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In this short note, we prove that 4 π 2 x log x + O(x)

for x → ∞, where ϕ(n) is the Euler totient function and [t] is the integral part of real t. This improves recent results of Bordellès-Heyman-Shparlinski and of Dai-Pan.

Introduction

As usual, denote by ϕ(n) the Euler totient function and by [t] the integral part of real t. Very recently, Bordellès, Heyman and Shparlinski [START_REF] Bordellès | On a sum involving the Euler function[END_REF] studied the asymptotic behaviour of the summatory function They also posed a question : Is it true that S(x) = 6 π 2 + o(1) x log x as x → ∞ ? Some numerical evidences were given. The aim of this short note is to improve Bordellès, Heyman and Shparlinski's (1.2) and (1.3), by refining their method. Our result is as follows.

Theorem 1. We have

(1.4) 4 π 2 x log x + O(x) S(x) 1 3 + 4 π 2 x log x + O(x) for x → ∞.
For comparaison, we have As indicated by Bordellès, Heyman and Shparlinski in [START_REF] Bordellès | On a sum involving the Euler function[END_REF], the proof of (1.2) is rather elementary. But the lower bound (1.3) uses a much deeper approach relying on the theory of exponential pairs. In particular, to obtain the numerically stronger result, they used the recently discovered exponent pair ( 13 84 +ε, 55 84 +ε) by Bourgain [START_REF] Bourgain | Decoupling, exponential sums and the Riemann zeta function[END_REF]. Let ψ(t)

   1 2 + 3 π 2 ≈ 0.
:= t-[t]-1 2
and δ ∈ {0, 1}. For x 2 and 1 D x, define

(1.5) S δ (x, D) := D<d 2D ϕ(d)ψ x d + δ .
The key of Bordellès, Heyman and Shparlinski's method is to find θ as large as possible such that

(1.6) S δ (x, x θ ) x.
They shew that θ = 2629 4009 ≈ 0.65577 is admissible and obtained the constant θ 6 π 2 in the lower bound (1.3).

Our improvements come from two simple observations:

(a) Firstly we give a more careful treatment for the related exponential sum (see Proposition 2.1 below). This allows us to show that θ = 2 3 ≈ 0.66666 is admissible for (1.6) and to get a better lower. It is worth to note that our argument is simpler and that we do not need to use Bourgain's new exponent pair. In fact we only use the simplest exponent pair ( 12 , 1 2 ), i.e. van der Corput inequality. (b) Our argument about upper bound part is different from [START_REF] Bordellès | On a sum involving the Euler function[END_REF]. In order to improve upper bound (1.2), we introduced exponential sum technique to show that the constant in the upper bound can be improved to 1 -θ + θ 6 π 2 . It should be possible to further improve slightly the constants in Theorem 1 by applying combinatorial identity on the Möbius function and more sophistic methods of multiple exponential sums (see [START_REF] Fouvry | Exponential sums with monomials[END_REF][START_REF] Wu | Almost primes in short intervals[END_REF]).

When we redact our manuscript, we note that Lixia Dai & Hao Pan [START_REF] Dai | Note on a sum involving the Euler function[END_REF] also have remarked (b) above and obtained a better upper bound constant 1380 4009 + 2629 4009 6 π 2 ≈ 0.74288 than (1.2) by using Bordellès, Heyman and Shparlinski's θ = 2629 4009 value.

A key estimate

The aim of this section is to prove the following bound for S δ (x, D), which will play a key role in proof of Theorem 1.

Proposition 2.1. Under the previous notation, we have

(2.1) S δ (x, D) (x κ D 1+λ ) 1/(κ+1) + x κ D -2κ+λ log x + x -1 D 3 ,
where (κ, λ) is an exponent pair.

Two preliminary lemmas.

In order prove Proposition 2.1, we need two standard lemmas in the exponential sum theory. The first one is due to Vaaler (see [START_REF] Graham | Van der Corput's Method of Exponential sums[END_REF]Theorem A.6] or [START_REF] Bordellès | On a sum involving the Euler function[END_REF]Lemma 4.3]). Lemma 2.2. For x 1 and H 1, we have

ψ(x) = - 1 |h| H Φ h H + 1 e(hx) 2πi + R H (x),
where Φ(t) := πt(1 -|t|) cot(πt) + |t| and the error term R H (x) satisfies

|R H (x)| 1 2H + 2 0 |h| H 1 - |h| H + 1 e(hx).
The second lemma is [START_REF] Graham | Van der Corput's Method of Exponential sums[END_REF]Lemma 2.4]. With the help of Lemma 2.3 and noticing the fact that 0 < Φ(t) < 1 (0 < |t| < 1), we can derive

Lemma 2.3. Let L(Q) := J j=1 C j Q c j + K k=1 D k Q -d k , where C j , c j , D k , d k > 0. For any Q Q > 0, there exists some Q 1 ∈ [Q , Q] such that L(Q 1 ) J j=1 K k=1 (C d k j D c j k ) 1/(c j +d k ) + J j=1 C j Q c j + K k=1 D k Q -d k .
S δ (x, D, m, N ) N H + h H 1 h D/m<n N e hx mn + δ for D/m < N 2D/m and 1 H N .
Applying the exponent pair (κ, λ) to the inner sum over n, we find that

S δ (x, D, m, N ) N H + h H 1 h hx mN 2 κ N λ + mN 2 hx H -1 N + x κ H κ m -κ N -2κ+λ + x -1 mN 2 for all H ∈ [1, N ]. According to Lemma 2.3, there is a H ∈ [1, N ] such that S δ (x, D, m, N ) (x κ m -κ N -κ+λ ) 1/(κ+1) + x κ m -κ N -2κ+λ + x -1 mN 2 (x κ D -κ+λ m -λ ) 1/(κ+1) + x κ D -2κ+λ m κ-λ + x -1 D 2 m -1 .
Inserting it into (2.2), we obtain the required result.

Proof of Theorem 1: Upper bound

Let 1 D < √ x be a parameter to be chosen later. We write

(3.1) S(x) = S 1 (x) + S 2 (x) with S 1 (x) := n D ϕ x n , S 2 (x) := D<n x ϕ x n .
A. Upper bound of S 1 (x) We have trivially x/(d+1)<n x/d

(3.2) S 1 (x) n D x n = x log D + O(x).
1 = d x/D ϕ(d) x d -ψ x d - x d + 1 + ψ x d + 1 = x d x/D ϕ(d) d(d + 1) + d x/D ϕ(d) ψ x d + 1 -ψ x d .
It is well known that

n x ϕ(n) = 3 π 2 x 2 + O(x log x), n x ϕ(n) n 2 = 6 π 2 log x + O(1).
With the help of these, it follows that (3.4)

d x ϕ(d) d(d + 1) = d x ϕ(d) d 2 1 + O 1 d = 6 π 2 log x + O(1)
and

(3.5) d √ x ϕ(d) ψ x d + 1 -ψ x d 2 d √ x ϕ(d) x.
It remains to bound

E(x, D) := √ x<d x/D ϕ(d) ψ x d + 1 -ψ x d .
Let D k := x/(2 k D) and let K be the integer such that D K+1 < √ x D K . By a simple dyadic split and by Proposition 2.1 with (κ, λ) = ( 12 , 1 2 ), it follows that

(3.6) |E(x, D)| 1 k K+1 (|S 0 (x, D k )| + |S 1 (x, D k )|) 1 k K+1 x 1/3 D k + x 1/2 D -1/2 k log x + x -1 D 3 k x 1/3 (x/D) + x 1/2 (log x) 2 + x -1 (x/D) 3 x 4/3 D -1 + x 1/2 (log x) 2 + x 2 D -3 .
Inserting (3.4), (3.5) and (3.6) into (3.3), we find 

(3.7) S 2 (x) 6 π 2 x log(x/D) + O x 4/3 D -1 + x 1/2 (log x) 2 + x 2 D -3 .
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 2 + o(1) x log x (x → ∞). (1.3)

2. 2 .

 2 Proof of Proposition 2.1. As usual, denote by µ(n) the Möbius function. By using the relation 2D/m |S δ (x, D, m, N )|, where S δ (x, D, m, N ) :=

B.

  Upper bound of S 2 (x) In order to bound S 2 (x), we put d = [x/n]. Then x/n -1 < d x/n and x/(d + 1) < n x/d.

C. 4 . 2 x( 3 k x 1 / 3 D

 42313 End of the proof Inserting (3.2) and (3.7) into (3.1) and taking D = x 1/3 , we get the required the upper bound in (1.4). Proof of Theorem 1: Lower bound Similar to (3.3), we can write S(x) = log D + O(x) + R(x, D), where R(x, D) := d D ϕ(d) ψ x d + 1 -ψ x d . Let D k := D/2 k and let K be the integer such that D K+1 < 1 D K . By a simple dyadical split and by Proposition 2.1 with (κ, λ) = ( |S 0 (x, D k)| + |S 1 (x, D k )|) 1 k K+1 x 1/3 D k + x 1/2 D -1/2 k log x + x -1 D + x 1/2 (log x) 2 + x -1 D 3 .Inserting (4.2) into (4.1), we findS(x) 6 π 2 x log D + O x 1/3 D + x 1/2 (log x) 2 + x -1 D 3 .The required result follows from the choice of D = x 2/3 .
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	2629 4009	6 π 2 ≈ 0.39841,	and	  	1 3 + 4 π 2 ≈ 0.73861, 4 π 2 ≈ 0.40528.
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