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For gaseous ows in the slip ow regime, the power of the viscous stress at the wall is not zero. From the uid domain point of view, it is a sink term, or a lost heat ux, that must be taken into account. It must be added to the diusive heat ux in the uid to appropriately model the heat ux transmitted from the uid to the wall and the temperature eld. The present technical note aims at theoretically establishing the appropriate thermal conditions in a general context: both thick and thin walls are considered as well as for imposed temperature (H1), imposed heat ux (H2) and convective heat transfer (H3) at the wall. Recent validations of this model, resulting from experimental and numerical comparisons of the convective heat transfer at the walls, are briey discussed.

Introduction

In the last decades, the research activities about convective heat transfer in microdevices have rapidly been growing due to the considerable development of engineering applications. The Knudsen number, Kn = λ/L, dened as the ratio of the gas molecular mean-free-path, λ, to a characteristic length scale, L, such as the hydraulic diameter of a duct, allows a measure of the validity of the continuum approach and a classication of the gas ow regimes [START_REF] Gad-El Hak | Fluid mechanics of microdevices -The Freeman scholar lecture[END_REF][START_REF] Karniadakis | Microows and Nanoows -Fundamentals and Simulation[END_REF]. For 0.001 < Kn < 0.1, the ow regime is called the slip-ow regime: the continuum assumption is still valid in the ow core but slip conditions, i.e. velocity slip, temperature jump and thermal creep, must be considered at the solid boundaries of the ow domain, to model the presence of the Knudsen layer (the very thin layer in a thermodynamical non-equilibrium state close to the solid boundary).

The ow eld solution, described by a system of non-linear partial dierential equations (conservation equations resulting from the Newton law, the rst law of thermodynamics and the equation of state), depends on initial and boundary conditions. The expressions of the velocity-slip and thermal jump at solid walls for weakly rareed ows have been established for a long time, by Maxwell [START_REF] Maxwell | On stresses in raried gases arising from inequalities of temperature[END_REF] and Smoluchowski [START_REF] Smoluchowski | Ueber wärmeleitung in verdünnten gasen[END_REF] and discussed since then by many authors. These boundary conditions that allow computing the uid velocity and temperature accounting for the Knudsen layer are commonly used (at rst or second order in Kn) in convective heat transfer modeling [START_REF] Zhang | A review on slip models for gas microows[END_REF][START_REF] Kandlikar | Heat transfer in microchannels -2012 status and research needs[END_REF]. At this stage, there are not major controversies in the heat transfer literature.

However, when Kn > 0.001, in particular for gas ows in microdevices, some changes need to be brought to the expression of the heat ux transmitted through the wall: due to the slip velocity in the Knudsen layer, the power of the viscous stress is not zero at the wall and it must be taken into account in the thermal boundary condition to satisfy the heat ux consevation. This was rst introduced by Maslen [START_REF] Maslen | On heat transfer in slip ow[END_REF] and discussed by Sparrow and Lin [START_REF] Sparrow | Laminar heat transfer in tubes under slip-ow conditions[END_REF]. Since then, only a few authors have taken into account the power of the viscous stress at the wall in their analysis of heat transfer [START_REF] Shi | Chocked ow of low density gas in a narrow parallel-plate channel with adiabatic walls[END_REF][START_REF] Miyamoto | Chocked ow and heat transfer of low density gas in a narrow parallel-plate channel with uniformly heating walls[END_REF][START_REF] Hadjiconstantinou | Dissipation in small gaseous ows[END_REF][START_REF] Ramadan | Pressure work and viscous dissipation eects on heat transfer in a parallel-plate microchannel gas ow[END_REF]. So, as most of the authors neglected this contribution, it was eventually forgotten. Then Hong and Asako [START_REF] Hong | Some considerations on thermal boundary condition of slip ow[END_REF] reiterated its importance in 2010. However, it appears that the heat transfer community still goes on ignoring this boundary condition or uses it erroneously by considering that the imposed heat ux at the wall only balances the diusive ux transmitted to the uid. It can be thus underlined that most of the papers published in the archival literature on forced convective heat transfer in microdevices have provided erroneous values of the wall heat ux (or Nusselt number) or temperature eld due to ill prescribed thermal boundary conditions.

The present technical note specically focuses on the appropriate thermal boundary conditions for ows in microdevices in the slip regime and for rst order slip models. After the work by [START_REF] Maslen | On heat transfer in slip ow[END_REF] [START_REF] Maslen | On heat transfer in slip ow[END_REF] and [START_REF] Sparrow | Laminar heat transfer in tubes under slip-ow conditions[END_REF] [START_REF] Sparrow | Laminar heat transfer in tubes under slip-ow conditions[END_REF], the technical notes by [START_REF] Hadjiconstantinou | Dissipation in small gaseous ows[END_REF] [START_REF] Hadjiconstantinou | Dissipation in small gaseous ows[END_REF] 1 and Hong and Asako (2010) [START_REF] Hong | Some considerations on thermal boundary condition of slip ow[END_REF] and the experimental and numerical verications/validations by Shih et al. (2001) [START_REF] Shi | Chocked ow of low density gas in a narrow parallel-plate channel with adiabatic walls[END_REF] for adiabatic walls, by [START_REF] Miyamoto | Chocked ow and heat transfer of low density gas in a narrow parallel-plate channel with uniformly heating walls[END_REF] [START_REF] Miyamoto | Chocked ow and heat transfer of low density gas in a narrow parallel-plate channel with uniformly heating walls[END_REF] for isoux walls and [START_REF] Nicolas | Gas ow with heat transfer in micro channels: clarications about Nusselt number[END_REF][START_REF] Nicolas | Revisited analysis of gas convection and heat transfer in micro channels: inuence of viscous stress power at wall on Nusselt number[END_REF] [START_REF] Nicolas | Gas ow with heat transfer in micro channels: clarications about Nusselt number[END_REF][START_REF] Nicolas | Revisited analysis of gas convection and heat transfer in micro channels: inuence of viscous stress power at wall on Nusselt number[END_REF] for isothermal walls, we demonstrate here that the power of the viscous stress at the wall must be included in the total heat ux transmitted by the uid to the wall as soon as a slipping ow occurs at the wall.

A general demonstration and expressions of the right boundary conditions are provided. These BC's are established both for thick and thin walls, and for the H1, H2 and H3 boundary condition types. Finally, we briey remind the published validations of the present formulation for parallel-plate channels submitted to H1 or H2 boundary conditions [START_REF] Shi | Chocked ow of low density gas in a narrow parallel-plate channel with adiabatic walls[END_REF][START_REF] Miyamoto | Chocked ow and heat transfer of low density gas in a narrow parallel-plate channel with uniformly heating walls[END_REF][START_REF] Nicolas | Gas ow with heat transfer in micro channels: clarications about Nusselt number[END_REF][START_REF] Nicolas | Revisited analysis of gas convection and heat transfer in micro channels: inuence of viscous stress power at wall on Nusselt number[END_REF].

Figure 1: Notations for the solid wall, the ow domain, the interface, the boundary conditions and the temperature and velocity proles.

2. General expressions of the thermal conditions on a wall/slipping gas interface

In this paper, we only focus on the thermal boundary conditions. For the governing equations and the dynamical boundary conditions appropriate to model ows of compressible dilute gases in the slip ow regime, one can refer to our previous paper [START_REF] Nicolas | Revisited analysis of gas convection and heat transfer in micro channels: inuence of viscous stress power at wall on Nusselt number[END_REF].

Let us rst consider a gas ow domain of volume Ω g with closed surface Γ g ∪ Γ i (Γ g ∩ Γ i = ), in contact along an interface Γ i with a solid wall of thickness e, volume Ω w , and closed surface Γ w ∪ Γ i = Γ w-∪ Γ w,e ∪ Γ w+ ∪ Γ i (Γ w-∩ Γ w,e ∩ Γ w+ ∩ Γ i = ) (Fig. 1). We are interested in writting the thermal conditions at the interface Γ i between the gas ow domain and the solid wall.

To that aim, the energy equations in the gas and the solid are rst integrated, for a steady problem and without source or sink terms for the sake of simplicity.

Note that, even though the drawing in Fig. 1 is two-dimensional and the wall is at, the present demonstration and formulations are general and can be applied to any three-dimensional geometry of the gas ow domain and solid wall.

By noting h the enthalpy and e c = -→ v 2 /2 the kinetic energy per mass unit of the gas, the steady conservation equation of the total energy of the gas writes (cf. page 341 in [START_REF] Bird | Transport Phenomena[END_REF]):

∇.(ρ - → v h + ρ - → v e c -k g ∇T g -τ . - → v ) = 0 (1) 
where the viscous stress tensor τ is dened for a Newtonian-Stokes uid by :

τ = µ(∇ - → v + ∇ - → v t ) - 2 3 µ∇. - → v I (2) 
and where -→ v , T g , ρ, k g and µ are the velocity, temperature, density, thermal conductivity and dynamical viscosity of the gas. By integrating Eq. ( 1) on Ω g of closed surface Γ g ∪ Γ i (Fig. 1), considering the wall as impermeable ( -→ v .

-→ n = 0 on Γ i ) and using Gauss'theorem, we get:

ˆΓg ρ(h + e c ) - → v -k g ∇T g -τ . - → v . - → n g dΓ g + ˆΓi -k g ∇T g -τ . - → v = - → q i . - → n i dΓ i =Qi = 0 (3) 
where -→ n g is the inward normal unit vector on Γ g , directed from the wall to the gas and denoted -→ n i on Γ i . In Eq. ( 3), the rst integral term is the sum of the enthalpy and kinetic energy convective uxes, the conductive heat ux and the power of the viscous stress through the uid boundary Γ g ; the second integral term represents the total heat ux, Q i [W ], transmitted by the uid to the wall through the interface Γ i . By denition Q i is the integral on Γ i of the total local heat ux density,

q i = - → q i . - → n i [W/m 2 ]
, transmitted by the uid through Γ i . Thus q i is the sum of the diusive heat ux density and the power of the viscous stress at the wall:

q i = -k g,i ∇T g,i -τ . - → v g,i . - → n i (4) 
where the subscript g, i denotes quantities on the gas side of the gas/wall interface (slip-related quantities associated with the gas molecules in contact with the wall).

In the solid wall, with the used assumptions, the energy equation simply writes:

∇.(-k w ∇T w ) = 0 [START_REF] Zhang | A review on slip models for gas microows[END_REF] with k w and T w the thermal conductivity and temperature of the solid wall. By integrating Eq. ( 5) on Ω w of closed surface Γ w ∪ Γ i with Γ w = Γ w-∪ Γ w,e ∪ Γ w+ (Fig. 1) and using Gauss's theorem, we get:

ˆΓw (-k w ∇T w ) . - → n w dΓ w + ˆΓi (-k w ∇T w ) = - → q i . - → n i dΓ i =Qi = 0 (6) 
where -→ n w is the outward normal unit vector on Γ w . Here the rst integral term is the conductive heat ux through the solid boundary Γ w and the second integral is the conductive heat ux through Γ i . This second term thus represents the total heat ux transmitted by the solid through the interface. It is therefore also equal to Q i since, from the continuum mechanics laws, the heat ux is conserved through a zero volume interface without source term. Furthermore, by identication, the heat ux density transmitted locally by the solid wall through the interface is:

q i = (-k w,i ∇T w,i ) . - → n i (7) 
where the subscript w, i denotes quantities on the wall side of the interface. Thus, from Eqs. ( 4) and ( 7), the conservation of the heat ux density, q i , transmitted locally, through an innitesimal gas/wall interface dΓ i , writes:

(-k w,i ∇T w,i ) . - → n i = -k g,i ∇T g,i -τ . - → v g,i . - → n i (8) 
When solving the energy equations ( 1) and ( 5) to compute the two unknown temperature elds, T g and T w , for the gas and the wall, two interface conditions are necessary. The rst one is given by Eq. ( 8): it expresses the total heat ux conservation through the interface. The second one expresses the temperature jump between the local interfacial temperatures of the solid wall, T w,i , and the gas, T g,i . It reads [START_REF] Sharipov | Data on the velocity slip and temperature jump on a gas-solid interface[END_REF][START_REF] Kandlikar | Heat transfer in microchannels -2012 status and research needs[END_REF]:

T w,i = T g,i -L T ∇T g,i . - → n i (9) 
where L T = ξ T λ > 0 is the thermal jump length, with ξ T the temperature jump coecient and λ the gas mean free path. We insist on the fact that the two conditions ( 8) and ( 9) (total heat ux continuity but diusive heat ux discontinuity, and temperature discontinuity) must be simultaneously satised to compute T g and T w .

H1, H2 and H3 thermal boundary conditions for a slipping ow along a thin impermeable wall

The thermal boundary conditions for a slipping ow along a thin impermeable wall (with a zero solid wall thickness) are deduced now. We rst remind the thermal conditions at the external surface of a thick wall (with a non-zero solid wall thickness). Then we make them degenerate towards the thermal conditions for a thin wall.

Three types of thermal boundary conditions are classically applied at the external surfaces of a wall. They are reminded here, referring to Fig. 1 for the used notations:

• H1-imposed surface temperature distribution, T imp :

T w,e = T imp (10) 
• H2-imposed heat ux density distribution, q imp = --→ q imp . -→ n w,e :

k w,e ∇T w,e . - → n w,e = q imp (11) 
• H3-mixed (Fourier/Robin) boundary condition for convective heat transfer; for instance, if h is a total heat transfer coecient at the wall and T ∞ a reference temperature (e.g. ambiant temperature), it writes:

k w,e ∇T w,e . - → n w,e = h(T ∞ -T w,e ) (12) 
where T is the temperature, k the thermal conductivity and the subscript w, e denotes quantities on the wall side of the external surface of the wall of outward normal unit vector -→ n w,e . For thin walls, these thermal boundary conditions are also applied directly at the boundaries of the ow domain when the Knudsen number is less than about Kn = 0.001.

If the thickness, e, of the wall tends to zero, then the energy equation ( 6) in the solid now writes:

-ˆΓw,e (-k w,e ∇T w,e )

= - → q e . - → n w,e dΓ w,e =Qe = ˆΓi (-k w,i ∇T w,i ) = - → q i . - → n i dΓ i =Qi (13) 
where, in the rst integral, Γ w,e is the external wall surface of outward normal unit -→ n w,e (= --→ n i ), Q e is the total heat ux and q e = --→ q e . -→ n w,e the local heat ux density transmitted by the wall to the exterior/surroundings. So, under the present assumption (thin wall), the conservation of the heat ux through the wall locally writes q e = q i that is, from Eqs. ( 4) or ( 8):

k w,e ∇T w,e . - → n w,e = k g,i ∇T g,i . - → n w,e + τ . - → v g,i . - → n w,e (14) 
As a consequence, the H2 and H3 boundary conditions applied on a thin wall to compute the temperature eld of the gas in the presence of slip at wall, write as follows:

• H2-The imposed heat ux boundary condition, Eq. ( 11), becomes:

k g,i ∇T g,i . - → n i + τ . - → v g,i . - → n i = -q imp (15) 
• H3-The mixed boundary condition, Eq. ( 12), with convective heat transfer, becomes:

k g,i ∇T g,i . - → n i + τ . - → v g,i . - → n i = h(T w,e -T ∞ ) (16) 
For the H2 and H3 cases, once the temperature eld T g is solved, the interface gas temperature T g,i is known and the temperature of the thin wall, T w,e = T w,i , is computed from Eq. ( 9). The boundary condition [START_REF] Nicolas | Revisited analysis of gas convection and heat transfer in micro channels: inuence of viscous stress power at wall on Nusselt number[END_REF] can thus be rewriten as a function of the gas temperature only as :

(k g,i + hL T )∇T g,i . - → n i + τ . - → v g,i . - → n i = h(T g,i -T ∞ ) (17) 
Lastly, the H1 boundary condition applied on a thin wall in the presence of a slipping gas ow writes as follows:

• H1-The imposed temperature boundary condition, Eq. ( 10), becomes:

T g,i -L T ∇T g,i . - → n i = T imp (18) 
In this case, once the gas temperature eld T g is solved, the total heat ux density, q w = -→ q w . -→ n i [W/m 2 ], transmitted through the thin wall is given by Eq. ( 4) with q i = q w , that is:

q w = -k g,i ∇T g,i . - → n i dif f usion heat f lux - τ . - → v g,i . - → n i V iscous Stress P ower = q dif f + q V SP (19) 
Thus, in the three cases H1, H2 and H3, the total heat ux transmitted through the wall must take into account two contributions: the diusion heat ux, q dif f , and the power of the viscous stress, q V SP , at the wall (see Eqs. ( 15), ( 16) and ( 19)).

H1 boundary condition for a slipping ow along a thick impermeable wall

At last, the case of a thick wall of thickness e and thermal conductivity k w , with a negligible longitudinal conduction heat ux, is considered (i.e. the diusion heat ux in the direction of the tangential unit vector -→ t and through the wall boundaries Γ w-and Γ w+ on Fig. 1 is negligible). In this case, if the problem is steady, the energy equation does not need to be solved in the solid wall. On the other hand, its thermal resistance r th (r th = e/k w for a plane wall) must be accounted for if a H1 condition is applied. Thus, if T imp is imposed at the external wall of the thick wall, equation ( 18) is replaced by the following condition at the gas/wall interface:

T g,i = T imp -r th q w + L T ∇T g,i . - → n i (20) 
where q w is given by Eq. [START_REF] Li | Eect of surface radiation on natural convective ows and onset of ow reversal in asymmetrically heated vertical channels[END_REF]. Therefore the H1 condition for this thick wall writes:

T g,i -(r th k g,i + L T ) ∇T g,i . - → n i = T imp + r th τ . - → v g,i . - → n i (21) 
Note that the heat ux, q w , transmitted from the uid through the wall is still given by Eqs. ( 15), ( 16) and [START_REF] Li | Eect of surface radiation on natural convective ows and onset of ow reversal in asymmetrically heated vertical channels[END_REF] for the H2, H3 and H1 conditions in this case.

Discussion about the wall heat ux and Nusselt number

The expressions of the imposed heat ux q imp in Eq. ( 15) or total heat ux q w transmitted to the wall in Eq. ( 19) are similar, for instance, to the one when there are coupled convective and radiative thermal exchanges at a wall [START_REF] Li | Eect of surface radiation on natural convective ows and onset of ow reversal in asymmetrically heated vertical channels[END_REF] or when there are both thermal diusion and phase change at a wall due to condensation or evaporation [START_REF] Sun | Natural convection and wall condensation or evaporation in humid air-lled cavities subjected to wall temperature variations[END_REF]. In these two cases, the heat ux density imposed at the wall also balances the total heat ux density transmitted through the wall and it can be written:

q imp = q w = q dif f + q rad = -(k∇T. - → n ) g,i + ( - → q rad . - → n ) g,i radiation heat f lux (22) 
q imp = q w = q dif f + q lat = -(k∇T. - → n ) g,i + ( - → q lat . - → n ) g,i latent heat f lux (23) 
One important consequence of Eqs. ( 15), ( 16) and ( 19) concerns the Nusselt number denition that should be adopted to compare theory with measurements in experiments on gas convection in the slip ow regime. The Nusselt number should be dened from the total heat ux transmitted by the uid through the wall and not only from the diusive ux at the wall:

N u tot = q w q ref = q dif f q ref + q V SP q ref (24)
that is:

N u tot = N u dif f + N u V SP = -k g,i ∇T g,i . - → n i q ref + -τ . - → v g,i . - → n i q ref (25) 
where q ref is a reference heat ux density. For instance, in a micro-channel ow, q ref = k g (T w,i -T b )/D h with T b the average bulk temperature and D h the hydraulic diameter.

The numerical solutions obtained from the above boundary conditions and the full energy equation in its enthalpic form, that is including the viscous dissipation and the pressure work source terms, are validated by comparisons between several experimental data and numerical simulations of the Nusselt numbers. These comparisons are carried out in [START_REF] Shi | Chocked ow of low density gas in a narrow parallel-plate channel with adiabatic walls[END_REF][START_REF] Miyamoto | Chocked ow and heat transfer of low density gas in a narrow parallel-plate channel with uniformly heating walls[END_REF] for adiabatic and isoux micro-channels and in [START_REF] Nicolas | Gas ow with heat transfer in micro channels: clarications about Nusselt number[END_REF][START_REF] Nicolas | Revisited analysis of gas convection and heat transfer in micro channels: inuence of viscous stress power at wall on Nusselt number[END_REF] for isothermal wall micro-channels. The measured values of the Nusselt numbers in [START_REF] Shi | Chocked ow of low density gas in a narrow parallel-plate channel with adiabatic walls[END_REF][START_REF] Miyamoto | Chocked ow and heat transfer of low density gas in a narrow parallel-plate channel with uniformly heating walls[END_REF] are found again by the authors using the full thermal model associated with the boundary condition [START_REF] Nicolas | Gas ow with heat transfer in micro channels: clarications about Nusselt number[END_REF] and Eqs.

(24-25) for the denition of the Nusselt number. In the same way, using a full thermal model, the authors in [START_REF] Nicolas | Gas ow with heat transfer in micro channels: clarications about Nusselt number[END_REF][START_REF] Nicolas | Revisited analysis of gas convection and heat transfer in micro channels: inuence of viscous stress power at wall on Nusselt number[END_REF] show that the very small values of the average Nusselt numbers obtained in the experiments by Demsis et al. [START_REF] Demsis | Experimental determination of heat transfer coecient in the slip regime and its anomalously low value[END_REF][START_REF] Demsis | Heat transfer coecient of gas owing in a circular tube under rareed condition[END_REF] in a quasi isothermal micro-channel can only be explained from the denition (24-25) of N u tot while N u dif f provides Nusselt number values several orders larger than the measured ones. Thus the computation of the diusive Nusselt numbers, N u dif f , reported in the majority of the published papers, cannot provide on its own the convection heat transfer coecients measured in the experiments in the slip ow regime when the power of the viscous stress is not negligible. About the magnitude order of the power of the viscous stress, a dimensional analysis of the dierent terms of the energy equation and thermal boundary conditions is proposed in appendix A of [START_REF] Nicolas | Revisited analysis of gas convection and heat transfer in micro channels: inuence of viscous stress power at wall on Nusselt number[END_REF].

Lastly, note that these thermal boundary conditions including the viscous stress power at the wall must be used in conjunction with the full energy equation containing both the pressure work and the viscous dissipation source terms when gaseous micro-ows in the slip regime are considered [START_REF] Shi | Chocked ow of low density gas in a narrow parallel-plate channel with adiabatic walls[END_REF][START_REF] Miyamoto | Chocked ow and heat transfer of low density gas in a narrow parallel-plate channel with uniformly heating walls[END_REF][START_REF] Ramadan | Pressure work and viscous dissipation eects on heat transfer in a parallel-plate microchannel gas ow[END_REF][START_REF] Nicolas | Revisited analysis of gas convection and heat transfer in micro channels: inuence of viscous stress power at wall on Nusselt number[END_REF]. Indeed, it can be shown that the sum of the pressure work and viscous dissipation source terms are in the same magnitude order as the viscous stress power at the wall [START_REF] Nicolas | Revisited analysis of gas convection and heat transfer in micro channels: inuence of viscous stress power at wall on Nusselt number[END_REF].

Conclusion

This technical note proves that the power of the viscous stress at the wall must be included in the total heat ux transmitted by the uid to the wall, as soon as a slipping ow is present at the wall. Consequently, it must be included in the thermal boundary conditions and also in the denition of the total Nusselt number at the wall, in particular when heat transfer is computed in weakly rareed gaseous ows in micro-devices. The demonstration is established in a general context, for thick and thin walls, and for the H1, H2 and H3 thermal boundary conditions. Experimental and numerical verications of the necessity to take into account the viscous stress power contribution to the wall heat ux are also discussed. To end, one must remember that heat transfer in dilute gases in the slip ow regime implies both a temperature jump and a conduction heat ux jump between the gas and the wall.

Note that q 0 in Eq. (5) of[START_REF] Hadjiconstantinou | Dissipation in small gaseous ows[END_REF] is the thermal heat ux, that is the diusive part of the heat ux exchanged between the wall and the uid, and not the imposed heat ux as considered by some authors[START_REF] Vocale | Shear work contribution to convective heat transfer of dilute gases in slip ow regime[END_REF], which led them to ill-interpretations of the boundary conditions.