.

f f = - ¢ zs z b ¢ Ω εgs f dΩ dz = - ¢ Ω gθ Ω s f dΩ ( 15 
)
where g is the gravitational acceleration and s f is the energy slope vector. Various formulations have been proposed for s f [START_REF] Fraga | Experimental study of the water depth and rainfall intensity eects on the bed roughness coecient used in distributed urban drainage models[END_REF][START_REF] Guinot | Flux and source term discretization in shallow water models with porosity on unstructured grids[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF][START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF][START_REF] Özgen | Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[END_REF]. Numerical experiments and simulations of eld-scale hydraulic transients show that energy losses are best described by introducing two types of momentum source terms [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. The rst is a steady-sate, turbulent source term arising from bottom friction and building drag. The second is a momentum dissipation source term active only under transient conditions involving positive waves. This momentum dissipation source term accounts for the dissipation of moving bores arising from the positive waves into dead zones or low velocity areas. The following formulae are used in the DIP model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]:

f f = f b + f D + f T (16a) f b = - ¢ Ω gn 2 M θ Ω h 4/3 Ω |u| udΩ, h = z s -z b (16b) f D = - ¢ Ω gC D |u| udΩ (16c) f T = -M ¢ zs z b ¢ Γ φ Γ (u.n) udΓ dz -f w (16d) M =          0 0 0 0 µ xx µ xy 0 µ yx µ yy   if ∂ t h > 0 0 if ∂ t h ≤ 0 (16e)
where f b , f D and f T are respectively the bottom friction, the drag and transient momentum dissipation terms, h is the water depth, n M is Manning's friction coecient, C D is the building drag tensor, and the coecients µ ij (i, j = x, y) are momentum dissipation coecients between zero and unity. The transient momentum dissipation model was rst introduced in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] and its existence and expression have been validated using rened two-dimensional ow simulations [START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF]. The drag and transient source terms used in the present model are modied versions of the models presented and used in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF][START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF][START_REF] Özgen | Urban ood modeling using shallow water equations with depth-dependent anisotropic porosity[END_REF][START_REF] Özgen | Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[END_REF][START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF][START_REF] Schubert | Building treatments for urban ood inundation models and implications for predictive skill and modeling eciency[END_REF]. The modied models are presented in Subsection 2.5.

Domain/boundary closure model IP closure.

The IP model [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF] uses the following closure model

z s,Γ = z s,Ω (17a) 
u Γ = u Ω (17b)
This closure is shown to violate mass conservation across the boundary and yield erroneous wave propagation speeds [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF].

DIP closure.

The DIP model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] was proposed as a correction to the IP closure:

z s,Γ = z s,Ω (18a) 
u Γ = φ Ω φ Γ u Ω (18b)
with the necessary condition φ Γ ≤ φ Ω for problem well-posedness. The DIP closure is seen to provide more accurate solutions than the IP model [START_REF] Bruwier | Shallow-water models with anisotropic porosity and merging for ood modelling on Cartesian grids[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] and to be less sensitive to the design of the mesh [START_REF] Guinot | Consistency and bicharacteristic analysis of integral shallow water models with porosity. Explaining model oversensitivity to mesh design[END_REF]. Transposing this closure to the present depth-variable model gives

z s,Γ = z s,Ω (19a) 
u Γ = θ Ω θ Γ u Ω , θ Γ ≤ θ Ω (19b)
However, this denition poses problems in the case of water tending to the minimum level for φ Γ , because it yields an innite speed u Γ as the water level reaches the elevation for which θ Γ = 0.

This clearly induces a violation of the principle of conservation of energy, because the kinetic term u Γ 2 / (2g) tends to innity over Γ while it is nite within Ω. Energy would thus increase along a streamline from a nite value within Ω to an innite value over Γ. This non-physical behaviour is eliminated using an energy-based limiting of the ow velocity. When the water depth at the boundary drops below a given predened value h min , the normal ow velocity is bounded by the maximum possible value u max that satises energy invariance along a streamline:

2gz s,Ω + u 2 Ω = 2gz s,Γ + u 2 Γ (20) 
The maximum permissible value for u Γ is obtained by setting z s,Γ to its minimum possible value, that is, z Γ,min . The ow velocity at the boundary is limited as follows

z s,Γ ≤ z Γ,min + h min ⇒ u Γ,n → max (-u max , min (u Γ,n , u max )) (21a) 
u max = max 0, (z s,Ω -z Γ,min ) 2g + u 2 Ω,n 1 2 (21b) 
u

Ω,n = u Ω .n, u Γ,n = u Γ .n (21c) 
where z Γ,min is the lower bound of the support of φ Γ (z). The formula (21b) for u max is obtained by applying Bernoulli's theorem along a streamline connecting the interior points of Ω to Γ. The maximum possible value for the velocity is achieved by setting z s,Γ = z Γ,min in Equation (21b). For all the applications presented in this paper, h min is set to 10 -3 m. Note that this problem is not met in the depth-independent DIP model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF], where θ is replaced with φ (that is assumed non-zero).

Momentum source terms

The purpose of the present section is to propose a momentum source term that can be used in two types of situations. The rst is the modelling of urban oods, with the eventuality that obstacles (such as vehicles, but also possibly houses or buildings) may be submerged. The second is the modelling of ows over strongly variable topography, that may be only partially or fully submerged. This is a major upscaling challenge, in that the purpose is to cover a wide range of ow congurations and regimes.

As far as the bottom friction model (16b) is concerned, a constant n M as used in Equation (16b) is deemed insucient. The eect of rainfall and small water depths are known to inuence the roughness coecient signicantly [START_REF] Candela | Inuence of surface roughness in hydrological response of semiarid catchments[END_REF][START_REF] Fraga | Experimental study of the water depth and rainfall intensity eects on the bed roughness coecient used in distributed urban drainage models[END_REF][START_REF] Katz | Eect of surface roughness and rainfall impact on overland ow[END_REF][START_REF] Tayfur | Applicability of St. Venant equations for two-dimensional overland ow over rough inltrating surfaces[END_REF]. Experimental studies indicate threshold eects with respect to the water depth and Reynolds number for the roughness coecient, with a predominant eect of the Reynolds number [START_REF] Fraga | Experimental study of the water depth and rainfall intensity eects on the bed roughness coecient used in distributed urban drainage models[END_REF]. Moreover, the eects of surface roughness on free surface ows have been identied to depend strongly on the inundation ratio Λ [START_REF] Lawrence | Macroscale surface roughness and frictional resistance in overland ow[END_REF], that is the ratio of the ow depth to the characteristic roughness scale. In [START_REF] Lawrence | Macroscale surface roughness and frictional resistance in overland ow[END_REF], a three-stage behaviour is proposed for the resistance model: when the ow is shallower than the characteristic roughness scale (the so-called partial inundation range), the friction factor follows a drag force law and is proportional to the inundation ratio. In the marginal inundation range (when Λ is of the order of magnitude of unity), the resistance factor transitions from the drag model to a mixing length model, where the friction factor is proportional to Λ -1/2 . For well-inundated ow (Λ > 10), roughness models such as Colebrook-type laws are valid.

Acknowledging the salient importance of the inundation ratio Λ, upscaled roughness formulations have been proposed with inundation ratio-dependent Manning coecients [START_REF] Özgen | Upscaling the shallow water model with a novel roughness formulation[END_REF].

Concerning the modelling of building drag forces, a general formulation is still to be proposed.

In [START_REF] Sanders | Integral formulation of shallow water equations with anisotropic porosity for urban ood modelling[END_REF][START_REF] Schubert | Building treatments for urban ood inundation models and implications for predictive skill and modeling eciency[END_REF][START_REF] Özgen | Urban ood modeling using shallow water equations with depth-dependent anisotropic porosity[END_REF][START_REF] Özgen | Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[END_REF], isotropic models based on drag coecient or Chezy-Manning laws are used. A number of these models are inspired from formulae on vegetation-induced drag forces. A large body of literature is available for the study of drag forces induced by submerged or emergent vegetation (see e.g. [START_REF] Chapman | Drag force parameters of rigid and exible vegetal elements[END_REF][START_REF] Dena | Mean ow and turbulence in vegetated open channel ow[END_REF][START_REF] Nepf | Drag, turbulence, and diusion in ow through emergent vegetation[END_REF][START_REF] Siniscalchi | Plant patch hydrodynamics in streams: mean ow, turbulence, and drag forces[END_REF]). However, the urban context is very specic in that a strong anisotropy is often observed in terms of building layout, shape and alignment. Isotropic drag formulae are not sucient in such situations. They were generalized into the tensor formulation (16c) in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. A similar tensor formulation is presented in [START_REF] Bruwier | Shallow-water models with anisotropic porosity and merging for ood modelling on Cartesian grids[END_REF], with the simplication that the computational grid is Cartesian and the principal directions of the drag tensor are assumed aligned with those of the grid. As a consequence of this simplication, the drag tensor is very sensitive to the ow directions (see subsection 4.2.4 in [START_REF] Bruwier | Shallow-water models with anisotropic porosity and merging for ood modelling on Cartesian grids[END_REF]). A more general approach has been introduced by Velickovic et al. [START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF]. The tensor formulation arises as a particular case of this approach. Velickovic et al.'s model has the advantage that it allows directions of minimal head loss to be easily incorporated in the drag model, a feature that the tensor formulation does not handle. However, in [START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF], systematic, rened 2D ow simulations over idealized street networks are shown to invalidate all previously proposed drag models (including [START_REF] Velickovic | Steady-ow experiments in urban areas and anisotropic porosity model[END_REF]) when the ow is not aligned with the main directions of the street network.

Lastly, in [START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF], numerical experiments dealing with the propagation of simple waves in idealized urban networks provide evidence for the existence of an additional dissipation mechanism in the rened 2D shallow water solutions. This mechanism is active only under transient conditions involving the propagation of positive waves. It is attributed to the dissipation of shocks and multiple wave reections onto the building walls when a positive ood wave propagates into the urban layout. In contrast with the drag force f D , the transient term f T does not obey an equation of state with respect to the ow variables. It acts on the inertia of the water phase via the dissipation tensor M in Equations (16d-16e).

When the ow is aligned with the main directions of the street network, this dissipation model alone suces to reproduce the momentum losses observed in the rened 2D model [START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF], without the need for additional terms. Attempting to reproduce the eects of the term f T using an articially increased drag coecient only contributes to degrade the accuracy of the porosity solution [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF].

Bearing in mind that all drag models are inaccurate when the ow is not aligned with the main directions of the obstacles, the purpose here is to provide a source term model that provides satisfactory results at least when the ow is aligned with the main directions of the geometry. While intentionally limited, the objective is to propose a model with minimal complexity that allows the main features of the ow to be reproduced. The generalisation of the model to account for arbitrarily complex ow features is clearly beyond the scope of the present work. It is left for future research.

The proposed source term model is assumed to arise from three mechanisms, illustrated by Figure 4. Top: plan view. Bottom: side view.

h D,0 h -h D,0 (a) (b) (c)
The rst mechanism is the transient momentum dissipation mechanism (Figure 4a), active only in the presence of positive waves (rising water levels). Since the dissipation arises from the multiple wave reections against the obstacle walls, the source term takes eect only over the smaller of the two depths h, h D,0 , where h D,0 is the height of the obstacles. The source term (16d) is thus revised

into f T = - min (h, h D,0 ) h M ¢ zs z b ¢ Γ (u.n) udΓ dz -f w (22) 
where the ratio min(h,h D,0 ) h accounts for the fact that the dissipation mechanism is exerted over the depth min (h, h D,0 ), while the momentum source term is applied to the overall water column with height h. Note that The ratio h/h D,0 may be interpreted as the inundation ratio Λ.

The second mechanism stems from the drag forces exerted by the obstacle walls onto the uid. Such drag forces are mainly due to the swirls dissipating energy and the reaction of the obstacle walls onto the water (Figure 4b). Bearing in mind that no satisfactory mathematical model has been proposed so far for this term when the ow is not aligned with the main street axes [START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF], the drag formula (16c) is retained, with the same proportionality ratio as for the transient source term

f D,1 = - min (h, h D,0 ) h ¢ Ω gC D,1 |u| udΩ (23)
The third mechanism is present only when the obstacles are submerged, that is, when the water depth h is larger than the height h D,0 of the obstacles (Figure 4c). Submerged obstacles are assumed to act as a macro-roughness onto the ow layer owing above. The additional drag is induced by the friction onto the top of the obstacles and by the disturbances created by the uneven free surface levels and non-uniform depth-averaged velocity eld. This additional drag term is activated only if the overtopping ow depth h -h D,0 is larger than zero. It is assumed independent of the overowing depth h -h D,0 , proportional to the square of the ow velocity as usual turbulent head loss terms, and scaled by a second drag tensor C D,2

f D,2 = - ¡ Ω gC D,2 |u| udΩ if h > h D,0 0 if h ≤ h D,0 (24) 
The last two mechanisms bear similarities with the multi-stage behaviour of the friction coecient identied in [START_REF] Lawrence | Macroscale surface roughness and frictional resistance in overland ow[END_REF]. Equations (16a-16e) are replaced with Equations [START_REF] Guinot | Consistency and bicharacteristic analysis of integral shallow water models with porosity. Explaining model oversensitivity to mesh design[END_REF][START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] and

f D = f D,1 + f D,2 .

Dierential form

The dierential form of the equations is obtained by applying the divergence theorem to Equations [START_REF] Bruwier | Shallow-water models with anisotropic porosity and merging for ood modelling on Cartesian grids[END_REF][START_REF] Candela | Inuence of surface roughness in hydrological response of semiarid catchments[END_REF]. The integrals in the equation are removed by noticing that the equation holds for all Ω.

Incorporating the pressure force f w at the water-water interface in the ux tensor, grouping the solidwater force f s and the friction term f f into the source term gives

∂ t v + (I -M) ∇.F = s (25a) v =   θ Ω q Ω r Ω   , F =    q Γ r Γ q 2 Γ θΓ + f w,Γ qΓrΓ θΓ qΓrΓ θΓ r 2 Γ θΓ + f w,Γ    , s =   0 ∂ x f s -gθ Ω s f,x ∂ y f s -gθ Ω s f,y   (25b) f w,Γ = ¢ zs,Γ z b φ Γ (ζ) g (z -ζ) dζ (25c)
where q and r are respectively the xand y-components of the unit discharge. The non-conservation form follows

∂ t v + (I -M) A x ∂ x v + (I -M) A y ∂ y v = s (26a) A x = ∂ v f x , A y = ∂ v f y (26b)
where f x and f y are respectively the rst and second column of the ux tensor F. Straightforward algebra yields the following expressions for the IP and DIP closures (see the details in Appendix A)

A x,IP =      φΓ φΩ -θΓ θΩ u Ω θΓ θΩ 0 φΓ φΩ -2 θΓ θΩ u 2 Ω + θΓ θΩ c 2 Ω 2 θΓ θΩ u Ω 0 φΓ φΩ -2 θΓ θΩ u Ω v Ω θΓ θΩ v Ω θΓ θΩ u Ω      (27a) A x,DIP =     0 1 0 θΓ θΩ c 2 Ω -φΓ φΩ θ 2 Ω θ 2 Γ u 2 Ω 2 θΩ θΓ u Ω 0 -φΓ φΩ θ 2 Ω θ 2 Γ u Ω v Ω θΩ θΓ v Ω θΩ θΓ u Ω     (27b) c Ω = g θ Ω φ Ω 1 2 (27c)
The eigenvalues of the matrices are (see Appendix A)

λ (p) IP = 1 2 φ Γ φ Ω + θ Γ θ Ω u Ω + (p -2) 1 4 φ Γ φ Ω - θ Γ θ Ω u 2 Ω + θ Γ θ Ω 2 c 2 Ω 1 2 , p = 1, 3 (28a) λ (2) 
IP = θ Γ θ Ω u Ω (28b) λ (p) DIP = θ Ω θ Γ u Ω + (p -2) θ Ω θ Γ 2 1 - φ Γ φ Ω u 2 Ω + θ Γ θ Ω c 2 Ω 1/2 , p = 1, 2, 3 (28c) 
These formulae are generalizations of the wave speed formulae given in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. Assume indeed that both

φ Ω and φ Γ are independent of z. Then, φΓ φΩ = θΓ θΩ and the above equations simplify to

λ (p) IP = φ Γ φ Ω (u Ω + (p -2) c Ω ) , p = 1, 2, 3 (29a) λ (p) 
DIP = φ Γ φ Ω u Ω + (p -2) φ Ω φ Γ φ Ω φ Γ -1 u 2 Ω + φ Γ φ Ω c 2 Ω 1/2 , p = 1, 2, 3 (29b) 
that are the wave speed formulae derived in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. Another simplication arises when φ Γ (z) = φ Ω (z) ∀z.

Then,

λ (p) IP = λ (p) DIP = u Ω + (p -2) c Ω , p = 1, 2, 3 (30) 
and the wave propagation speeds of the SP equations are obtained.

3 Numerical aspects

Finite volume discretization

The governing equations are discretized using an unstructured nite volume grid. A rst-order time splitting procedure [START_REF] Strang | On the construction and comparison of dierence schemes[END_REF][START_REF] Toro | Riemann solvers and numerical methods for uid dynamics[END_REF] is used, with the following solution sequence [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] v

n+1 i = SMHv n i ( 31 
)
where v n i is the averaged variable vector over the computational cell i at the time level n, H, M and S are respectively the hyperbolic operator, the momentum dissipation tensor in Equations (16d, 16e) and the friction/building drag operator. The application of the momentum dissipation operator M is straightforward. The bottom and drag source term operator uses an unconditionally stable, linearised approach presented in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] and are not detailed here.

The terms accounted for by the operator H are the mass and momentum uxes, as well as the geometric source term f s under the form [START_REF] Dena | Mean ow and turbulence in vegetated open channel ow[END_REF]:

Hv n i = ∆t A i j∈N (i) W ij F ij n ij + (f s ) ij,i (32) 
where A i is the plan view area of the computational cell i, N (i) is the set of neighbour cells of the cell i, the subscript ij denotes the interface between the cells i and j, W ij , F ij and n ij are respectively the width, the ux tensor and the normal unit vector for the interface ij. (f s ) ij,i is the part of the geometric source term f s distributed to the cell i in the momentum balance process. The ux tensor and the source term are computed in a local coordinate system attached to the interface. In such a coordinate system, the problem is one-dimensional with respect to the normal direction to the interface. The ux F ij is computed as the solution of a Riemann problem. The approximate HLLC formulation [START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF] is used. The following ux formulae are obtained (see Appendix B for a detailed derivation)

q ij = φ Γ,R λ + q L -φ Γ,L λ -q R φ Γ,R λ + -φ Γ,L λ -- φ Γ,L λ -φ Γ,R λ + φ Γ,R λ + -φ Γ,L λ -(z s,Γ,L -z s,Γ,R ) (33a) M ij = λ + M L -λ -M R λ + -λ - - λ + λ - λ + -λ -(q L -q R ) (33b) (qv) ij = q ij + |q ij | 2 v L + q ij -|q ij | 2 v R (33c) φ Γ,S = φ Γ,ij (z s,Γ,S ) , S = L, R (33d) 
where the subscripts L and R denote the left and right states of the Riemann problem. The speeds λ ± are computed using Davis's wave speed estimates [START_REF] Davis | Simplied Second-order Godunov-type methods[END_REF]. Equations (33a, 33b) are obtained from the HLL relationships, while Equation (33c) stems from the contact surface restoration method [START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF] that contributes to minimize numerical diusion. In the numerical implementation of the method, both the rst-order, Godunov approach [START_REF] Godunov | A dierence method for numerical calculation of discontinuous equations of hydrodynamics[END_REF] and the MUSCL-EVR reconstruction [START_REF] Soares-Frazão | An eigenvector-based linear reconstruction scheme for the shallow water equations on two-dimensional unstructured meshes[END_REF] are implemented. Note that formulae (33a-33d) full the so-called C -property [START_REF] Bermudez | Upwind methods for hyperbolic conservation laws with source terms[END_REF] (z s,Γ

) L = (z s,Γ ) R q L = q R = 0 ⇒ q ij = 0 M ij = M L = M R (34)
that is, the preservation of equilibrium states.

Porosity law discretization

The laws φ D (z) (D = Ω, Γ) are discretized with an arbitrary level of accuracy as follows. Assume that the law φ (z) is known (the subscript D is dropped for the sake of readability). A sample law is illustrated by the dashed line on Figure 5a. Integrating φ with respect to z yields the law θ (z) (solid line on Figure 5b). The law θ (z) is tabulated using N points z tab i , θ tab i , i = 1, . . . , N (Figure 5b). The tabulated values for θ are dened so as to preserve mass conservation, θ tab i = θ z tab i . Approximating the tabulated θ function with a piecewise linear law, using z = ∂ z θ gives:

θ tab (z) =      0 if z < z tab 1 θ tab i + θ tab i+1 -θ tab i z tab i+1 -z tab i z -z tab i if z tab i ≤ z < z tab i+1 θ tab N if z tab N ≤ z (35a) φ tab (z) =      0 if z < z tab 1 φ tab i = θ tab i+1 -θ tab i z tab i+1 -z tab i if z tab i ≤ z < z tab i+1 φ tab N = φ z tab N if z tab N ≤ z (35b)
The tabulated porosity law φ tab(z) is thus piecewise constant, as shown on Figure 5a (bold line). The tabulated value φ tab i is equal to the average value of the exact function φ (z) over the interval z tab i , z tab i+1 . This approach has the advantage that the tabulated law θ tab (z) is exact for the N values of z=z tab i . The accuracy of the tabulated laws is limited only by the number N of discretization levels.

Compared to previously presented approaches [START_REF] Volp | A nite volume approach for shallow water ow accounting for high-resolution bathymetry and roughness data[END_REF][START_REF] Özgen | Urban ood modeling using shallow water equations with depth-dependent anisotropic porosity[END_REF][START_REF] Özgen | Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[END_REF], the accuracy of the discretization can be adapted to the complexity of the geometry. Moreover, non-monotone φ (z) functions can be dened. The inuence of the number N of tabulation entries is illustrated by Figure 6. A hypothetical, piecewise linear law φ (z) is generated using a random distribution for 28 couples (z, φ) (dots on Figure 6, left) and connecting these points with straight lines. The resulting φ tab (z) law is illustrated by the solid line on the (φ, z) graph. The corresponding exact law θ (z) and the tabulated law θ tab (z) are shown on Figure 6, right-hand side (θ, z) graphs. The following values are used for N : N = 5 (Figure 6, top), N = 9 (Figure 6, middle) and N = 15 (Figure 6, bottom). While N = 5 yields a crude approximation of the true law φ (z), it allows for a fairly accurate discretization of the law θ (z), except in the neighbourhood of the inection point of φ. With N = 9, the law θ (z) is approximated with satisfactory accuracy, while the tabulated porosity law φ tab (z) is inaccurate only in the central part of the discretization interval. N = 15 yields a very good approximation for both φ and θ. For practical applications, 5 ≤ N ≤ 10 might appear as a satisfactory trade-o between computational eciency and accuracy. This point is illustrated by test cases presented in Section 4. The purpose of this test is to assess the inuence of the tabulated porosity laws on the accuracy of the computational solution. The Riemann, initial value problem is solved for a triangular cross-section (Figure 7). The storage and conveyance porosities are identical, linear functions of the elevation

f z q z z i tab q i tab z 1 tab z i+1 tab q i+1 tab z i tab z i+1 tab f i tab (a) (b) 
φ Ω (z) = φ Γ (z) = tan α 2 z z max = φ max z z max (36a) z s (x, 0) = z L if x < x 0 z R if x > x 0 (36b)
The analytical solution is made of a region of constant state connected to the left and right states by a rarefaction wave and a shock respectively. The water depth h * and the ow velocity u * in the intermediate region of constant state satisfy the following 3 × 3 non-linear system:

u * + 4c * = 4c L (37a) h 2 u * = h 2 * -h 2 R s (37b) h 2 u 2 2 + g 6 h 3 * - g 6 h 3 R = h 2 u 2 * s (37c)
where c = (gh/2)

1/2
is the propagation speed of waves in still water for a triangular channel and s is the speed of the shock wave. Equation (37a) stems directly from the Riemann invariant u + 4c across the wave dx/dt = u + c [START_REF] Guinot | Wave propagation in uids[END_REF]. Equations (37b-37c) are the Rankine-Hugoniot conditions for mass and momentum respectively. Solving the above system for (h * , u * , s) yields the solution

-c L h h L h R x/t h* s z a
h (x, t) =        h L if -x t ≤ -c L 2c 2 (x/t) g if -c L ≤ x t < u * -c * h * if u * -c * ≤ x t < s h R if s < x t (38a) u (x, t) =        0 if -x t ≤ -c L 4 5 c L + x t if -c L ≤ x t < u * -c * u * if u * -c * ≤ x t < s 0 if s < x t (38b) c x t = 1 5 4c L - x t (38c)
Since the functions φ Γ (z) and φ Ω (z) are identical, the IP and DIP closures give identically u Γ = u Ω , thus yielding the same numerical results. The solution is shown on Figure 8 for the parameter set in The inuence of N is clearly visible on Figure 8. For N = 5, the water depth and velocity proles in the rarefaction wave clearly exhibit sudden slope variations as the free surface elevation prole crosses the tabulated levels z tab i . While the analytical solution is smooth, the strong porosity variations across the tabulated water levels induce strong variations in the derivatives of the ux functions, hence the slope breaks observed in the numerical proles. For N = 10, the numerical prole becomes smoother and closer to the analytical solution. For N = 20, the numerical water depth and velocity proles are smooth and in very good agreement with the analytical solution. The reader's attention is drawn to the accuracy of the numerical solution in the intermediate region of constant state. For N = 5 and N = 10, the water depth is signicantly overestimated compared to the analytical one. This could be expected because, with the parameters in Table 1, h * = 2.505m. For N = 5, the shock is captured by only two tabulated levels. For N = 10, only 3 tabulation levels are used to span the range [0m , 2.5m]. With N = 20, there is a tabulation level every 50 cm, and h * is captured by 6 tabulation levels. Therefore, the storage function θ (z) and the pressure function f w,Γ are signicantly better described with N = 20 than with N = 5 or N = 10, hence a more accurate estimation of the shock speed. It should also be noted that, for N = 20, the location of the numerical shock is wrong by approximately 4 computational cells. However, with h * ≈ h L /4 and the triangular shape of the channel, θ (h * ) ≈ θ (h L ) /16 and the error in the location of the shock is equivalent to an error of less than 1/4 cell in the initial location of the discontinuity.

Test 2: dambreak in a compound channel

The purpose is to assess the validity of the depth-dependent porosity approach to model transients in the presence of two-dimensional ow patterns. A frictionless dambreak problem is simulated in a compound channel comprising a rectangular main channel of width W 1 and depth h 0 and a ood plain of width W 2 (Figure 9). The parameters of the test case are given in Table 2. This conguration is similar to that presented in [START_REF] Volp | A nite volume approach for shallow water ow accounting for high-resolution bathymetry and roughness data[END_REF], with the dierence that no transient analysis is reported in [START_REF] Volp | A nite volume approach for shallow water ow accounting for high-resolution bathymetry and roughness data[END_REF].

Two dierent values are considered for the downstream water level z R . In the rst conguration (Test 2a), z R =0.5 m is four times as small as the height of the main channel. This is expected to trigger The breaking of the dam is rst simulated over 50 seconds by solving the two-dimensional shallow water equations over a 2.5m × 2.5m square grid using the second-order MUSCL-EVR scheme [START_REF] Soares-Frazão | An eigenvector-based linear reconstruction scheme for the shallow water equations on two-dimensional unstructured meshes[END_REF].

Since only half of the channel is meshed from symmetry considerations, the computational mesh counts 16,000 cells. Figure 10 shows the simulated free surface at t = 50s. The dierence between the speeds of the advancing fronts in the main channel and over the oodplain is clearly visible. x/t (ms -1 ) Overall, the DDP model provides a satisfactory, large scale description of the free surface and unit discharge proles obtained from the shallow water model. For Test 2a, however, the DDP model underestimates the smearing of the shock in the averaged 2D solution. The ratio of the 2D to DDP shock width is between 2 and 3. This is identically true for t = 10s (Figure 11, top) and t = 50s (Figure 11, bottom). The reason for shock smearing is easy to identify: the shock travels at dierent speeds in the main channel and the oodplain. Part of the water in the oodplain spills into the main channel, as can be seen on Figure 10. As a result, the free surface in the oodplain exhibits a milder shock prole than it would if there was no exchange with the main channel. This interpretation is conrmed by the examination of Test 2b (Figure 12). In this conguration, owing to the higher downstream water level (z R = 2.5m), the exchange between the oodplain and the main channel is limited and the shock remains sharper.

φ Γ (z) = φ Ω (z) = W1 W2 if 0 < z < h 0 1 if z > h 0 (39) 

Test 3: urban dambreak problem

The purpose of this test, originally proposed in [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF], is to investigate the accuracy of the domainboundary closure models. It has been used to check the validity of the SP, IP and DIP closures (17a-19b) in a number of publications [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Consistency and bicharacteristic analysis of integral shallow water models with porosity. Explaining model oversensitivity to mesh design[END_REF][START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF][START_REF] Özgen | Urban ood modeling using shallow water equations with depth-dependent anisotropic porosity[END_REF]. It has also been used to validate the transient momentum dissipation term embedded in the DIP model [START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. The IP closure has been reported to yield underestimated wave propagation speeds with respect to those of the rened ow solutions [START_REF] Guinot | Multiple porosity shallow water models for macroscopic modelling of urban oods[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF][START_REF] Özgen | Urban ood modeling using shallow water equations with depth-dependent anisotropic porosity[END_REF]. The DIP closure allows the accuracy of the porosity model solution to be improved to a large extent [START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. However, in all the abovementioned references, the urban dambreak problem has been applied using depth-independent porosity functions. Even in the depth-dependent integral porosity model proposed in [START_REF] Özgen | Urban ood modeling using shallow water equations with depth-dependent anisotropic porosity[END_REF], the building blocks in the simulation are made taller than the maximum water depth. This does not allow the closure to be tested over the full range of possible ow congurations. For this reason, the present urban dambreak problem involves ow congurations where the buildings are submerged by the water wave, at least over part of the domain. This conguration also allows the proposed momentum source term models to be tested and their relevance to be assessed.

The geometry is illustrated by Figure 13 (Table 3). An idealized neighbourhood made of equally spaced, square buildings is generated. The street width and building width are taken identical, equal to l/2, where l is the spatial period. The height of the buildings is h D,0 . The bottom is horizontal, friction is neglected. The water depths on the left-and right-hand sides of the dam are denoted by h L and h R respectively (Table 4). Using symmetry considerations, only half a period is meshed in the transverse direction. The rened 2D shallow water model uses 1m×1m square cells, for a total 20,000 cells in the model. In contrast, the DDP model uses 20m × 20m cells, with the following depth-dependent porosity laws:

φ Ω (z) = Since the laws φ Γ (z) and φ Ω (z) are dierent, the IP and DIP closures give dierent numerical results. Figure 14 provides a comparison between the rened two-dimensional model results and those

3 4 if z < h D,0 1 if z > h D,0 (40a) φ Γ (z) = 1 2 if z < h D,0 1 if z > h D,0 (40b) z h L h R x l/2 l 0 h D,0
given by the DDP model. The results of the 2D model are averaged over the computational grid of the DDP model [START_REF] Kim | Urban ood modeling with porous shallow-water equations: A case study of model errors in the presence of anisotropic porosity[END_REF]. The transient source term (16d, 16e) in the DDP model is calibrated so as to achieve the best trade-o between shock speed and post-shock water depths. Since the ow is parallel to the x-axis, µ y = µ yy = 0 and only µ xx is to be calibrated. The calibrated values are given in Table 5. Note that the building height h D,0 is used in Equation ( 24 θu (m 2 s -1 )

x/t (ms -1 ) Test 3d The following conclusions can be drawn. First, the IP closure consistently yields underestimated shock speeds, overestimated water depths behind the shock and overestimated unit discharge proles.

For this reason, µ xx is consistently set to zero for this closure because a non-zero µ xx would increase the post-shock water depth and reduce the shock speed even further. This feature of the IP closure was already known from test involving depth-independent porosity elds [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. Second, the DIP closure yields signicantly improved water depths and unit discharge proles compared to the IP closure.

However, while the average water depth proles can be reconstructed with a satisfactory accuracy, the unit discharge proles are overestimated by approximately 20% (against more than 50% with the IP closure). It must be noted however that in Tests 3c-d, the DIP model provides less accurate unit discharge proles than in Tests 3a-b. Since the depth-dependent drag term is active in Tests 3a-b and inactive in Tests 3c-d, it may be argued that the transient source term model is inecient and that the better agreement obtained with Tests 3a-b is only due to the activation of the depth-dependent drag term, that provides an additional degree of freedom for model calibration.

To answer this question, a sensitivity analysis to the structure of the model is carried out. Figure 15 shows the water depths and unit discharge proles obtained for Test 3a in the following four congurations. The proles on Figure 15a allows correct proles to be obtained and the two source term models must be combined in order to reconstruct the rened model solution accurately. Lastly, the relevance of the threshold h D,0 in Equation ( 24) is checked. Figures 15i-j show the optimal proles obtained by setting h D,0 = 0 in the equation. In other words, the drag term is applied at all points, regardless of the respective positions of the free surface and the top of the obstacles. With the optimal value C D,2 = 5 × 10 -3 , the model successfully reproduces the maximum value of the unit discharge prole and a correct shock location.

However, as far as the water depth prole is concerned, the variations in the curvature of the prole is not reproduced accurately. Concerning the unit discharge prole, the slope break in the upstream part of the rarefaction wave is missed. The unit discharge is consistently underestimated in the downstream part of the prole.

As a conclusion of this sensitivity analysis, only the combination of the transient source term model ( 22) and the threshold-based drag model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF] allows accurate solutions to be achieved. Dropping any of the features of these two models yields substantial errors in the solutions. test is adapted from that originally presented in [START_REF] Özgen | Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[END_REF]. While the test presented in [START_REF] Özgen | Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[END_REF] uses a sinusoidal topography, the bottom geometry used in the present test follows an asymmetric sawtooth prole with height h 0 and wavelength l (Figure 16, Table 6). This test is instrumental in assessing the ability of the DDP model to model ows over series of furrows, as in the single, depth-dependent porosity model used in [START_REF] Viero | Modeling anisotropy in free-surface overland and shallow inundation ows[END_REF].

Two dierent bottom level functions are dened:

z b,1 (x) = mod x l , 1 h 0 (41a) z b,2 (x) = mod - x l , 1 h 0 (41b)
With function z b,1 the sawtooth discontinuity faces the direction of positive x, while it faces the direction of negative x with function z b,2 . These two bottom proles are described by the same depthdependent porosity functions:

φ Ω (z) = max 0, min 1,

z h 0 =    0 for z ≤ 0 z h0 for 0 ≤ z ≤ h 0 1 for z ≥ h 0 (42a) φ Γ (z) = H (z -h 0 ) = 0 for z ≤ h 0 1 for z > h 0 (42b)
where H () is Heaviside's step function. The initial conditions are given by Equation (36b). Four congurations are tested (see Table 7).

Symbol

In congurations 4a and 4c the combination (z L , z R ) is such that the ow remains subcritical at all points. In congurations 4b and 4d, the water level on the right-hand side of the discontinuity is equal to the elevation of the crest of the sawtooth, therefore the top of the sawtooth is dry and part of the rarefaction wave is supercritical. Congurations 4a-b use the bottom elevation prole z b,1 (x), while congurations 4c-d use the prole z b,2 (x).

Test The DDP model is used with the IP and DIP closures. The drag coecient C D,1 and the momentum dissipation coecient µ xx are calibrated so as to obtain an optimal t of the front speed against the period-averaged output of the rened two-dimensional shallow water model (Table 8). The resulting average water depth and unit discharge proles computed at T = 5 s are shown on Moreover, the unit discharge prole exhibits a plateau in Test 4a, while it slightly decreases with (x/t) in Test 4c. However, from a macroscopic point of view, the two congurations z b,1 (x) an z b,2 (x) (41a, 41b) are described by exactly the same porosity functions (42a, 42b). This shows that (i) the porosity alone is not a sucient descriptor of the subgrid-scale feature of the ow eld, (ii) dierent momentum source terms model may be needed depending on the direction of the ow with respect to the topographical/geometric uctuations on the subgrid scale.

z b (x) function z L z R 4a z b,1 (x) 0.2 m 0.1 m 4b z b,1 (x) 0.2 m 0.05 m 4c z b,2 (x) 0.2 m 0.1 m 4d z b,2 (x) 0.2 m 0.05 m
0.0 0.2 -2 0 2 h, θ (m) 
x/t (ms -1 ) Test 4a

2D DDP + IP DDP + DIP 0.0 0.1 -2 0 2 hu, θu (m 2 s -1 )
x/t (ms -1 )

Test 4a 0.0 0.2 -2 0 2 h, θ (m) 
x/t (ms -1 )

Test 4b 0.0 0.1 -2 0 2 hu, θu (m 2 s -1 )
x/t (ms -1 )

Test 4b 0.0 0.2 -2 0 2 h, θ (m) 
x/t (ms -1 )

Test 4c 0.0 0.1 -2 0 2 hu, θu (m 2 s -1 )
x/t (ms -1 )

Test 4c 0.0 0.2 -2 0 2 h, θ (m) 
x/t (ms -1 )

Test 4d 0.0 0.1 -2 0 2 hu, θu (m 2 s -1 )
x/t (ms -1 ) Test 4d Lastly, one may question the method of calibrating the model via the coecient µ xx , while the drag coecient C D,2 is set to zero in all four congurations. That the best t would be achieved by tuning µ xx was unexpected. In the light of Subsection 2.5, the eect of the roughness induced by the sawtooth bottom prole should be expected to be accounted for by the obstacle overow drag coecient C D,2 .

However, calibrating the porosity model using this coecient is seen to be inecient: the drag term f D,2 fails to reconstruct the water depth and unit discharge proles of the period-averaged rened 2D model. This is illustrated by Figure 18. On this gure, µ xx is set to zero in the DDP-DIP model, while three dierent values (namely 0.1, 0.5 and 1.2) are used for C D,2 . While increasing C D,2 yields a more accurate shock speed, it does not allow a correct shape to be recovered for the water depth prole. Moreover, the unit discharge is reduced dramatically compared to the solution computed by the rened 2D model.

0.0 0.2 -2 0 2 h, θ (m) 
x/t (ms -1 ) 

Test 4b 0.0 0.1 -2 0 2 hu, θu (m 2 s -1 ) x/t (ms -1 ) Test 4b 2D C D,2 = 0.1 C D,2 = 0.5 C D,2 = 1.2

Test 5: wave propagation in a meandering channel

The fth test consists in simulating the propagation of a surge wave in a meandering channel with sharp bends. The purpose is to check the discretization of boundary conditions and the ability of the model to take into account the inuence of abrupt direction changes in the ow geometry. Such channels are found in e.g. coastal lagoons. In such systems, the connection dynamics between two given lagoons, or between the lagoons and the sea, may be primarily driven by such channels [START_REF] Boutron | An unstructured numerical model to study wind-driven circulation patterns in a managed coastal mediterranean wetland: the Vaccarès lagoon system[END_REF][START_REF] Ferrarin | Hydrodynamic modeling of a coastal lagoon: the Cabras lagoon in Sardinia, Italy[END_REF].

A similar test was presented in [START_REF] Volp | A nite volume approach for shallow water ow accounting for high-resolution bathymetry and roughness data[END_REF], with water owing in a U-bend. However, in [START_REF] Volp | A nite volume approach for shallow water ow accounting for high-resolution bathymetry and roughness data[END_REF] only a single bend was modelled, with a smooth geometry. In the present test, the bends are intentionally made sharp, so as to induce more complex ow patterns than with a smooth geometry. A two metre wide channel with 45 degrees and 90 degrees bends is dened, with the geometry shown on Figure 19. The bottom is at, motion is assumed frictionless. The water is initially at rest, with a uniform water level z 0 . At t = 0, the water level at the upstream end of the channel (left-hand side of the sketch on Figure 19) is set instantaneously to z us . The water level at the downstream end (right-hand side of the sketch) is kept to the constant value z ds = z 0 . The parameters of the test case are given in Table 9. Two models are built using two dierent meshes. The rst model uses a high-resolution mesh to solve the two-dimensional shallow water equations. The channel is meshed by 20 cells across (Figure 20, top). The second model uses the DDP approach, and the mesh cells are three times as wide as the actual channel (thus 6 metres instead of 2 metres, see Figure 20, bottom), with both the storage and connectivity porosities set to 1/3:

φ Ω (z) = φ Γ (z) = 0 if z < z b 1 3 if z ≥ z b (43) 
Multiplying the cell size by 3 compared to the actual size of the channel allows the number of cells used to mesh the model to be divided by 3 while keeping the cells as close to square cells as possible, a key issue to minimize numerical diusion. Six points are dened in the middle of the six rectilinear reaches of the channel (see Figure 19).

They are labelled from M1 to M6. Figures 21 and22 show the free surface elevations and the unit discharges computed at these points from t = 0 to t = 300 s. The DDP model is very successful in reproducing the variations in the water levels computed by the rened 2D model (Figure 21). Quite expectedly, the coarse grid of the DDP model yields a smoother z s (t) signal than that of the rened 2D model. This is explained by the much coarser grid and the inevitable numerical diusion, that has 

Model CPU performance

The present subsection is devoted to an analysis of the CPU time gain provided by the DDP model over the rened 2D models used in Tests 1 to 5. All simulations were on an i7-core(TM) processor with 16GB RAM and 2.5GHz frequency. 

Experimental and model setup

In this section the depth-dependent porosity model is tested against an experimental data set involving topography submersion. The experiment consists in simulating the eect of a tsunami wave on an urban area next to the shoreline. The experiment is described in detail in [START_REF] Park | Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum ux[END_REF], only an overview is given here for the sake of conciseness. The experiment reported in [START_REF] Park | Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum ux[END_REF] is simulated using two models. The rst is the classical twodimensional shallow water model with a detailed meshing of the geometry. The second is the proposed DDP-DIP model, with a much coarser mesh (the computational cells may be bigger than some of the buildings). The purpose is to assess (i) whether the depth-dependent porosity model is able to reproduce the experimental results satisfactorily, and (ii) the amount of information lost by the DDP model compared to the more detailed shallow water model. Table 11 gives the main characteristics of the two meshes. The DDP model has almost 30 times as few cells as the shallow water model. Figure 24 shows a zoomed view of the ne mesh within the urban area. The main streets are meshed using 5 to 10 cells across. Since the buildings may be submerged, they are included in the mesh. A single (φ Ω (z) , φ Γ (z)) law pair is dened for each of the 16 polygons. This (φ Ω (z) , φ Γ (z)) pair is applied to all the cells and interfaces that belong to the polygon. Since the building roofs are almost at, the φ (z) laws are dened as piecewise constant. φ is constant from the ground level to the roof level. Above the roof level, it is equal to unity. The values of φ Ω and φ Γ are obtained by measuring the areas and base lengths of the buildings on the edges of the polygons. Subtracting these areas and lengths from those of the polygons yield the storage and connectivity area. Normalizing by the polygon area and perimeter yields the φ Ω (z) and φ Γ (z) laws. Note that using a uniform (φ Ω (z) , φ Γ (z)) law pair over predened polygons is not the only possible way of deriving the porosity laws. For depthindependent integral porosity models, the building footprint approach is more often used (see e.g. [START_REF] Schubert | Building treatments for urban ood inundation models and implications for predictive skill and modeling eciency[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]). In the present study, the uniform law pair approach was preferred for the following reasons.

Item

Firstly, the building footprint approach is known to induce signicant mesh dependency when the connectivity porosity eld is not uniform [START_REF] Guinot | Consistency and bicharacteristic analysis of integral shallow water models with porosity. Explaining model oversensitivity to mesh design[END_REF]. The piecewise uniform porosity approach minimizes this issue. Secondly, the purpose was also to assess the inuence of the resolution of the porosity eld on model accuracy. Two meshing approaches were used for this. The rst consists in including the main streets within the porosity polygons. This is the case with gauges A1-6 (Figure 26). The second approach consists in excluding the main streets from the porosity polygons, as done with the streets B1-6 and C1-6 in Figure 26. In the streets, depth-independent, unity porosity values are used.

The rst approach induces milder meshing constraints than the second one, but is expected to be less accurate in predicting point values of the ow eld. Indeed, the porosity approach is known to be ecient in simulating averaged ow elds over spatial extents at least as large (if not larger) than the building period [START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF].

Model results and performance

In the experiment reported in [START_REF] Park | Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum ux[END_REF], the movement of the wave maker started at t = 15 s. Therefore, the time interval [0 s, 15 s] was not simulated and the simulation period is [15 s, 40 s]. Bearing in mind the 1:50 scale and assuming Froude similarity, the simulated 25 s would correspond to 25×50 1/2 = 177 s for the full scale transient. Table 12 gives the CPU times for the rened 2D and DDP models. The CPU time ratio between the two is over 70. The Manning friction coecient was calibrated in the rened 2D model so as to obtain the best possible t with the experimental water depth time series. The optimal value was found to be n M = 10 -3 m 1/3 s -1 , which is approximately 20 times as small than typical Manning coecient values in urban areas. It should be kept in mind however that (i) the magnitude of ow velocities, water depths and transient durations involved in the present experiment are much smaller than those of typical full scale events, (ii) the friction factor reported in [START_REF] Park | Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum ux[END_REF] is commensurate with such Manning values. The friction formula used in [START_REF] Park | Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum ux[END_REF] involves a quadratic function of the ow velocity for the shear stress [START_REF] Kim | A depth-integrated model for weakly dispersive, turbulent, and rotational uid ows[END_REF]. Identifying this model with the Manning bottom friction model yields:

f 4ρ u u = gh -1/3 n 2 M u u =⇒ n M = f h 1/3 4ρg 1/2 (44) 
where f is the friction factor and ρ is the water density. In [START_REF] Park | Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum ux[END_REF], the optimal values for f are reported to be in the range from 10 -3 to 10 -2 . With typical h values of 0.1 m, this corresponds to n M values ranging from 10 -4 to 3 × 10 -4 m 1/3 s -1 . This is even smaller than the optimal n M value found for the rened 2D model. However, the model used in [START_REF] Park | Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum ux[END_REF] incorporates dispersive stresses that are not accounted for in the shallow water model. This may explain the dierence between the two models.

The calibrated n M = 10 -3 m 1/3 s -1 was used directly in the DDP model. Another point worth noting is that the porosity model results were found insensitive to the momentum dissipation coecient. This is attributed to the small velocities generated by the transient. Figure 27 shows the simulation results at six locations. Gauges A1 and A6 are located along a main street that is not meshed explicitly in the DDP model. In contrast, gauges B1, B6, C1 and C6 are located in two streets accounted for explicitly in the porosity model mesh. Gauges A1, B1 and C1 are located within the front row of buildings, while gauges A6, B6 and C6 are located well into the urban area. The Following conclusions can be drawn from the gure.

Firstly, both the rened 2D and the porosity model overestimate the propagation speed of the incoming wave. The simulated wave arrives at gauges A1-C1 1 s to 1.5 s earlier than the recorded wave. This could be attributed to the shallow water model, that fails to incorporate the dispersive stresses induced by non-hydrostatic eects. However, a similar shift is observed in the water depth simulated by the non-hydrostatic COULWAVE model (see e.g. Figure 7 in [START_REF] Park | Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum ux[END_REF]). Another explanation for this is that the z s (t) boundary condition supplied at the Western boundary of the model is not accurate enough owing to non-hydrostatic eects. Secondly, the accuracy of the porosity model is similar to that of the rened 2D model. The only exception is Gauge B6, where the water depth is strongly underestimated by the DDP model. The reason for this was found to be an overestimated ow into the lateral streets in the neighbourhood of gauge B6. This shows the limitations of assigning uniform porosity laws over large areas.

Thirdly, the water levels simulated by the porosity model at gauges A1 and A6 are surprisingly accurate considering that the street A1-6 is not meshed explicitly. This is all the more surprising as comparing the results of the porosity model (that results from an averaging) to point values is known to induce errors [START_REF] Kim | Urban ood modeling with porous shallow-water equations: A case study of model errors in the presence of anisotropic porosity[END_REF]. This is interpreted as a conrmation that major urban axes may be included in porosity models without degrading signicantly the accuracy of the simulations.

Discussion

The tests presented in Sections 4-5 illustrate the potential of the DDP model to account for the large scale features of shallow water ows in the presence of complex geometries. As far as ood hazard mapping is concerned, however, the pore scale averaged values of the ow variables provide an incomplete insight into the actual distribution of the ood risk. Maximum risk is usually encountered at points of large water depths and/or large ow velocities. Flood hazard mapping thus requires an assessment not only of the average ow elds, but also of extreme ow eld values on the local scale x/t (ms -1 ) Test 3d 

Conclusions

A depth-dependent porosity model has been presented. Compared to similar models previously presented in the literature [START_REF] Dena | Two-dimensional shallow ow equations for partially dry areas[END_REF][START_REF] Viero | Modeling anisotropy in free-surface overland and shallow inundation ows[END_REF][START_REF] Özgen | Urban ood modeling using shallow water equations with depth-dependent anisotropic porosity[END_REF][START_REF] Özgen | Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[END_REF], the proposed model has the following features.

(i)

The ux closure model between the domain-and the boundary-based ow variables uses the DIP closure proposed in [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF], while the previously published DDP models use either the Single Porosity (SP) closure [START_REF] Dena | Two-dimensional shallow ow equations for partially dry areas[END_REF][START_REF] Viero | Modeling anisotropy in free-surface overland and shallow inundation ows[END_REF] or the Integral Porosity (IP) closure [START_REF] Özgen | Urban ood modeling using shallow water equations with depth-dependent anisotropic porosity[END_REF][START_REF] Özgen | Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[END_REF].

When used in depth-independent porosity models, the DIP closure is known to be more accurate than the SP and IP laws [START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF][START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. The computational examples presented in the present paper allow this conclusion to be extended to depth-dependent porosity models.

Compared to the depth-independent closure, the depth-dependent DIP closure requires an energy-based limiting of the ow velocity as the connectivity porosity tends to zero.

(ii) Obstacle-induced drag forces are broken into two terms. The rst is due to the drag forces induced by the lateral walls of the obstacles, and acts only on the part of the ow that is lower than the height h 0 of the obstacles. The second is due to the friction and energy losses induced by the top of the obstacles when these are submerged. Consequently, it is not active at all times. Test 3 shows that this term is essential to an accurate reconstruction of the pore scale-averaged ow elds in the presence of submerged obstacles.

(iii)

The DDP model also incorporates the transient momentum dissipation term f T rst introduced in the depth-independent DIP model [START_REF] Guinot | Dual integral porosity shallow water model for urban ood modelling[END_REF]. This term is seen to be essential to a correct reconstruction of the ow elds computed by rened 2D models. This transient momentum dissipation mechanism was initially proposed to account for the energy dissipation triggered by positive waves owing between series of obstacles. However, Test 4 shows that this mechanism is also more ecient than drag coecient-based models in reproducing the energy losses caused by the sawtooth-shaped microtopography. This can be attributed to Future research includes several paths. The rst is obviously the parametrization of the models for the terms f D,1 , f D,2 and f T . While the models presented in Subsection 2.5 allow for a successful modelling of the large scale ow elds (see Section 4), how they should be parameterized as functions of the subgrid-scale geometric properties is still unclear. As a result, the drag and momentum dissipation tensors must be calibrated. Simulation bases such as that presented in [START_REF] Guinot | A critical assessment of ux and source term closures in shallow water models with porosity for urban ood simulations[END_REF] should be extended so as to allow for the parametrization of these energy dissipation models, thus eliminating the need for calibration. The second research path concerns the modelling of bottom friction. The Chezy-Manning-Strickler approach remains widely popular. However, experimental studies involving complex topographies and small depths indicate that alternative models, such as Reynolds-dependent friction models [START_REF] Fraga | Experimental study of the water depth and rainfall intensity eects on the bed roughness coecient used in distributed urban drainage models[END_REF], might be more appropriate. For applications in natural environments, drag models incorporating vegetation mechanical properties [START_REF] Kouwen | Flow retardance in vegetated channels[END_REF][START_REF] Wilson | Measuring the ow resistance of submerged grass[END_REF] will be needed too. Test 4 also shows that, for a given ow direction, the drag term may change as the ow is reverted. As illustrated by Section 5, a third research path should be devoted to the development of subgrid-scale models, that will allow the subgrid-scale features of the ow to be inferred from the large scale ow elds computed by the DDP models. 
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 1 Figure 1: Depth-dependent porosity. Denition sketch for two dierent free surface proles.

Figure 2 :

 2 Figure 2: Momentum balance. Denition sketch for a given elevation z.

Figure 3 :

 3 Figure 3: Pressure force balance. Denition sketch.

Figure 4 :

 4 Figure 4: The three momentum dissipation mechanisms. a: Transient, positive wave dissipation (term f T ). b: drag induced by obstacle walls (term f D,1 ). c: drag induced by obstacle overow (term f D,2 ).

Figure 5 :

 5 Figure 5: Tabulated porosity laws. Denition sketch. a: exact φ (z) law (dashed line) and discretized law φ tab (z) (bold line). b: θ (z) law inferred from φ (z) and sampling points θ tab i , z tab i .

Figure 6 :

 6 Figure 6: Sample tabulated porosity laws. Top: N = 5. Middle: N = 9. Bottom: N = 15.
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 1 Test 1: dambreak problem in a triangular valley

Figure 7 :

 7 Figure 7: Test 1: dambreak in a triangular valley. Denition sketch.

Figure 8 :

 8 Figure 8: Test 1: dambreak in a triangular valley. Simulation results.

2 : 1 W 2 h 0 Figure 9 :

 21209 Figure 9: Test 2: dambreak in a compound channel. Geometry denition sketch.

Figure 10 :

 10 Figure 10: Test 2: dambreak in a compound channel. Bird's eye view of the free surface computed by the 2D shallow water equations at t =50s for Test 2a. z-mag 50.

With N = 2 Figure 11 :

 211 Figure 11: Test 2: dambreak in a compound channel. Simulation results for Test 2a (h R = 0.5m). Free surface and unit discharge proles at t = 10s (top) and t = 50s (bottom). Dots: free surface elevations and unit discharges computed by the 2D shallow water model, averaged over the computational grid of the DDP model. Solid line: DDP model solution.

Figure 12 :

 12 Figure 12: Test 2: dambreak in a compound channel. Simulation results for Test 2b (h R = 2.5m). Free surface and unit discharge proles at t = 10s (top) and t = 50s (bottom). Dots: free surface elevations and unit discharges computed by the 2D shallow water model, averaged over the computational grid of the DDP model. Solid line: DDP model solution.

Figure 13 :N 4 :

 134 Figure 13: Test 3: urban dambreak problem. Denition sketch.
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 5 ) without calibration. Test µ xx IP closure C D,2 IP closure µ xx DIP closure C D,Test 3: urban dambreak problem. Calibrated momentum dissipation parameters.

Figure 14 :

 14 Figure 14: Test 3: urban dambreak problem. Simulation results at t = 70s. Dots: water depths and unit discharges computed by the 2D shallow water model, averaged over the computational grid of the DDP model. Solid lines: DDP model solutions.

  -b are obtained by setting C D,2 = µ xx = 0. With this parameter combination, the speed of the shock is overestimated by a factor 3. The unit discharge prole is also overestimated by approximately 25%. Moreover, the DDP model fails to replicate the concavity of the water depth prole for -5 ≤ x t ≤ 0 and the breaking slope in the unit discharge prole in the rarefaction wave. Activating the transient momentum source term while keeping the drag coecient C D,2 = 0 leads to the proles shown on Figures 15c-d. The best compromise between shock location and post-shock water depth is obtained for µ xx = 0.27. While the transient source term allows for a better reconstruction of the shock, the model again fails to replicate the concavity in the water depth prole and the slope break in the unit discharge prole. The proles on Figure 15e-f are obtained by setting µ xx = 0 and calibrating C D,2 = 9 × 10 -3 . The free surface and unit discharge proles are better replicated over the entire rarefaction wave, but the speed of the shock is again overestimated by a factor approximately equal to 3. Only using non-zero drag coecient and momentum dissipation terms(C D,2 , µ xx ) = 7 × 10 -3 , 0.25 allows correct proles to be obtained in both the rarefaction wave and behind the shock (Figure 15g-h). None of the two models alone

  θu (m 2 s -1 ) (j) 4.4 Test 4: dambreak over microtopography Test 4 consists in simulating the propagation of a dambreak wave over a highly irregular, periodic topography. The objectives of this test are (i) to check the accuracy and stability of the solution obtained with the modied DIP closure in the presence of drying bottoms, (ii) to assess the accuracy of the storage and connectivity porosities as statistical descriptors of the microscale topography. This
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 6 Test 4: dambreak over microtopography. Simulation parameters.

Figure 16 :

 16 Figure 16: Test 4: dambreak over microtopography. Denition sketch for bottom prole z b,1 (x).

Figure 17 .

 17 Figure 17. The following remarks can be made on the respective performance of the IP and DIP closures.For Tests 4a and 4c, the IP closure consistently yields an underestimated shock speed and overestimated post-shock unit discharge compared to the rened 2D model simulation. This is true for C D,2 = µ xx = 0. Increasing any of the two coecients only contributes to slow down the shock in the DDP-IP solution, thus increasing the discrepancy with the rened 2D solution. For Tests 4b and 4d, the IP closure allows a correct shock speed to be recovered by setting µ xx = 0.2. While an accurate water depth shock prole is obtained (see second and fourth left-hand side graphs on Figure17), the post-shock water depths are underestimated compared to the rened 2D shallow water solution. The post-shock unit discharge remains overestimated by approximately 25%.The DIP closure allows more accurate average water depths and unit discharge proles to be obtained. Calibrating µ xx = 0 for Tests 4a,c and µ xx = 0.5 for Tests 4b,d yields accurate shock speeds and unit discharge proles. It is noted, however, that the water depth in the post-shock region is slightly underestimated compared to the reference, rened 2D solution.It is also worth noting that the rened 2D shallow water model yields dierent water depth and unit discharge proles depending on the bottom functions used (z b,1 (x) or z b,2 (x)). This is clearly visible on Figure17. The period-averaged water depth and unit discharge proles (dotted proles on the Figure) are dierent for Tests 4a and 4c. The same is observed for Tests 4b and 4d. The bottom prole function z b,1 (x) yields sharper rened 2D proles than does the bottom prole function z b,2 (x). Moreover, the unit discharge prole exhibits a plateau in Test 4a, while it slightly decreases with (x/t) in Test 4c. However, from a macroscopic point of view, the two congurations z b,1 (x) an z b,2 (x)

Figure 17 :

 17 Figure 17: Test 4: dambreak over microtopography. Average water depth and unit discharge proles at t =5s. Dots: rened 2D shallow water model solution, averaged over the wavelength l. dashed line: DDP-IP model. Solid line: DDP-DIP model.
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 18 Figure 18: Test 4: dambreak over microtopography. Calibration of the obstacle overow drag coecient C D,2 .

Figure 19 :

 19 Figure 19: Test 5: wave propagation in a meandering channel. Plan view denition sketch.

Figure 20 :

 20 Figure 20: Test 5: wave propagation in a meandering channel. Top: zoomed view of the rened 2D mesh. Bottom: DDP model mesh.

Figure 21 :Figure 22 :

 2122 Figure 21: Test 5: wave propagation in a meandering channel. Free surface elevations computed by the rened 2D model and DDP model at Points M1-6.

A 1 :

 1 50 undistorted scale model of the Seaside (Oregon) area was built at the O.H. HinsdaleWave Research Laboratory, Oregon State University. The scale model includes a portion of the sea bottom up to 1km from the shore line. A 500 m×600 m fraction of the urbanized area located along the shore is also included in the scale model. A schematic side view of the model is shown in Figure 23 (bottom). A high resolution lidar-surveyed topographical data set is available from the experiments. The topography within the 10 m×12 m urban area in the model is described by over 3 × 10 6 lidar points (Figure 23).

4 Figure 23 :

 423 Figure 23: Seaside undistorted 1:50 scale model. Top: plan view of the lidar-based topography over the urban area. Bottom: denition sketch of the scale model.

2 Table 11 :

 211 × 10 -3 m 2 1.04 × 10 -1 m Seaside scale experiment. Model characteristics. The urban area is dened as the rectangular area (x, y) ∈ [33.08, 43.50] × [-6.053, 8.45] (coordinates in metres as in Park et al. (2013)).

Figure 24 :

 24 Figure 24: Seaside scale experiment. Rened 2D shallow water model. Detailed view of the mesh.

Figure 25 Figure 25 :

 2525 Figure 25 shows the computational grid of the DDP model over the entire urban area. The depthdependent porosity laws are dened piecewise uniform over 16 polygons. These polygons (bold lines in the Figure) are dened as areas of uniform building geometry and density.

Figure 26 :

 26 Figure 26: Seaside scale experiment. Locations of the experimental gauges and meshing approaches.

Figure 27 :

 27 Figure 27: Seaside experiment. Water depths as functions of time at six depth gauges. Dots: experimental values. Thin line: rened 2D model. Bold line: depths-dependent porosity model. The rising water levels at the end of the simulation period are due to backwater eects from the model boundary.

[ 4 ]hu (m 2 s - 1 )Figure 28 : 2 s - 1 )Figure 29 :

 41282129 Figure 28: Dambreak in a compound channel. Simulation results for test 2a (h R = 0.5m) at t = 10s (top) and t = 50s (bottom). Dots: free surface elevations, ow velocities and unit discharges computed by the rened 2D model. Solid lines: DDP model results.

  (m 2 s -1 )

Figure 30 :

 30 Figure 30: Urban dambreak problem (Test 3). Simulation results at t = 70s. Dots: water depths and unit discharges computed by the 2D shallow water model. Solid lines: DDP model solutions. Note that h is the water depth for the 2D shallow water model.

7

 7 

  the momentum dissipation induced by the mobile bores generated as the wave propagates onto the microscale topography. The tests presented in Section 4 show that all these features are essential to the DDP-IP model performance. Dropping one of them entails a strong degradation in model performance for one or several of the tests presented in Section 4. The Seaside test case presented in Section 5 shows that the accuracy of the DDP model in reproducing the general features of the ow is similar to that of the rened 2D shallow water model, with a much cheaper computational cost.

  θΩ u Ω stems directly from the last column of the matrix. The remaining two eigenvalues are those of the following 2 × 2 matrixB x =   φΓ φΩ -θΓ θΩ u Ω θΓ θΩ φΓ φΩ -2 θΓ θΩ u 2 Ω + θΓ θΩ c 2 Ω 2 θΓ θΩ u Ω   =   φΓ φΩ -θΓ θΩ u Ω θΓ θΩ φΓ φΩ -2 θΓ θΩ u 2 Ω + θΓ θΩ c 2 Ω 2 θΓ θΩ u Ω  

Table 1 .

 1 Three dierent levels of accuracy are tested. For N = 5, 10 and 20, the discretization levels z tab

	i	are set every 2m, 1m and 0.5m respectively.
		Parameter	Meaning	Numerical value
		g	Gravitational acceleration	9.81m s -2
		h L	Upstream water depth	10 m
		h R	Downstream water depth	0.5 m
		N	Number of tabulation levels	5, 10, 20
		t	Simulated time	10 s
		z max	Maximum water depth	10 m
		φ max	Maximum porosity value	1

Table 1 :

 1 Test 1: dambreak in a triangular valley. Parameter set.

Table 7 :

 7 Test 4: dambreak over microtopography. Conguration nomenclature.

Table 8 :

 8 Test 4: dambreak over microtopography. Calibrated momentum dissipation parameters.

	Test	Closure	C D,2 µ xx
	4a, 4c	IP	0.	0.
	4a, 4c	DIP	0.	0.
	4b, 4d	IP	0.	0.2
	4b, 4d	DIP	0.	0.5

Table 9 :

 9 Test 5: wave propagation in a meandering channel. Test case parameters.

Table 10 :

 10 Table 10 shows the CPU times for the rened 2D and the DDP models for all the congurations. The DDP model is between 300 times and 3000 times as fast as the rened 2D model. In all applications, the CPU time required by the DDP model is two orders of magnitude smaller than the simulated time. In contrast, the rened 2D model sometimes requires more time than the simulated time. Performance of porosity vs. rened 2D model. Note: the plan view area of the 2D model for Tests 3a-d is half that of the DDP model. This is accounted for in the CPU time ratio.

	Test	Simulated time	CPU time rened 2D model	DDP closure	CPU time DDP	2D/DDP CPU ratio
	2a	50 s	53.4 s	IP / DIP	5.6 × 10 -2 s
	2b	50 s	35.86 s	IP / DIP	5.4 × 10 -2 s
	3a	100 s	69.66 s	IP	0.36 s
	3a	100 s	69.66 s	DIP	0.31 s
	3b	100 s	143.3 s	IP	0.39 s
	3b	100 s	143.3 s	DIP	0.38 s
	3c	100 s	46.1 s	IP	0.28 s
	3c	100 s	46.1 s	DIP	0.26 s
	3d	100 s	42.9 s	IP	0.27 s
	3d	100 s	42.9 s	DIP	0.28 s
	4a, 4c	10 s	49.4 s	IP	4.06 × 10 -2 s	1215
	4a, 4c	10 s	49.4 s	DIP	3.48 × 10 -2 s	1415
	4b, 4d	10 s	49.8 s	IP	3.59 × 10 -2 s	1390
	4b, 4d	10 s	49.8 s	DIP	4.21 × 10 -2	1180
	5		300 s	857 s	IP / DIP	0.295 s	2900
	5	Experimental validation		

Table 12
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	about here
	Model	CPU time
	Rened 2D	1490 s
	DDP-DIP	20.5 s

Table 12 :

 12 Seaside experiment. CPU times for the rened 2D and DDP models. Simulated time: 25 s.
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Appendix A. Wave propagation speeds

A. [START_REF] Bates | Development and testing of a subgrid-scale model for moving-boundary hydrodynamic problems in shallow water[END_REF] 

IP model

For the IP model, the rst column of the ux tensor is (56) hence the eigenvalues given in Equation (28c). Hyperbolicity is guaranteed provided that φ Γ ≤ φ Ω . If the porosity is depth-independent, the above expression simplies to:

Appendix B. Approximate Riemann solver

The purpose of this Appendix is to present a justication for the mass ux formula (33a) in the modied HLLC [START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF] Riemann solver. The principles of the Riemann solver can be found elsewhere [START_REF] Toro | Riemann solvers and numerical methods for uid dynamics[END_REF] and will not be recalled here. This formula is developed bearing two objectives in mind. Firstly, the C -property [START_REF] Bermudez | Upwind methods for hyperbolic conservation laws with source terms[END_REF] z s,Γ,L = z s,Γ,R q L = q R = 0 ⇒ q ij = 0

(58) must be veried. Secondly, the particular situations where one of the domain porosities φ Γ,L , φ Γ,R is zero must yield a zero discharge. From a physical point of view, a zero porosity is the sign that no additional mass can be stored within the domain under a unit rise in the water level. This is the case when the water level is below the bed level in free surface ow, or above the lid of a conduit for pipe ow. Applying the HLL [START_REF] Harten | On upstream dierencing and Godunov type methods for hyperbolic conservation laws[END_REF] approach to the continuity equation gives the following two conditions

where λ ± are the (a priori estimated) speeds of the discontinuities that separate the intermediate region of constant state from the left and right states of the Riemann problem. Solving the above equations for q ij yields

Equation ( 60) satises the C -property because the condition (z s,Γ,L = z s,Γ,R ) automatically yields

However, this equation is not entirely satisfactory in that it does not allow the following particular case to be accounted for. Assume the following situation

In this situation the left-hand side of the interface is immersed, while the right-hand side is emerged.

In such a case, a zero discharge should be obtained because the water cannot ow across the interface. However, Equation (60) allows for q ij = 0 in such a case. Indeed, one has λ -= λ 1 (q L , z s,Γ,L ) < 0

leading to a non-zero discharge q ij . Note that the third equation is obtained from the condition (2d), with θ Ω,R = 0.

The solver is modied as follows. Noticing that dθ = φdz and that the laws φ (z) are discretized as piecewise constant functions (Subsection 3.2, Equations (35a, 35b)), the balance equations are replaced with the following approximate relationships

q ij -q R = (z s,ij -z s,Γ,R ) φ Γ,R λ + (63b)

Solving this system for q ij leads to Equation (33a). With this formula, the conguration (61a-61c) leads to φ Γ,R = 0, thus yielding q ij = 0. The C -property (58) is also veried.