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Abstract

For gaseous �ows in the slip �ow regime, the power of the viscous stress at
the wall is not zero. From the �uid domain point of view, it is a sink term,
or a lost heat �ux, that must be taken into account. It must be added to the
di�usive heat �ux in the �uid to appropriately model the heat �ux transmitted
from the �uid to the wall and the temperature �eld. The present technical
note aims at theoretically establishing the appropriate thermal conditions in a
general context: both thick and thin walls are considered as well as for imposed
temperature (H1), imposed heat �ux (H2) and convective heat transfer (H3)
at the wall. Recent validations of this model, resulting from experimental and
numerical comparisons of the convective heat transfer at the walls, are brie�y
discussed.

Keywords: micro�uidics, micro-channel, slipping �ow, shear stress power,
shear work, convection heat transfer, thermal boundary condition

1. Introduction

In the last decades, the research activities about convective heat transfer in
microdevices have rapidly been growing due to the considerable development
of engineering applications. The Knudsen number, Kn = λ/L, de�ned as the
ratio of the gas molecular mean-free-path, λ, to a characteristic length scale,
L, such as the hydraulic diameter of a duct, allows a measure of the validity of
the continuum approach and a classi�cation of the gas �ow regimes [1, 2]. For
0.001 < Kn < 0.1, the �ow regime is called the slip-�ow regime: the continuum
assumption is still valid in the �ow core but slip conditions, i.e. velocity slip,
temperature jump and thermal creep, must be considered at the solid boundaries
of the �ow domain, to model the presence of the Knudsen layer (the very thin
layer in a thermodynamical non-equilibrium state close to the solid boundary).

The �ow �eld solution, described by a system of non-linear partial di�erential
equations (conservation equations resulting from the Newton law, the �rst law
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of thermodynamics and the equation of state), depends on initial and boundary
conditions. The expressions of the velocity-slip and thermal jump at solid walls
for weakly rare�ed �ows have been established for a long time, by Maxwell
[3] and Smoluchowski [4] and discussed since then by many authors. These
boundary conditions that allow computing the �uid velocity and temperature
accounting for the Knudsen layer are commonly used (at �rst or second order
in Kn) in convective heat transfer modeling [5, 6]. At this stage, there are not
major controversies in the heat transfer literature.

However, when Kn > 0.001, in particular for gas �ows in microdevices,
some changes need to be brought to the expression of the heat �ux transmitted
through the wall: due to the slip velocity in the Knudsen layer, the power of
the viscous stress is not zero at the wall and it must be taken into account in
the thermal boundary condition to satisfy the heat �ux consevation. This was
�rst introduced by Maslen [7] and discussed by Sparrow and Lin [8]. Since then,
only a few authors have taken into account the power of the viscous stress at
the wall in their analysis of heat transfer [9, 10, 11, 12]. So, as most of the
authors neglected this contribution, it was eventually forgotten. Then Hong
and Asako [13] reiterated its importance in 2010. However, it appears that the
heat transfer community still goes on ignoring this boundary condition or uses it
erroneously by considering that the imposed heat �ux at the wall only balances
the di�usive �ux transmitted to the �uid. It can be thus underlined that most of
the papers published in the archival literature on forced convective heat transfer
in microdevices have provided erroneous values of the wall heat �ux (or Nusselt
number) or temperature �eld due to ill prescribed thermal boundary conditions.

The present technical note speci�cally focuses on the appropriate thermal
boundary conditions for �ows in microdevices in the slip regime and for �rst
order slip models. After the work by Maslen (1958) [7] and Sparrow and Lin
(1962) [8], the technical notes by Hadjiconstantinou (2003) [11]1 and Hong and
Asako (2010) [13] and the experimental and numerical veri�cations/validations
by Shih et al. (2001) [9] for adiabatic walls, by Miyamoto et al. (2003) [10]
for iso�ux walls and Nicolas et al. (2017, 2018) [15, 16] for isothermal walls,
we demonstrate here that the power of the viscous stress at the wall must be
included in the total heat �ux transmitted by the �uid to the wall as soon as a
slipping �ow occurs at the wall.

A general demonstration and expressions of the right boundary conditions
are provided. These BC's are established both for thick and thin walls, and
for the H1, H2 and H3 boundary condition types. Finally, we brie�y remind
the published validations of the present formulation for parallel-plate channels
submitted to H1 or H2 boundary conditions [9, 10, 15, 16].

1Note that q0 in Eq. (5) of [11] is the �thermal� heat �ux, that is the di�usive part of the
heat �ux exchanged between the wall and the �uid, and not the imposed heat �ux as considered
by some authors [14], which led them to ill-interpretations of the boundary conditions.
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Figure 1: Notations for the solid wall, the �ow domain, the interface, the boundary conditions
and the temperature and velocity pro�les.

2. General expressions of the thermal conditions on a wall/slipping
gas interface

In this paper, we only focus on the thermal boundary conditions. For
the governing equations and the dynamical boundary conditions appropriate
to model �ows of compressible dilute gases in the slip �ow regime, one can refer
to our previous paper [16].

Let us �rst consider a gas �ow domain of volume Ωg with closed surface
Γg ∪ Γi (Γg ∩ Γi = �), in contact along an interface Γi with a solid wall of
thickness e, volume Ωw, and closed surface Γw ∪ Γi = Γw− ∪ Γw,e ∪ Γw+ ∪ Γi

(Γw−∩Γw,e∩Γw+∩Γi = �) (Fig. 1). We are interested in writting the thermal
conditions at the interface Γi between the gas �ow domain and the solid wall.
To that aim, the energy equations in the gas and the solid are �rst integrated,
for a steady problem and without source or sink terms for the sake of simplicity.
Note that, even though the drawing in Fig. 1 is two-dimensional and the wall is
�at, the present demonstration and formulations are general and can be applied
to any three-dimensional geometry of the gas �ow domain and solid wall.

By noting h the enthalpy and ec = −→v 2/2 the kinetic energy per mass unit of
the gas, the steady conservation equation of the total energy of the gas writes
(cf. page 341 in [17]):

∇.(ρ−→v h+ ρ−→v ec − kg∇Tg − τ .−→v )=0 (1)

where the viscous stress tensor τ is de�ned for a Newtonian-Stokes �uid by :

τ = µ(∇−→v +∇−→v t)− 2

3
µ∇.−→v I (2)

and where −→v , Tg, ρ, kg and µ are the velocity, temperature, density, thermal
conductivity and dynamical viscosity of the gas. By integrating Eq. (1) on Ωg of
closed surface Γg ∪ Γi (Fig. 1), considering the wall as impermeable (−→v .−→n = 0
on Γi) and using Gauss'theorem, we get:
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ˆ
Γg

(
ρ(h+ ec)−→v − kg∇Tg − τ .−→v

)
.−→n gdΓg +

ˆ
Γi

(
−kg∇Tg − τ .−→v

)︸ ︷︷ ︸
=−→q i

.−→n idΓi

︸ ︷︷ ︸
=Qi

=0

(3)
where −→n g is the inward normal unit vector on Γg, directed from the wall to
the gas and denoted −→n i on Γi. In Eq. (3), the �rst integral term is the sum
of the enthalpy and kinetic energy convective �uxes, the conductive heat �ux
and the power of the viscous stress through the �uid boundary Γg; the second
integral term represents the total heat �ux, Qi [W ], transmitted by the �uid
to the wall through the interface Γi. By de�nition Qi is the integral on Γi of
the total local heat �ux density, qi = −→q i.

−→n i [W/m2], transmitted by the �uid
through Γi. Thus qi is the sum of the di�usive heat �ux density and the power
of the viscous stress at the wall:

qi =
(
−kg,i∇Tg,i −

(
τ .−→v

)
g,i

)
.−→n i (4)

where the subscript �g, i� denotes quantities on the gas side of the gas/wall
interface (slip-related quantities associated with the gas molecules in contact
with the wall).

In the solid wall, with the used assumptions, the energy equation simply
writes:

∇.(−kw∇Tw) = 0 (5)

with kw and Tw the thermal conductivity and temperature of the solid wall. By
integrating Eq. (5) on Ωw of closed surface Γw∪Γi with Γw = Γw−∪Γw,e∪Γw+

(Fig. 1) and using Gauss's theorem, we get:

ˆ
Γw

(−kw∇Tw) .−→n wdΓw +

ˆ
Γi

(−kw∇Tw)︸ ︷︷ ︸
=−→q i

.−→n idΓi

︸ ︷︷ ︸
=Qi

=0 (6)

where −→n w is the outward normal unit vector on Γw. Here the �rst integral
term is the conductive heat �ux through the solid boundary Γw and the second
integral is the conductive heat �ux through Γi. This second term thus represents
the total heat �ux transmitted by the solid through the interface. It is therefore
also equal to Qi since, from the continuum mechanics laws, the heat �ux is
conserved through a zero volume interface without source term. Furthermore,
by identi�cation, the heat �ux density transmitted locally by the solid wall
through the interface is:

qi = (−kw,i∇Tw,i) .−→n i (7)

where the subscript �w, i� denotes quantities on the wall side of the interface.
Thus, from Eqs. (4) and (7), the conservation of the heat �ux density, qi,
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transmitted locally, through an in�nitesimal gas/wall interface dΓi, writes:

(−kw,i∇Tw,i) .−→n i =
(
−kg,i∇Tg,i −

(
τ .−→v

)
g,i

)
.−→n i (8)

When solving the energy equations (1) and (5) to compute the two unknown
temperature �elds, Tg and Tw, for the gas and the wall, two interface conditions
are necessary. The �rst one is given by Eq. (8): it expresses the total heat �ux
conservation through the interface. The second one expresses the temperature
jump between the local interfacial temperatures of the solid wall, Tw,i, and the
gas, Tg,i. It reads [18, 6]:

Tw,i = Tg,i − LT∇Tg,i.−→n i (9)

where LT = ξTλ > 0 is the thermal jump length, with ξT the temperature
jump coe�cient and λ the gas mean free path. We insist on the fact that the
two conditions (8) and (9) (total heat �ux continuity but di�usive heat �ux
discontinuity, and temperature discontinuity) must be simultaneously satis�ed
to compute Tg and Tw.

3. H1, H2 and H3 thermal boundary conditions for a slipping �ow
along a thin impermeable wall

The thermal boundary conditions for a slipping �ow along a thin imperme-
able wall (with a zero solid wall thickness) are deduced now. We �rst remind the
thermal conditions at the external surface of a thick wall (with a non-zero solid
wall thickness). Then we make them degenerate towards the thermal conditions
for a thin wall.

Three types of thermal boundary conditions are classically applied at the
external surfaces of a wall. They are reminded here, referring to Fig. 1 for the
used notations:

• H1- imposed surface temperature distribution, Timp:

Tw,e = Timp (10)

• H2- imposed heat �ux density distribution, qimp = −−→q imp.
−→n w,e:

kw,e∇Tw,e.−→n w,e = qimp (11)

• H3- mixed (Fourier/Robin) boundary condition for convective heat trans-
fer; for instance, if h is a total heat transfer coe�cient at the wall and T∞
a reference temperature (e.g. ambiant temperature), it writes:

kw,e∇Tw,e.−→n w,e = h(T∞ − Tw,e) (12)
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where T is the temperature, k the thermal conductivity and the subscript �w, e�
denotes quantities on the wall side of the external surface of the wall of outward
normal unit vector −→n w,e. For thin walls, these thermal boundary conditions are
also applied directly at the boundaries of the �ow domain when the Knudsen
number is less than about Kn = 0.001.

If the thickness, e, of the wall tends to zero, then the energy equation (6) in
the solid now writes:

−
ˆ

Γw,e

(−kw,e∇Tw,e)︸ ︷︷ ︸
=−→q e

.−→n w,edΓw,e

︸ ︷︷ ︸
=Qe

=

ˆ
Γi

(−kw,i∇Tw,i)︸ ︷︷ ︸
=−→q i

.−→n idΓi

︸ ︷︷ ︸
=Qi

(13)

where, in the �rst integral, Γw,e is the external wall surface of outward normal
unit −→n w,e (= −−→ni), Qe is the total heat �ux and qe = −−→q e.

−→n w,e the local heat
�ux density transmitted by the wall to the exterior/surroundings. So, under the
present assumption (thin wall), the conservation of the heat �ux through the
wall locally writes qe = qi that is, from Eqs. (4) or (8):

kw,e∇Tw,e.−→n w,e = kg,i∇Tg,i.−→n w,e +
(
τ .−→v

)
g,i
.−→n w,e (14)

As a consequence, the H2 and H3 boundary conditions applied on a thin
wall to compute the temperature �eld of the gas in the presence of slip at wall,
write as follows:

• H2- The imposed heat �ux boundary condition, Eq. (11), becomes:

kg,i∇Tg,i.−→n i +
(
τ .−→v

)
g,i
.−→n i = −qimp (15)

• H3- The mixed boundary condition, Eq. (12), with convective heat trans-
fer, becomes:

kg,i∇Tg,i.−→n i +
(
τ .−→v

)
g,i
.−→n i = h(Tw,e − T∞) (16)

For the H2 and H3 cases, once the temperature �eld Tg is solved, the
interface gas temperature Tg,i is known and the temperature of the thin
wall, Tw,e = Tw,i, is computed from Eq. (9). The boundary condition
(16) can thus be rewriten as a function of the gas temperature only as :

(kg,i + hLT )∇Tg,i.−→n i +
(
τ .−→v

)
g,i
.−→n i = h(Tg,i − T∞) (17)

Lastly, the H1 boundary condition applied on a thin wall in the presence of a
slipping gas �ow writes as follows:

• H1- The imposed temperature boundary condition, Eq. (10), becomes:

Tg,i − LT∇Tg,i.−→n i = Timp (18)
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In this case, once the gas temperature �eld Tg is solved, the total heat
�ux density, qw = −→q w.

−→n i [W/m2], transmitted through the thin wall is
given by Eq. (4) with qi = qw, that is:

qw = −kg,i∇Tg,i.−→n i︸ ︷︷ ︸
diffusion heat flux

−
(
τ .−→v

)
g,i
.−→n i︸ ︷︷ ︸

V iscous Stress Power

= qdiff + qV SP (19)

Thus, in the three cases H1, H2 and H3, the total heat �ux transmitted through
the wall must take into account two contributions: the di�usion heat �ux, qdiff ,
and the power of the viscous stress, qV SP , at the wall (see Eqs. (15), (16) and
(19)).

4. H1 boundary condition for a slipping �ow along a thick imperme-
able wall

At last, the case of a thick wall of thickness e and thermal conductivity
kw, with a negligible longitudinal conduction heat �ux, is considered (i.e. the
di�usion heat �ux in the direction of the tangential unit vector

−→
t and through

the wall boundaries Γw− and Γw+ on Fig. 1 is negligible). In this case, if the
problem is steady, the energy equation does not need to be solved in the solid
wall. On the other hand, its thermal resistance rth (rth = e/kw for a plane wall)
must be accounted for if a H1 condition is applied. Thus, if Timp is imposed
at the external wall of the thick wall, equation (18) is replaced by the following
condition at the gas/wall interface:

Tg,i = Timp − rthqw + LT∇Tg,i.−→n i (20)

where qw is given by Eq. (19). Therefore the H1 condition for this thick wall
writes:

Tg,i − (rthkg,i + LT )∇Tg,i.−→n i = Timp + rth
(
τ .−→v

)
g,i
.−→n i (21)

Note that the heat �ux, qw, transmitted from the �uid through the wall is
still given by Eqs. (15), (16) and (19) for the H2, H3 and H1 conditions in this
case.

5. Discussion about the wall heat �ux and Nusselt number

The expressions of the imposed heat �ux qimp in Eq. (15) or total heat
�ux qw transmitted to the wall in Eq. (19) are similar, for instance, to the one
when there are coupled convective and radiative thermal exchanges at a wall
[19] or when there are both thermal di�usion and phase change at a wall due
to condensation or evaporation [20]. In these two cases, the heat �ux density
imposed at the wall also balances the total heat �ux density transmitted through
the wall and it can be written:
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qimp = qw = qdiff + qrad = − (k∇T.−→n )g,i + (−→q rad.
−→n )g,i︸ ︷︷ ︸

radiation heat flux

(22)

qimp = qw = qdiff + qlat = − (k∇T.−→n )g,i + (−→q lat.
−→n )g,i︸ ︷︷ ︸

latent heat flux

(23)

One important consequence of Eqs. (15), (16) and (19) concerns the Nusselt
number de�nition that should be adopted to compare theory with measurements
in experiments on gas convection in the slip �ow regime. The Nusselt number
should be de�ned from the total heat �ux transmitted by the �uid through the
wall and not only from the di�usive �ux at the wall:

Nutot =
qw
qref

=
qdiff
qref

+
qV SP

qref
(24)

that is:

Nutot = Nudiff +NuV SP =
−kg,i∇Tg,i.−→n i

qref
+
−
(
τ .−→v

)
g,i
.−→n i

qref
(25)

where qref is a reference heat �ux density. For instance, in a micro-channel
�ow, qref = kg(Tw,i−Tb)/Dh with Tb the average bulk temperature and Dh the
hydraulic diameter.

The numerical solutions obtained from the above boundary conditions and
the full energy equation in its enthalpic form, that is including the viscous
dissipation and the pressure work source terms, are validated by comparisons
between several experimental data and numerical simulations of the Nusselt
numbers. These comparisons are carried out in [9, 10] for adiabatic and iso�ux
micro-channels and in [15, 16] for isothermal wall micro-channels. The measured
values of the Nusselt numbers in [9, 10] are found again by the authors using
the full thermal model associated with the boundary condition (15) and Eqs.
(24-25) for the de�nition of the Nusselt number. In the same way, using a full
thermal model, the authors in [15, 16] show that the very small values of the
average Nusselt numbers obtained in the experiments by Demsis et al. [21, 22] in
a quasi isothermal micro-channel can only be explained from the de�nition (24-
25) of Nutot while Nudiff provides Nusselt number values several orders larger
than the measured ones. Thus the computation of the di�usive Nusselt numbers,
Nudiff , reported in the majority of the published papers, cannot provide on its
own the convection heat transfer coe�cients measured in the experiments in the
slip �ow regime when the power of the viscous stress is not negligible. About
the magnitude order of the power of the viscous stress, a dimensional analysis
of the di�erent terms of the energy equation and thermal boundary conditions
is proposed in appendix A of [16].

Lastly, note that these thermal boundary conditions including the viscous
stress power at the wall must be used in conjunction with the full energy equa-
tion containing both the pressure work and the viscous dissipation source terms
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when gaseous micro-�ows in the slip regime are considered [9, 10, 12, 16]. In-
deed, it can be shown that the sum of the pressure work and viscous dissipation
source terms are in the same magnitude order as the viscous stress power at the
wall [16].

6. Conclusion

This technical note proves that the power of the viscous stress at the wall
must be included in the total heat �ux transmitted by the �uid to the wall,
as soon as a slipping �ow is present at the wall. Consequently, it must be
included in the thermal boundary conditions and also in the de�nition of the
total Nusselt number at the wall, in particular when heat transfer is computed in
weakly rare�ed gaseous �ows in micro-devices. The demonstration is established
in a general context, for thick and thin walls, and for the H1, H2 and H3 thermal
boundary conditions. Experimental and numerical veri�cations of the necessity
to take into account the viscous stress power contribution to the wall heat �ux
are also discussed. To end, one must remember that heat transfer in dilute gases
in the slip �ow regime implies both a temperature jump and a conduction heat
�ux jump between the gas and the wall.
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