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Abstract 19 

This study presents a hybrid framework for single tree detection from airborne laser scanning (ALS) data 20 

by integrating low-level image processing techniques into a high-level probabilistic framework. The 21 

proposed approach modelled tree crowns in a forest plot as a configuration of circular objects. We took 22 

advantage of low-level image processing techniques to generate candidate configurations from the canopy 23 

height model (CHM): the treetop positions were sampled within the over-extracted local maxima via local 24 

maxima filtering, and the crown sizes were derived from marker-controlled watershed segmentation using 25 

corresponding treetops as markers. The configuration containing the best possible set of detected tree 26 

objects was estimated by a global optimization solver. To achieve this, we introduced a Gibbs energy, 27 

which contains a data term that judges the fitness of the objects with respect to the data, and a prior term 28 

that prevents severe overlapping between tree crowns on the configuration space. The energy was then 29 

embedded into a Markov Chain Monte Carlo (MCMC) dynamics coupled with a simulated annealing to 30 

find its global minimum. In this research, we also proposed a Monte Carlo-based sampling method for 31 

parameter estimation. We tested the method on a temperate mature coniferous forest in Ontario, Canada 32 

and also on simulated coniferous forest plots with different degrees of crown overlap. The experimental 33 

results showed the effectiveness of our proposed method, which was capable of reducing the commission 34 

errors produced by local maxima filtering, thus increasing the overall detection accuracy by 35 

approximately 10% on all of the datasets. 36 

Keywords: 37 

LiDAR, Forestry, Single Tree Detection, Local Maxima Filtering, Marker-controlled Watershed 38 

Segmentation, Stochastic Model, Energy Minimization, MCMC 39 
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1 Introduction 40 

Remote sensing techniques have become an integral part of forest inventory to provide accurate, precise 41 

and timely forest and tree characteristics at different scales to support practices of forest management and 42 

planning (Dubayah and Drake, 2000; Naesset et al., 2004; Tomppo et al., 2002; Wulder, 1998; Xie et al., 43 

2008). Among these techniques, small-footprint airborne laser scanning (ALS), also known as airborne 44 

LiDAR, has rapidly gained popularity in forest inventory in recent decades. The unique capability of ALS 45 

to directly measure the 3D structural information of trees and the elevation of the terrestrial surface under 46 

the canopy in forests makes ALS an alternative to traditional passive optical remote sensing technology, 47 

or even the preferred method, to derive certain forest parameters, such as canopy height, crown 48 

dimensions, stand volume, basal area, and above-ground biomass (Bortolot and Wynne, 2005; Hyyppä 49 

and Inkinen, 1999; Means et al., 2000; Næsset, 1997; Naesset, 2002). 50 

Characterization of forest resources using ALS can be broadly categorized into area-based approaches 51 

(ABAs) and individual-tree-based approaches (ITDs) (Hyyppä et al., 2008). ABAs rely on the statistical 52 

principle and predicts forest attributes based on parametric regression or nonparametric imputation 53 

models built between field measured variables and features derived from ALS data (Maltamo et al., 2006; 54 

Naesset, 2002). ABAs can perform under a low ALS point density, and is the method currently applied in 55 

operational forest inventory to provide a wall-to-wall estimation of forest attributes (Naesset, 2004; White 56 

et al., 2013). ITDs measure or predict tree-level variables on the basic unit of the individual trees from 57 

ALS data and then aggregate them to obtain stand-level forest inventory results (Hyyppä et al., 2012).  58 

Despite the added costs and amount of information to store and process high-density ALS data, ITDs are 59 

of significant interest in forest inventory and is a motivating research topic. The primary advantage of 60 

ITDs over ABAs is the supply of tree lists and the ability to directly derive the true stem distribution 61 

series, which would result in better prediction for timber assortments (Vastaranta et al., 2011a). 62 

Generally, this information is invaluable in forest planning-related simulation and optimization, logging 63 
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operation planning and wood supply logistics (Vastaranta et al., 2011b), e.g., detection of harvest trees 64 

and forest growth determination (Yu et al., 2004). Another advantage of ITDs is that they can reduce the 65 

amount of or potentially replace the expensive fieldwork required for ABAs (Hyyppä et al., 2008; 66 

Vastaranta et al., 2012). Additionally, tree species classification based on ITD has been reported in recent 67 

studies (Brandtberg, 2007; Heinzel and Koch, 2011; Orka et al., 2009; Suratno et al., 2009), which could 68 

potentially improve the prediction of species-specific forest attributes (Heurich, 2008; Yao et al., 2012; 69 

Yu et al., 2010). Furthermore, the combination of ITD and ABA, called the semi-ITD method, to improve 70 

the estimation accuracy has also been viewed as a future method for forest inventory (Breidenbach et al., 71 

2010; Hyyppä et al., 2012; Vastaranta et al., 2012). Therefore, individual tree detection techniques are 72 

still of significant importance from the practical forestry viewpoint. 73 

Accordingly, numerous methods have been proposed to detect single trees from ALS data. Most of the 74 

methods focus on the generation of the canopy height model (CHM), which provides an accurate 75 

representation of the outer surface of the tree canopy. The peaks and valleys on the CHM generated from 76 

high-density ALS data are better estimations of treetop positions and crown edges than can be obtained 77 

from aerial photographs or satellite imageries. Therefore, many studies have extended methods developed 78 

for passive optical imageries to detect single trees from ALS data. Those methods include, but are not 79 

limited to, local maxima filtering (Popescu et al., 2002; Wulder et al., 2000), region growing (Erikson, 80 

2003; Solberg et al., 2006), valley following (Gougeon, 1995; Leckie et al., 2003), template matching 81 

(Korpela et al., 2007; Pollock, 1996), watershed segmentation and its variance marker-controlled 82 

watershed segmentation (Chen et al., 2006; Pyysalo and Hyyppa, 2002; Wang et al., 2004), and multi-83 

scale segmentation (Brandtberg and Walter, 1998; Brandtberg et al., 2003). 84 

Among the proposed methods, local maxima filtering (LM) and marker-controlled watershed 85 

segmentation (MCWS) are the most commonly used and are ready for operational application because of 86 

their rapid implementation while maintaining the capability to produce relatively accurate results 87 

(Kaartinen et al., 2012). Popescu et al. (2002) have been the first to test a variable window local maxima 88 
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filtering on the CHMs, attempting to overcome errors of omission and commission associated with fixed 89 

window local maxima filtering (Hyyppä et al., 2001).  90 

Once the treetops are detected, MCWS is well suited to delineate the tree crown segments from the CHM. 91 

MCWS, which possesses the advantages of other segmentation methods of region growing and edge 92 

detection, was introduced by Meyer and Beucher (1990) to overcome the over-segmentation problem of 93 

ordinary watershed segmentation. In MCWS, user-specified markers are used as the marker function to 94 

perform the segmentation; for additional details, see Gonzalez and Woods (2008). In the resultant 95 

segmentation, there will be one segment corresponding to each marker; in the case of single tree 96 

detection, one tree crown will be captured by one treetop. This result indicates the detection accuracy of 97 

MCWS, subject to the accuracy of the pre-determined local maxima as true treetops in the previous stage. 98 

The issue with LM is the selection of the filter window size and the determination of the relationship 99 

between the crown size and the tree height. In the comparison of tree detection algorithms (Kaartinen et 100 

al., 2012), the local maxima-based approach tends to produce high commission errors. Especially in 101 

coniferous forests, spurious treetops are detected within the tree crowns from large branches. In other 102 

cases, local maxima filtering produces a low commission error, and the omission error often increases 103 

because small tree crowns are more likely to be undetected (Gebreslasie et al., 2011).  104 

Probabilistic methods represent another branch of powerful tools in image analysis. These methods have 105 

proven to hold great promise in solving inverse problems, including image segmentation, image 106 

restoration, and feature extraction (Descombes and Zerubia, 2002). In particular, stochastic models have 107 

evolved from random fields to object processes, and the work has shifted from an early focus on ‘low-108 

level’ tasks that aim to de-noise, sharpen, and segment images to solving ‘high-level’ tasks of feature 109 

recognition, i.e., describing an image by its content (Van Lieshout, 2009). Additional details on low-level 110 

and high-level image analysis tasks can be found in Sonka et al. (2008). 111 
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Marked point processes, detailed in Van Lieshout (2000), are among the most efficient stochastic models 112 

used to exploit the random variables whose realizations are configurations of geometric objects or shapes. 113 

Generally, in these processes, after a probability distribution measuring the quality of each object 114 

configuration is defined in the configuration space, the maxima density estimator is searched for by the 115 

Markov Chain Monte Carlo (MCMC) sampler (Hastings, 1970) coupled with conventional simulated 116 

annealing (Metropolis et al., 1953). This process has led to convincing experimental results in various 117 

image analysis and feature extraction applications, such as road networks extraction (Lacoste et al., 2005), 118 

road mark detection (Tournaire and Paparoditis, 2009), and 3D building reconstruction (Lafarge et al., 119 

2008; Ortner et al., 2008; Tournaire et al., 2010). 120 

Likewise, several stochastic models have been proposed to detect tree crowns from remote sensing data. 121 

Descombes and Pechersky (2006) have presented a three-state Markov Random Field (MRF) model to 122 

detect the tree crowns from aerial imageries. This approach addressed the problem as an image 123 

segmentation problem and works on the pixel level. Each pixel is assigned to one of the following three 124 

states: (i) vegetation, (ii) background, and (iii) center of trees. Although the MRF was defined on the 125 

pixel level, the label update was performed on the object level using elliptical templates of crowns. 126 

Furthermore, Perrin (2005, 2006) has employed marked point processes to detect tree crowns in 127 

plantations from color infrared (CIR) aerial imageries. Tree crowns in the remote sensing image are 128 

modeled as a configuration of discs or ellipses. In both of the studies, tree crowns were detected by 129 

maximizing a Bayesian criterion, such as Maximum A Posteriori (MAP), which became an energy 130 

minimization problem and was solved in a simulated annealing framework. 131 

These stochastic models provide a powerful framework to allow the inclusion of spatial interactions 132 

between objects in the prior while enabling a measure of consistency between objects and the image in 133 

the data term. However, the inherited property of stochastic models requires exploration of a large 134 

configuration space searching for the optimal configuration, especially for non-data-driven models, which 135 
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do not employ any low-level information that can be extracted from the images. The optimization process 136 

is typically lengthy and computationally expensive.  137 

This study presents a hybrid framework used to detect single trees from ALS data by integrating the low-138 

level image processing techniques, i.e., LM and MCWS, into a high-level probabilistic model. The 139 

proposed model aims to improve the detection accuracy compared with traditional LM. Moreover, this 140 

model samples in a reduced configuration space by utilizing image features extracted by LM and MCWS, 141 

which potentially accelerate the optimization process compared with classical stochastic models, e.g., 142 

marked point processes. The estimation of parameters is another issue. In most cases, the parameters are 143 

tuned by trial and error. We address the problem of parameter estimation by proposing a Monte Carlo 144 

based method.  145 

This paper is organized as follows. Section 2 describes the study area and the data used in the study. 146 

Section 3 is dedicated to the formulation of our proposed model. We provide an overview of the general 147 

framework of energy modeling for the stochastic model, followed by detailing the model design from the 148 

configuration space definition to the energy formulation, parameter estimation and model optimization. 149 

Finally, an accuracy assessment method is included. The experimental results of the parameter estimation 150 

and tree detection on real and simulated ALS data are given in Section 4, and Section 5 presents a 151 

discussion on the proposed model and the achieved results. Conclusions and certain perspectives for 152 

future studies are outlined in Section 6.  153 

2 Materials 154 

2.1 Study Area 155 

The study area is a temperate mature coniferous forest located in the Great Lakes-St. Lawrence region 156 

approximately 60 km east of Sault Ste. Marie, Ontario, Canada (Figure 1(a)). The natural vegetation 157 

dominant in the coniferous forest is eastern white pine (Pinus strobus) and jack pine (Pinus banksiana), 158 

mixed with some red pine (Pinus resinosa) and black spruce (Picea mariana). The forest has an 159 
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intermediate dense canopy with some open space. The canopy height is homogenous with an average 160 

height of approximately 20 m. There are some small white pines and shrubs growing in the understory 161 

with a height of approximately 2-3 m (Figure 1(b)-(c)).  162 

*****Approximate position of Figure 1 ***** 163 

2.2 Field Survey 164 

To test the proposed single tree detection model, three plots with sizes of 82 × 95 m, 50 × 50 m and 80 × 165 

80 m were selected, and a field survey was conducted in August 2009. The forest mensuration campaign 166 

determined the tree height (ℎ𝑖, m) with a Vertex hypsometer and the diameter at beast height (DBH) with 167 

a DBH tape. The positions of trees with a height greater than 5m (ℎ𝑖 ≥ 5) were determined using GPS 168 

and the total station. The crown width and species were also measured and recorded. The stem densities 169 

of trees with a value of ℎ𝑖 ≥ 5 are 154/ha, 160/ha and 190/ha, with increasing values for the three study 170 

plots. 171 

2.3 Airborne Laser Scanning Data 172 

The ALS data were acquired over the study area by a Riegl LMS-Q560 laser scanner during the same 173 

period as the field work. The flight was performed at a height of approximately 300 m above the ground 174 

with a maximum scanning angle of 22.5º, rendering a swath width of approximately 300 m. The flight 175 

line was designed to pass over the planned forest plots; therefore, they were located in the middle part of 176 

the swath, and the obscure effect of the crowns can be minimized for the plots of interest. The device 177 

recorded full-waveforms that were processed into discrete point clouds with up to 5 returns per pulse. The 178 

data collection configuration yielded a high point density of approximately 30 points per m2 over the 179 

forested area. The returns were classified as ground and vegetation points using TerraScan software 180 

(TerraSolid Ltd, Helsinki, Finland). The CHM with a resolution of 0.5 m was derived as the difference 181 

between the digital surface model (DSM) and the digital elevation model (DEM), interpolated from 182 

vegetation points and ground points, respectively (Hyyppä et al., 2001).  183 
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2.4 Simulated ALS Data 184 

Vauhkonen et al. (2012) noted that the performance of the ITD algorithms typically depends on the tree 185 

density and the spatial distribution of trees, i.e., clustering patterns. To test the robustness of the proposed 186 

model more thoroughly, simulated ALS data of coniferous forest plots with a higher stem density than 187 

real forest plots and different degrees of crown overlap were also prepared in our study. First, three forest 188 

plots, each with a size of 100 × 100 m, were generated with a hard-core process in which the crown 189 

overlap was controlled by the interaction distance specified in the hard-core process. The smaller the 190 

interaction distance in the hard-core process, the more likely the tree objects will be overlapped in the 191 

resultant plots. Figure 2(a)-(c) show the three resulting point processes. With an increasing degree of 192 

crown overlap, the tree density in the plots also increases. The stem densities of trees with a value of ℎ𝑖 ≥193 

5 in the three forest plots are 186/ha, 234/ha and 261/ha, respectively. 194 

*****Approximate position of Figure 2***** 195 

ALS point clouds of individual trees were then selected according to the crown size from a coniferous 196 

tree template library and placed in each position to synthesize the ALS data of the forest plot. The tree 197 

template library was prepared from ALS data acquired from the study area we surveyed. A more detailed 198 

procedure can be found in Zhang and Sohn (2010). The generated ALS point clouds viewed from the 199 

nadir direction are shown in Figure 2(d)-(f). The plots from left to right show forest plots with separated, 200 

touching and overlapping tree crowns, respectively. 201 

In the simulated forest plots, the tree position, height and crown size are exactly known, therefore 202 

providing ideal reference data to examine the performance of our proposed model under different forest 203 

conditions. The simulated ALS data can also be used to validate the parameter estimation method 204 

proposed in Section 3.5 and to investigate the influence that the degree of crown overlap has on the 205 

parameter setting in the proposed model. 206 
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3 Methodology 207 

3.1 General Framework of Energy Modeling for the Stochastic Models 208 

In a probabilistic framework, feature extraction or object detection from remotely sensed data can be 209 

viewed as an inverse problem. In object oriented stochastic models, features or objects are represented as 210 

a configuration of geometric shapes or objects. To find the best configuration 𝐱 based on the observed 211 

data 𝐲 (the image), we must find the configuration 𝐱̂ maximizing the posterior probability, according to 212 

the following equation: 213 

 𝐱̂ = 𝑎𝑟𝑔 max
𝐱∈Ω

ℙ(𝑋 = 𝐱|𝑌 = 𝐲) (1) 

where Ω is the configuration space in which 𝐱 resides. 𝑋 and 𝑌 are two random variables. 214 

The probability of the model can also be specified in the form of a Gibbs energy 𝑈(𝐱), which implicitly 215 

depends on the constant value 𝐲 given by the observation:  216 

 
ℙ(𝑋 = 𝐱|𝑌 = 𝐲) =

1

𝑍
𝑒−𝑈(𝐱)  (2) 

where 𝑍 is a normalizing constant such that 𝑍 = ∫ 𝑒−𝑈(𝐱)
𝐱∈Ω

. The issue is then reduced to the energy 217 

minimization problem of finding the Maximum A Posteriori estimator 𝐱̂ = 𝑎𝑟𝑔 max
𝐱∈Ω

ℙ(𝑋 = 𝐱|𝑌 = 𝐲), 218 

which is equivalent to finding the configuration minimizing the Gibbs energy 𝑈(. ), i.e., 𝐱̂ =219 

𝑎𝑟𝑔 min
𝐱∈Ω

𝑈(𝐱). Generally, an MCMC embedded simulated annealing is used to find the optimal 220 

configuration 𝐱̂ .The optimization process is particularly interesting because the complex computation of 221 

the normalizing constant 𝑍 is avoided. 222 

3.2 Overall Workflow of the Proposed Model 223 

The flow chart of the proposed method is shown in Figure 3. As our primary contribution, the blue blocks 224 

show the process how we construct a constrained configuration space for tree detection, by taking 225 
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advantages of low-level image processing techniques, which is detailed in Section 3.3. The red block 226 

involves techniques of energy formulation and parameter estimation, which are covered in Section 3.4 227 

and Section 3.5, respectively. The optimization process illustrated by the yellow blocks is described in 228 

Section 3.6. 229 

*****Approximate position of Figure 3***** 230 

3.3 Configuration Space Definition of the Proposed Model 231 

Let us first recall the configuration space definition in the marked point process. In remote sensing 232 

images, the distribution of tree crowns in forests can be represented by a marked point process of disks. 233 

The associated space 𝒮 can be written according to the following equation: 234 

 𝒮 = 𝒫 × ℳ = [0, 𝑋𝑀] × [0, 𝑌𝑀] × [𝑟𝑚, 𝑟𝑀] (3) 

where 𝑋𝑀 and 𝑌𝑀 are the width and height of the image ℐ, respectively, and (𝑟𝑚, 𝑟𝑀) are the minimum 235 

and maximum radii of the disks in the configuration, respectively. Note that 𝑥 = (𝑝, 𝑟) ∈ 𝒮 is a tree 236 

object, where 𝑝 ∈ 𝒫 is its position and 𝑟 ∈ ℳ its radius. The configuration space Ω of the marked point 237 

process of the tree crowns can be written according to the following equation: 238 

 
Ω = ⋃ Ω𝑛

∞

𝑛=0

, Ω𝑛 = {{𝑥1, … , 𝑥𝑛} ⊂ 𝒮} (4) 

that contains all of the configurations of a finite number of tree objects 𝑥𝑖 of 𝒮. 239 

In this study, we seek to construct a constrained configuration space Ω𝑇 ⊂ Ω in which the optimal or near 240 

optimal configuration resides. We will then limit the search for the optimal configuration in the 241 

constrained space Ω𝑇, which could significantly reduce the computation demand of random sampling in Ω 242 

in the optimization process.  243 
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We begin by constructing a CHM image, representing the height of the tree crowns above ground from 244 

the classified ALS data. Then, we extract the local maxima as potential treetops from the CHM using 245 

local maxima filtering with a variable window size method adapted from Popescu et al. (2002). Our rule 246 

is to detect as many true treetops and reduce omission errors in the first stage. Therefore, the filters of the 247 

LM are set with relative small size empirically based on the priori knowledge about the plots to over-248 

populate initial ‘treetops’. Let 𝑇 represents the set of extracted local maxima: 𝑇 = {𝑡1, … , 𝑡𝑁}, ∀𝑖 ∈249 

{1, … , 𝑁}, 𝑡𝑖 ∈ 𝒫, where 𝑁 is the total number of local maxima extracted. The true treetops within the set 250 

of local maxima 𝑇 are noted as 𝑇𝑜 ⊂ 𝑇.  251 

Given any subset of local maxima 𝐶 ⊂ 𝑇, they can be used as markers in marker-controlled watershed 252 

segmentation to obtain a partition 𝑆(𝐶) = {𝑠𝐶1
, … , 𝑠𝐶𝑛(𝐶)

} of the CHM, where 𝑠𝐶𝑖
 is the corresponding 253 

segment of the local maxima 𝑡𝐶𝑖
∈ 𝐶. 𝑆(𝐶) is a low-level presentation of the CHM image, and the set of 254 

segments are assumed to be a reasonable approximation of the tree crowns with respect to the set of local 255 

maxima 𝐶, where 𝑛(𝑐) is the number of local maxima in 𝐶. 256 

A tree object 𝑥𝐶𝑖
= (𝑡𝐶𝑖

, 𝑟𝐶𝑖
) is then defined by its location and radius on the segment 𝑠𝐶𝑖

, where the tree 257 

location is the corresponding local maximum 𝑡𝐶𝑖
, and the radius 𝑟𝐶𝑖

 is calculated as the average radius of 258 

the segment 𝑠𝐶𝑖
. A configuration 𝐱(𝐶) = {𝑥𝐶1

, … , 𝑥𝐶𝑛(𝐶)
} is then constructed from the set of local maxima 259 

𝐶. The entire procedure of configuration construction is illustrated in Figure 4. 260 

*****Approximate position of Figure 4***** 261 

We note all of the configurations generated from the subsets of local maxima 𝑇 as Ω𝑇 = {𝐱(𝐶), 𝐶 ⊂ 𝑇}. 262 

Apparently, Ω𝑇 is a discrete subspace of the configuration space Ω, which cardinality is 263 

card({𝐱(𝐶), 𝐶 ⊂ 𝑇}) = card({𝐶, 𝐶 ⊂ 𝑇}) = 2card(𝑇). In this manner, we build a constrained 264 

configuration space Ω𝑇 from which to sample the optimal configuration. 265 
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3.4 Energy Formulation 266 

As previously mentioned, the Gibbs energy 𝑈(𝐱) is defined on the configuration space to measure the 267 

goodness or cost of each object configuration. The Gibbs energy can be further expressed as a weighted 268 

sum of a prior term 𝑈𝑝(𝐱) that favors a specific spatial pattern in configuration 𝐱 and a data term 𝑈𝑑(𝐱) 269 

that quantifies the quality of the configuration with respect to the data, according to the following 270 

equation: 271 

 𝑈(𝐱) = 𝛼𝑈𝑑(𝐱) + (1 − 𝛼)𝑈𝑝(𝐱) (5) 

where 𝛼 ∈ [0,1] specifies the relative weights of the two energy terms. 272 

We intend to make simple and effective choices for the design of each energy term. The basic 273 

assumptions are the geometric properties of trees in mature coniferous forests in which treetops are 274 

typically located in the central part of tree crowns, and tree crowns are of a circular shape when viewed 275 

from the nadir direction (Chen et al., 2006; Gleason and Im, 2012). We also tend to penalize certain 276 

patterns in the configurations in the prior term that tree crowns should not severely overlap. 277 

3.4.1 Data Term 278 

The data term is in accordance with the aforementioned assumption, indicating the likelihood of the tree 279 

objects relative to the low-level segments obtained from the CHM image. Certain geometric features are 280 

extracted from the underlying segment of each object, and energy functions are proposed to measure how 281 

well those features support the object as a plausible tree.  282 

We incorporate the following two energy functions to reflect the assumption: symmetric function 𝑈𝑑
𝑠(𝑥) 283 

and area ratio function 𝑈𝑑
𝑎(𝑥). The data term is a weighted sum of the two energy functions, subject to a 284 

hard constraint on the object radii, according to the following equation: 285 
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𝑈𝑑(𝐱) = {
∑(𝑤1𝑈𝑑

𝑠(𝑥) + (1 − 𝑤1)𝑈𝑑
𝑎(𝑥))

𝑥∈𝐱

  𝑖𝑓 𝑟(𝑥) ∈ [𝑟𝑚, 𝑟𝑀]

+∞  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

where 𝑤1 is the weight regulating the relative importance of the symmetric and area ratio functions in the 286 

data term. 287 

(i) Symmetric Function 𝑼𝒅
𝒔 (𝒙) 288 

A symmetric function is defined as a measure of how well a treetop is located in the central part of the 289 

crown and the degree to which the tree crown is of a symmetric circular shape. For a given tree object 𝑥 290 

with corresponding segment 𝑠𝑥, the radii from the treetop point 𝑇 to the edge of the segment in 8 291 

directions with constant angular intervals 𝑇𝑃𝑖
̅̅ ̅̅  (𝑖 = 1, … ,8) are first extracted (see Figure 5). The average 292 

and standard deviation of the 8 radii are noted as 𝑟(𝑥) and ∆𝑟(𝑥). The asymmetric ratio 𝑅𝑠𝑦𝑚(𝑥) ∈ [0, 1] 293 

of object 𝑥 is calculated as the coefficient of variance of the radii according to the following equation: 294 

 
𝑅𝑠𝑦𝑚(𝑥) =

∆𝑟(𝑥)

𝑟(𝑥)
 (7) 

A sigmoid function is then used to define the symmetric function to penalize asymmetric tree crowns 295 

given by Eq. (8):  296 

 
𝑈𝑑

𝑠(𝑥) =
1

1 + exp − (
𝑅𝑠𝑦𝑚(𝑥) − 𝜇𝑠

𝜆𝑠
)

− 1 
(8) 

where 𝜇𝑠 and 𝜆𝑠 are parameters set to control the position and slope of the sigmoid function, respectively. 297 

The larger the asymmetric ratio 𝑅𝑠𝑦𝑚(𝑥) ∈ [0, 1], the higher the symmetric function score 𝑈𝑑
𝑠(𝑥) ∈298 

[−1, 0], which indicates that the treetop is more likely to be a false treetop. 299 

*****Approximate position of Figure 5***** 300 

(ii) Area Ratio Function 𝑼𝒅
𝒂(𝒙) 301 
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Another area ratio term 𝑈𝑑
𝑎(𝑥) is included to re-enforce the assessment of the geometric features of the 302 

objects in the configuration. 303 

Likewise, an area ratio 𝑅𝑎𝑟𝑒𝑎 ∈ [0, 1] is first calculated. The ratio is computed as the proportion of the 304 

intersection of object 𝑥 and the underlying segments 𝑠𝑥 to the entire area of the segments 𝐴(𝑠𝑥) by Eq. 305 

(9). As the area ratio increases, the degree of the geometric feature of the object increases, in accordance 306 

with the hypothesis (see Figure 6). 307 

 
𝑅𝑎𝑟𝑒𝑎(𝑥) =

𝐴(𝑥 ∩ 𝑠𝑥)

𝐴(𝑠𝑥)
 (9) 

Based on the area ratio of the object, the area ratio function is defined according to the following 308 

equation: 309 

 
𝑈𝑑

𝑎(𝑥) =
1

1 + exp − (
𝑅𝑎𝑟𝑒𝑎(𝑥) − 𝜇𝑎

−𝜆𝑎
)

− 1 
(10) 

where 𝜇𝑎 and 𝜆𝑎 are used to control the position and slope of the sigmoid function, respectively. 310 

*****Approximate position of Figure 6***** 311 

3.4.2 Prior Term 312 

The prior term introduces a priori knowledge concerning the layout of the objects. In most mature 313 

coniferous forest stands, tree crowns will not overlap too severely. However, overlap between objects 314 

should not be totally prohibited. A repulsive term is then defined as a soft penalizing function to penalize 315 

severe overlaps in the configuration. 316 

(i) Overlap Function 𝑼𝒑
𝒐(𝐱) 317 

To define the overlap function, we first introduce a symmetric neighborhood relationship between 318 

objects. We say two objects 𝑥𝑖 = (𝑡𝑖 , 𝑟𝑖) and 𝑥𝑗 = (𝑡𝑗 , 𝑟𝑗) are overlapping if the distance between them is 319 
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smaller than the sum of their radii, noted as 𝑑(𝑡𝑖 , 𝑡𝑗) < 𝑟𝑖 + 𝑟𝑗, and we write 𝑥𝑖~𝑥𝑗. Then, an overlap ratio 320 

𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ∈ [0, 1] is calculated as the ratio of the overlap area between the two objects normalized by the 321 

area of the smaller object, according to the following equation (see Figure 7): 322 

 
𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑥𝑖 , 𝑥𝑗) =

𝐴(𝑥𝑖 ∩ 𝑥𝑗)

min (𝐴(𝑥𝑖), 𝐴(𝑥𝑗))
 (11) 

The overlap score 𝑂(𝑥𝑖 , 𝑥𝑗) on 𝑥𝑖~𝑥𝑗 is then given according to the following equation: 323 

 
𝑂(𝑥𝑖 , 𝑥𝑗) =

1

1 + exp − (
𝑅𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑥𝑖 , 𝑥𝑗) − 𝜇𝑜

𝜆𝑜
)

 
(12) 

where 𝜇𝑜 and 𝜆𝑜 are set to control the position and slope of the sigmoid function, respectively. 324 

The overlap function of configuration 𝑋 can be expressed according to the following equation: 325 

 𝑈𝑝
𝑜(𝐱) = ∑ 𝑂(𝑥𝑖 , 𝑥𝑗)

𝑥𝑖~𝑥𝑗

, ∀𝑥𝑖 , 𝑥𝑗 ∈ 𝐱, 𝑖 ≠ 𝑗 (13) 

*****Approximate position of Figure 7***** 326 

Compared with a classical Marked Point Process, limiting the search space to configurations generated 327 

from a subset of a finite set of seed points 𝑇 (the pre-extracted local maxima) prevents multiple detection 328 

problems. The global energy does not have to be designed to prevent the selection of multiple instances of 329 

the same tree because duplicated trees are not part of the search space. Thus, the prior term contains only 330 

the overlap function and is written according to the following equation: 331 

 𝑈𝑝(𝐱) = 𝑈𝑝
𝑜(𝐱) (14) 

3.5 Parameter Estimation 332 

Parameters in the model can be distinguished into the following three categories: physical parameters, 333 

weights and thresholds. The physical parameters 𝑟𝑚 and 𝑟𝑀 are size constraints specifying the range of the 334 
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tree crown radius in the forest plots. These parameters are set as 1.0 m and 6.0 m, respectively, according 335 

to the range of tree sizes in the test sites. 336 

The weights 𝛼 and 𝑤1 are assigned to tune the relative importance that we want to grant to different 337 

energy terms or functions in the combination (see Eq. (5) and (6)). Both 𝛼 and 𝑤1 are set to 0.5 because 338 

we place equal importance on those functions in all of our experiments. 339 

To reduce the hand-tuned parameters and to avoid a “trial-and-error” test for parameter setting in most 340 

practices, we propose a parameter estimation method to estimate the threshold pair (𝜇, 𝜆) in the sigmoid 341 

functions (Eq. (8), (10), and (12)) in the energy terms. In each function, the threshold pair (𝜇, 𝜆) controls 342 

the tolerance and slope of the sigmoid function, respectively, which plays a significant role in the model. 343 

For example, if we set a smaller 𝜇𝑠 value in the symmetric function (Eq. (8)), trees with asymmetric 344 

crowns will be penalized more effectively. For a sigmoid function, a smaller value of 𝜆 results in a steeper 345 

slope, and the associated energy function has an increased discriminative behavior of a step function (see 346 

Figure 8). 347 

*****Approximate position of Figure 8***** 348 

We address two issues in the parameter estimation of the energy minimization model. First, the energy 349 

terms are designed to penalize false tree objects or implausible configurations with respect to the data 350 

term and the prior term. False tree objects or implausible configurations between the objects should 351 

receive high energy scores. The parameter estimation is performed by fitting the sigmoid functions to the 352 

posterior probability of the features derived from false tree objects or implausible configurations based on 353 

the logistic regression model. Second, collection of a large sample size is required to model the posterior 354 

probability of those aforementioned features through the Bayesian theorem. In this study, we propose a 355 

Monte Carlo-based method, which enables generation of a sufficient number of samples and leads to the 356 

estimation of the parameters in the logistic functions. 357 
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For example, we will examine the symmetric function 𝑈𝑑
𝑠(𝐱). Let us denote the feature, the asymmetric 358 

ratio in this case, extracted from a tree object 𝑥𝑖 as 𝑑. A random variable 𝑌 = {0,1} takes the value of 1 if 359 

𝑥𝑖 is a true tree object or 0 otherwise. Given an observation 𝑑, the probability that the random variable is 360 

derived from a false tree object can be given by the posterior probability, according to the following 361 

equation: 362 

 
𝑝(𝑌 = 0|𝑑) =

𝑝(𝑑|𝑌 = 0)𝑝(𝑌 = 0)

𝑝(𝑑)
 (15) 

The higher the posterior probability of the object being a false tree, the higher the energy we assign to the 363 

object through the energy functions. 364 

According to the Bayesian theorem, the posterior probability can be rewritten as the following: 365 

 
𝑝(𝑌 = 0|𝑑) =

1

1 + 𝐿𝑖
𝑜𝑃𝑖

𝑜 (16) 

where 𝐿𝑖
𝑜 is the likelihood ratio, and 𝑃𝑖

𝑜 is the prior ratio, according to the following equations: 366 

 
𝐿𝑖

𝑜 =
𝑝(𝑑|𝑌 = 1)

𝑝(𝑑|𝑌 = 0)
 (17) 

 
𝑃𝑖

𝑜 =
𝑝(𝑌 = 1)

𝑝(𝑌 = 0)
 (18) 

The likelihood ratio 𝐿𝑖
𝑜 can be calculated by modeling the likelihood distributions of features derived from 367 

true and false tree objects. A Monte Carlo sampling is utilized to estimate the likelihood distributions. We 368 

generate a configurations 𝐱(𝑇𝑖) from a random subset of local maxima 𝑇𝑖 ⊂ 𝑇, and 𝐱(𝑇𝑖) is then 369 

compared with the reference configuration 𝐱(𝑇𝑜). Each tree object 𝑥𝑗
𝑇𝑖 , 𝑗 = 1, … , 𝑛(𝑇𝑖) in configuration 370 

𝐱(𝑇𝑖) is then labeled as true or false. We repeat this process for 𝑛 (𝑛 = 50 in our experiments) time, to 371 

collect enough samples for features of the true and false tree objects. 372 
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The Monte Carlo-based method produces a pool of samples sufficient to model the likelihood 373 

distributions of different features. The maximum likelihood method is applied to model the likelihood 374 

distributions of the asymmetric ratio, area ratio, and overlap ratio for true and false trees. In practice, we 375 

set the prior ratio 𝑃𝑖
𝑜 to 2, which is empirically based on the general detection accuracy achieved by LM-376 

based approaches. The modeled distributions and fitted functions are shown in Figure 9. 377 

*****Approximate position of Figure 9***** 378 

3.6 Model Optimization 379 

In model optimization, we aim to find the configuration of objects that minimizes the global energy 𝑈(𝐱) 380 

in the configuration space Ω𝑇 that we have proposed. This discrete configuration space can be effectively 381 

explored using a Markov Chain Monte Carlo sampler coupled with simulated annealing. 382 

An MCMC sampler consists in simulating a discrete Markov chain (𝑋𝑡), 𝑡 ∈ ℕ on the configuration space 383 

Ω𝑇, which converges towards an invariant measure specified by the energy 𝑈(𝐱). The sampler performs 384 

transitions for one state of the chain to another by proposing a local change of the current configuration.  385 

In our application, a configuration of trees 𝐱(𝑇𝑘) can be solely determined by a subset of local maxima 386 

𝑇𝑘 ⊂ 𝑇 given the CHM image. Once treetops are set as the local maxima 𝑇𝑘, the tree sizes are decided 387 

and directly derived from the corresponding marker-controlled watershed segments. Therefore, finding 388 

the optimal configuration of trees 𝐱(𝑇∗) is equivalent to determining the optimal set of local maxima 389 

𝑇∗ ⊂ 𝑇. The transition of the chain can be managed by a birth-and-death process in which a local maxima 390 

is added to or removed from the current set of local maxima 𝑇𝑘 to generate a new configuration 𝐱(𝑇𝑘+1), 391 

from a previous configuration 𝐱(𝑇𝑘). More specifically,  392 

 In a birth process, a local maxima 𝑢 is randomly selected from 𝑇\𝑇𝑘 and added to the current local 393 

maxima set 𝑇𝑘 to generate a new configuration 𝐱(𝑇𝑘+1), with 𝑇𝑘+1 = 𝑇𝑘 ∪ {𝑢}. 394 
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 In a death process, a local maxima 𝑣 is randomly selected and removed from the current local 395 

maxima set 𝑇𝑘 to generate a new configuration 𝐱(𝑇𝑘+1), with 𝑇𝑘+1 = 𝑇𝑘\{𝑣}. 396 

The move between the configurations is symmetric and accepted with the following probability: 397 

 min (1, exp − (𝑈 (𝐱(𝑇𝑘+1)) − 𝑈(𝐱))) (19) 

Otherwise, the previous set of local maxima is kept: 𝑇𝑘+1 = 𝑇𝑘. 398 

A simulated annealing is then embedded in the MCMC to find the optimal configuration with the 399 

minimum global energy 𝑈(𝐱). To perform the simulated annealing, the Gibbs energy 𝑈(𝐱) is replaced 400 

with 𝑈𝑇𝑡
= 𝑈(𝐱)/𝑇𝑡. 𝑇𝑡 is the temperature parameter, which tends toward zero as 𝑡 approaches ∞. A 401 

logarithmic decrease ensures the convergence to the global optimum for all of the initial configurations 402 

𝐱0. In practice, a geometric cooling scheme is preferred to accelerate the process and to give an 403 

approximate solution close to the optimal one, for example, use 𝑇𝑡 = 𝑇0𝛼𝑡 with 𝛼 close to 1, typically 404 

𝛼 = 0.98. 405 

3.7 Accuracy Assessment 406 

To evaluate the performances of the proposed model, the detected trees are compared with the reference 407 

data. The comparison results of all of the aggregated trees from the detected trees and the reference data 408 

can be classified into the following three categories: the correctly detected trees (correct), trees in the 409 

detection results that have no corresponding reference tree (commission) and trees in the reference data 410 

not detected (omission). Commission/Omission statistics and the overall detection accuracy are used to 411 

quantify the detection results. The calculation of the commission error, omission error and overall 412 

accuracy is based on a conventional method of error matrix assessment (Girard, 2003), as shown by Eq. 413 

(20)-(22): 414 
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𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =

𝑁𝑑𝑒𝑡 − 𝑁𝑐𝑜𝑟

𝑁𝑑𝑒𝑡
× 100% (20) 

 
𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =

𝑁𝑟𝑒𝑓 − 𝑁𝑐𝑜𝑟

𝑁𝑟𝑒𝑓
× 100% (21) 

 
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =

𝑁𝑐𝑜𝑟

𝑁𝑐𝑜𝑟 + (𝑁𝑑𝑒𝑡 − 𝑁𝑐𝑜𝑟) + (𝑁𝑟𝑒𝑓 − 𝑁𝑐𝑜𝑟)
× 100% (22) 

where 𝑁𝑐𝑜𝑟 is the number of correctly detected trees, 𝑁𝑑𝑒𝑡 is the total number of detected trees by the 415 

algorithm, and 𝑁𝑟𝑒𝑓 is the number of reference trees. 416 

4 Results 417 

4.1 Parameter Estimation Results 418 

Table 1 displays the parameters estimated for the energy functions of the proposed model. We then 419 

performed experiments with the estimated parameters on real and simulated forest plots to test the 420 

robustness of the model.  421 

The parameter 𝜇𝑠 is the threshold in the symmetric function used to penalize tree crowns with high 422 

asymmetric ratios. In a forest in which most tree crowns are of regular circular shapes, the value of 𝜇𝑠 can 423 

be set relatively smaller to more effectively penalize crowns with asymmetric ratios that exceed this 424 

threshold. The threshold 𝜇𝑎 works conversely. Because a larger area ratio indicates a more circular 425 

shaped crown, it must be set to a larger value to better penalize tree crowns of a non-circular shape. 426 

Parameter 𝜇𝑜 in the overlap function is set to penalize an overlapping situation that exceeds a certain 427 

degree, which works similarly to the 𝜇𝑠 parameter. The greater the degree of crown overlap in a forest 428 

plot, the larger the 𝜇𝑜 value should be set. 429 

The results shown in Table 1 support this reasoning for parameter setting in which the more the tree 430 

crowns in the plot are of symmetric circular shape, the smaller the estimated value of 𝜇𝑠, whereas the 431 

larger the value of 𝜇𝑎. This reasoning is more explicitly evidenced by the simulated forest plots in which 432 
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the shape irregularity of the tree crowns increases with the increasing degree of canopy overlap from 433 

separated to overlapping, which in turn causes an increase in the value of 𝜇𝑠 from 0.32 to 0.45 and the 434 

value of 𝜇𝑜 from 0.08 to 0.40, whereas the value of 𝜇𝑎 decreases correspondingly from 0.82 to 0.72. This 435 

result also confirms the rationality of our proposed method for parameter estimation. We also notice that 436 

the smaller the overlap degree of a plot, the smaller the estimated 𝜆 in the sigmoid function, which 437 

indicates a better “threshold” behavior of the associated energy function. This relationship is well in line 438 

with the assumption that the simpler the plot situation, the easier the true tree crowns and the false tree 439 

crowns can be distinguished. 440 

From the estimation results of the real and simulated forest plots, we also conclude that the degrees of 441 

crown overlap of the real forest plots are between the touch and overlap situations in the simulated forest 442 

plots. This condition can be observed from the ranges of the estimated values of 𝜇𝑠 and 𝜇𝑜 of the real 443 

forest plots, which are between the parameters estimated for the touch and overlap simulated forest plots.  444 

*****Approximate position of Table 1***** 445 

4.2 Detection Results of Real Forest Plots 446 

We first applied the proposed model with the estimated parameters to the ALS data of the three real forest 447 

plots. The detection results of local maxima filtering with a variable window size (also referred to as LM) 448 

and the proposed model are illustrated in Figure 10, which shows a good visual assessment of the 449 

performances of the two methods.  450 

The LM results are displayed in the first row (Figure 10(a)-(c)). In these images, the red circles with blue 451 

crosses in the center represent the corrected detected tree crowns, whereas the green and cyan circles 452 

represent the commission and omission errors, respectively. Figure 10 clearly shows that the LM method 453 

is prone to produce commission errors in those coniferous forest plots. This problem is particularly noted 454 

in plot 1 and plot 3 in which numerous false treetops occur on the edge of tree crowns because of the 455 

branching structure of the pine tree species growing in those plots. Plot 2 is a forest with relatively sparser 456 
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trees, and commission errors primarily occur near the plot boundaries caused by incomplete crown 457 

segments and a lack of reference data. 458 

The corresponding images in the second row (Figure 10(d)-(f)) show the detection results using the 459 

proposed model. As can be easily interpreted, most green circles were successfully removed, indicating 460 

that the proposed model could effectively reduce the commission errors. We noticed that a small number 461 

of yellow dot line circles appear, which indicate trees over-pruned by the proposed model. From the three 462 

images, we can observe that the omission errors produced by the proposed model are primarily trees with 463 

small crowns and are severely overlapped by their neighboring larger trees. We also noticed that many 464 

commission errors occur at the edge of the plots where crowns are shown incomplete or the reference data 465 

are missing. 466 

Table 2 depicts the detailed quantitative assessment of the detection results of the LM and the proposed 467 

model. There is an obvious improvement in the results of the proposed model over the LM method on 468 

which it is based. The commission errors of the three forest plots significantly decreased, with the largest 469 

extend in plot 1, decreasing from 36.2% to 10.3%, whereas the omission errors before and after the 470 

application of the proposed model remain at similar levels. On average, the overall detection accuracy 471 

increased by approximately 15%, comparing results of the proposed model with those of the LM method. 472 

*****Approximate position of Figure 10***** 473 

*****Approximate position of Table 2***** 474 

4.3 Detection Results of Simulated Forest Plots 475 

The proposed model with the estimated parameters applied to the simulated forest plots exhibited similar 476 

detection results to those of the real forest plots. The proposed model significantly reduced the 477 

commission errors resulting from the LM method in the three simulated forest plots. Figure 11 shows a 478 

clear contrast in the detection results of the LM and the proposed model. 479 
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Similarly, by comparing the corresponding images in Figure 11(a)-(c) and Figure 11(d)-(f), it can be 480 

observed that nearly all of the green circles (commission errors) in the LM detection results were removed 481 

by the proposed model in the three simulated forest plots. Meanwhile, there is only a negligible increase 482 

in the number of yellow dot line circles (omission errors). On average, the proposed model increases the 483 

overall detection accuracy by approximately 10% compared with the LM method in all of the cases. 484 

Table 3 gives the exact detection results of the LM method and the proposed model on the three 485 

simulated plots. It is interesting to examine the influence of the crown overlap degree on the single tree 486 

detection results of the LM method. The overall detection accuracy decreases by approximately 10% 487 

across the three simulated forest plots with an increasing degree of crown overlap from separated to 488 

overlapping. This result is primarily because of the increase in the number of omission errors with the 489 

increase in the crown overlap. Trees growing by taller trees are more likely to be missed in the LM 490 

detection when crowns are more overlapped. However, the commission errors are less affected by the 491 

degree of crown overlap, which remains at a similar level for the three forest plots. 492 

*****Approximate position of Figure 11***** 493 

*****Approximate position of Table 3***** 494 

4.4 Optimization Process 495 

Figure 12 presents the statistics associated with the optimization process, using a simulated forest plot 496 

with a touching crown as an example. The plots are at the same abscissa scale to simplify the observation 497 

of the optimization process. The iteration index is consistently represented on this axis. In all of the 498 

experiments, the temperature decrease coefficient α is set to 0.98, and the temperature is updated every 499 

500 iterations. For a plot with approximately 200 trees, it takes approximately 1.2e + 5 iterations for the 500 

energy to converge, which is significantly fewer than the total number of configurations (2200 ≈ 1.6e +501 

60) in the entire configuration space. The program takes approximately 3 hours to run in Matlab on a 502 

processor with a 2.83 GHz frequency.  503 
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The first plot (Figure 12(a)) shows the evolution of the temperature in accordance with a geometric 504 

cooling scheme, as described in Section 3.6. Figure 12(b) represents the acceptance rate associated with 505 

the “birth-and-death” kernel. The move acceptance rates are high at the beginning of the process and tend 506 

to progressively decrease and stabilize to 0. Finally, Figure 12(c) plots the global energy. Variations are 507 

the highest during the first iterations, and the energy slowly decreases. The decrease becomes faster as the 508 

iterations progress and tends to converge slowly to its minimum. 509 

*****Approximate position of Figure 12***** 510 

5 Discussion 511 

In this study, we present a hybrid framework to improve the performance of single tree detection from 512 

ALS data by taking advantage of low-level image processing techniques and a high-level probabilistic 513 

model. The proposed model is applied on the ALS data of real and simulated coniferous forest plots. The 514 

results show the feasibility of our approach, and the detection quality is superior to that obtained by the 515 

local maxima filtering based method. 516 

The proposed method has been proven to be effective in reduce the commission errors that are introduced 517 

by LM in all coniferous forest plots. The LM approach requires a priori knowledge of the relationship 518 

between the tree height and the crown size, and the detection accuracy can be significantly influenced by 519 

the specification of the relationship. In many cases, this relationship is either hard to obtain or different 520 

from study to study because it depends on certain factors, such as tree species, tree age, tree density, 521 

crown overlapping, and species composition of the forest plot. Moreover, Falkowski et al. (2006) noted 522 

that the relationship between the tree height and the crown size can be weak under certain forest 523 

conditions, which is coherent with our case. In this case, when a relationship is designated between the 524 

tree height and the crown size, the parameters set for the LM are simply a trade-off between commission 525 

and omission errors. We suggested a relative small window size for the LM to over-extract initial 526 

‘treetops’ at the first stage, and the embedded probabilistic model showed its powerfulness in excluding 527 
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the false treetops from the final configuration through stochastic inference by considering the spatial 528 

layouts and geometric characteristics of the trees in the forest plots.  529 

Simulation of forest plots and ALS data provide a valuable tool to examine the performance of tree 530 

detection methods under the influence of stem densities and degrees of crown overlap. The detection 531 

results evidence the higher the stem density, the more likely the tree crowns are overlapped in the plot, 532 

causing smaller trees growing nearby larger trees not easily be detected. The results obtained are coherent 533 

with those reported in other studies that denser plots give less accuracy results than sparse plots. The 534 

simulated data also provides a fully controlled environment to observe the behavior of the estimated 535 

parameters in the designed energy functions with respect to the factor of crown overlap. The increase in 536 

crown overlap results in more asymmetric crowns in CHM, which are noted by the estimated parameters 537 

and further validate the rationality of the parameter estimation method we proposed. The simulation in 538 

our study is intended to test our proposed model under certain key forest variables, i.e., the tree density 539 

and crown overlap in our case. Additional sophisticated simulations of forest structure and ALS returns 540 

can be found in Morsdorf et al. (2009) and Disney et al. (2010). 541 

The detection of single trees from remote sensing data using marked point processes was first performed 542 

by Andersen et al. (2002) in an attempt to directly detect trees of a coniferous plot from ALS point clouds 543 

using the marked point process in a Bayesian framework. The results have indicated that the algorithm is 544 

generally successful in identifying structures associated with individual tree crowns within the forest plot 545 

but appears to be sensitive to complex point cloud data. Perrin (2005, 2006) has employed marked point 546 

processes to detect tree crowns from CIR aerial imageries of plantations, which leads to a continuous 547 

search space for the tree objects, in contrast to the proposed method. 548 

The stochastic model we proposed is the first to integrate low-level image processing techniques and a 549 

high-level probabilistic model into a hybrid framework for single tree detection. The model assembles 550 

marked point processes in terms of object modeling and energy formulation. However, in the model, the 551 



This manuscript was accepted for the publication by ISPRS Journal on August 15, 2014. DOI: 

10.1016/j.isprsjprs.2014.08.007 

27 

 

parameters of the tree objects are directly derived from low-level representations of LiDAR images 552 

produced by traditional image processing techniques rather than random sampling in classical marked 553 

point processes. Thus, the model generates a constrained discrete configuration space, in which we 554 

sample for the global optimum that contains the final set of detected trees. In this manner, the 555 

computation cost is significantly reduced, and the optimization process can be significantly accelerated.  556 

The design of proper energy terms is an important issue we attempt to address due to the different types 557 

of data we used and the specific manner in which we constructed a configuration. The models used to 558 

detect tree crowns in aerial imageries (Perrin et al., 2005, 2006) make use of the distinctive pixel values 559 

between the illuminated area near the center of the tree crowns and that of the backgrounds or valleys 560 

between the crowns. The contrast between the tree crowns and the background, or treetop areas and 561 

valleys between them, can be exaggerated by shadows and stretched spectral or radiometric 562 

characteristics in the optical images. However, the elevation differences between those parts in the CHM 563 

images are much milder and complex to model than the contrasts in optical imageries. This fact is also the 564 

reason we chose a Gibbs energy to measure the morphological characteristics of the tree objects in a 565 

configuration, other than a Bayesian framework to model height distributions, considering the complexity 566 

required to design a height model valid for all of the trees of various heights and crown forms in the forest 567 

area.  568 

Parameter estimation is another challenging task in most stochastic models. In this study, we proposed a 569 

Monte Carlo-based method to estimate certain key parameters in our model. The Monte Carlo simulation 570 

was used to generate random configurations and to create a sufficient number of samples of true and false 571 

tree crowns, which enabled the modeling of feature distributions of true and false tree crowns to estimate 572 

thresholds in the energy terms. The experimental results on all of the datasets, especially the simulated 573 

ones, suggested that the parameter estimation method works reasonably well. 574 
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The proposed method has certain inherited drawbacks detecting trees from the rasterized canopy height 575 

model, which is incapable of finding suppressed trees under dominant crowns (Hyyppä et al., 2012). The 576 

method is designed to detect trees in the dominant layers in the coniferous forest plots of interest. 577 

Exploiting 3D information from the ALS point cloud to detect small trees in the lower forest layer is a 578 

possible direction to overcome this disadvantage (Ferraz et al., 2012; Reitberger et al., 2009). Another 579 

limitation of the method is that it is unable to recover the omission error produced by local maxima 580 

filtering on which it is based. Because tree positions are constrained within the pre-extracted local 581 

maxima, the model experienced a reduced ability in the classical marked point process to sample the 582 

configuration space more thoroughly. However, experimental results on real and simulated forest plots 583 

still suggest that the proposed model is a good compromise regarding complexity, efficiency and 584 

accuracy. 585 

6 Conclusions and Future Studies 586 

We propose a hybrid framework to detect single trees from ALS data by combining the low-level image 587 

processing techniques of LM and MCWS with a high-level probabilistic model. More specifically, in this 588 

model, tree crowns in an ALS recovered CHM are modeled as objects and are considered as a 589 

configuration of circles. The probabilistic model enables the consideration of the geometric characteristics 590 

and the pair-wise interactions of objects in the configuration. The LM and MCWS are employed to 591 

produce a low-level representation of the image, which provides a constrained configuration space for the 592 

probabilistic model to sample for the optimal configuration. We also propose a Monte Carlo-based 593 

method to estimate important parameters in the proposed model. The model is proven effective when 594 

applied to real and simulated coniferous forest plots. The results show that the proposed model has a 595 

distinct improvement in the detection quality over the traditional local maxima filtering based approach 596 

by approximately 10% on all of the datasets.  597 
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Future studies should involve a further examination of the optimization methods. An important benefit we 598 

gained from our proposed model is that the configuration space is significantly reduced by incorporating 599 

features extracted from the CHM image through low-level image processing techniques. However, there 600 

remains a significant requirement to accelerate the optimization process. A prior-guided MCMC or a 601 

steepest gradient descent algorithm are possibilities we will examine to accelerate the search for the 602 

optimal configuration within the discrete configuration space. Second, post-processing will be introduced 603 

to recover omission errors from the detection results. Although the proposed model was proven effective 604 

in reducing commission errors, the tree positions are constrained in the predetermined set of the local 605 

maxima extracted by local maxima filtering. It is possible to recover a portion of the omitted trees from 606 

the detected results because those missed crowns will result in more geometrically irregular segments. 607 

Finally, automated segmentation of forest stands into homogenous areas with similar forest conditions 608 

can be introduced to help train parameters of the proposed model of representative regions and make the 609 

model applicable to larger areas. We will also further test the proposed model on more datasets of 610 

different forest types and conditions. 611 
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Table 1: Parameter estimation results of the proposed model for all of the forest plots. 787 

 788 

Table 2: Detection results of the proposed model with estimated parameters compared with local maxima 789 

filtering (LM) on the real coniferous forest plots. 790 

 791 

Table 3: Detection results of the proposed model with estimated parameters compared with local maxima 792 

filtering (LM) on the simulated forest plots. 793 

794 

Plot 1 Plot 2 Plot3 Separate Touch Overlap

μ s 0.43 0.39 0.45 0.32 0.37 0.45

λs 0.10 0.11 0.13 0.06 0.08 0.15

Area Ratio μ a 0.69 0.68 0.67 0.82 0.76 0.72

Function λa -0.07 -0.07 -0.11 -0.03 -0.06 -0.14

Overlap μ o 0.28 0.32 0.38 0.08 0.26 0.40

Function λo 0.04 0.05 0.05 0.01 0.03 0.05

Parameter Estimation

Real Forest Plots Simulated Forest Plots

Symmetric 

Function

Detected Overall

Trees No. % No. % No. % Accuracy

Plot 1 - 120 trees

LM 185 118 63.8% 67 36.2% 2 1.7% 63.1%

Proposed Model 126 113 89.7% 13 10.3% 7 5.8% 85.0%

Plot 2 - 40 trees

LM 51 38 74.5% 13 25.5% 2 5.0% 71.7%

Proposed Model 41 38 92.7% 3 7.3% 2 5.0% 88.4%

Plot 3 - 122 trees

LM 141 115 81.6% 26 18.4% 7 5.7% 77.7%

Proposed Model 123 112 91.1% 11 8.9% 10 8.2% 84.2%

Correct Commission Omission

Detected Overall

Trees No. % No. % No. % Accuracy

Separate Plot - 186 trees

LM 213 184 86.4% 29 13.6% 2 1.1% 85.6%

Proposed Model 182 181 99.5% 1 0.5% 5 2.7% 96.8%

Touching Plot - 234 trees

LM 252 218 86.5% 34 13.5% 16 6.8% 81.3%

Proposed Model 216 215 99.5% 1 0.5% 19 8.1% 91.5%

Overlapping Plot - 261 trees

LM 256 226 88.3% 30 11.7% 35 13.4% 77.6%

Proposed Model 221 221 100.0% 0 0.0% 40 15.3% 84.7%

Correct Commission Omission
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Figure 1: (a) Location of the study area in the Province of Ontario, Canada; (b) a photo and (c) ortho view of the 795 

ALS data of a forest plot in the study area rendered by height. 796 

Figure 2: (a)-(c) Point process simulated forest plots with different degrees of crown overlap: (a) plot with 797 

separated crowns; (b) plot with tree crowns slightly touching each other; (c) plot with overlapping crowns. (d)-798 

(f) the corresponding ALS point clouds of the three forest plots generated. 799 

Figure 3: Flow chart of the proposed method. 800 

Figure 4: An example showing the configuration construction from a CHM. (a) a subset of local maxima. Local 801 

maxima are shown as red crosses; (b) a marked-controlled watershed segmentation of the CHM using local 802 

maxima in (a) as the marker function; (c) the configuration constructed from the local maxima. Radii of the tree 803 

crowns are extracted from the corresponding segments in (b). 804 

Figure 5: Asymmetric ratio calculation for (a) symmetric and (b) asymmetric tree crowns. 805 

Figure 6: Area ratio calculation for tree objects with (a) symmetric and (b) asymmetric tree crowns. 806 

Figure 7: Overlap ratio calculation of overlapping tree crowns. 807 

Figure 8: Plots of the sigmoid function 𝐹(𝑥) = 1 (1 + exp − (𝑥 − 𝜇) 𝜆⁄ )⁄ − 1 with respect to different values 808 

of 𝜇 and 𝜆. In the left plot, 𝜆 is set to 0.2 for all three curves. In the right plot, 𝜇 is set to 0.5 for all three curves. 809 

Figure 9: Likelihood distributions, posterior probability and fitted sigmoid functions for the asymmetric ratio, 810 

area ratio and overlap ratio. Row 1: Likelihood models of those ratios for the reference group; Row 2: Likelihood 811 

models of those ratios for the error group; Row 3: Posterior probabilities (red lines) for those ratios for the error 812 

group and the fitted sigmoid functions (blue dashed lines). 813 

Figure 10: Detection results of the proposed model with estimated parameters compared with traditional local 814 

maxima filtering on real coniferous forest plots. (a)-(c) show the local maxima filtering results; (d)-(f) show the 815 

detection result of the proposed model using the corresponding local maxima filtering detection as the initial 816 

configuration. (the green circles with triangles in the center represent the commission errors; the cyan dot line 817 
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circles represent the omission errors resulting from the LM; the yellow circles represent the omission errors 818 

produced by the proposed model.) 819 

Figure 11: Detection results of the proposed model with estimated parameters compared with local maxima 820 

filtering on simulated forests. (a)-(c) show the local maxima filtering detection on the three simulated forest plots; 821 

(d)-(f) show the proposed model detection results using the corresponding local maxima filtering detection as 822 

the initial configuration. (the green circles with triangles in the center represent the commission errors; the cyan 823 

dot line circles represent the omission errors resulting from the LM; the yellow circles represent the omission 824 

errors produced by the proposed model.) 825 

Figure 12: Statistics associated with the optimization process of the simulated forest plot with touching crowns: 826 

(a) Temperature; (b) Acceptance rate; (c) Global energy. 827 

 828 


