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THE POLYANALYTIC REPRODUCING KERNELS

HICHAM HACHADI AND EL HASSAN YOUSSFI

ABSTRACT. Let ν be a rotation invariant Borel probability measure on the complex plane having
moments of all orders. Given a positive integer q, it is proved that the space of ν-square integrable
q-analytic functions is the closure of q-analytic polynomials, and in particular it is a Hilbert space.
We establish a general formula for the corresponding polyanalytic reproducing kernel. New ex-
amples are given and all known examples, including those of the analytic case are covered. In
particular, weighted Bergman and Fock type spaces of polyanalytic functions are introduced. Our
results have a higher dimensional generalization for measure on Cp which are in rotation invariant
with respect to each coordinate.

1. INTRODUCTION

In their recent work A. Haimi and H. Hedenmalm [15]– [16], established asymptotics for the
Bergman-Fock type space of polyanalytic functions with respect to a given weight and mentioned
that in general finding explicit formula for these kernels is difficult ( [16], p. 4668). This problem
was also addressed by D. Alpay ( [3], p. 479). The main goal of this paper is to answer this
question in the general context of rotation invariant Borel probability measure on the complex
plane having moments of all orders. More precisely, given a positive integer q, we shall establish
the formula for the reproducing kernel for Hilbert spaces of square q-analytic functions with
respect to a rotation invariant Borel probability measure. The reduction of our formula to the
unit disc D gives an explicit formula for the weighted Bergman spaces of polyanalytic functions
on D, which in turn, which reduces to the result of Koshelv [19] when the weight is trivial. We
point out that the result of Koshelev is proved by a very specific method based on integration
by parts which does not work for the weighted case. Other applications are given to provide
new results on other Bargmann-Fock type spaces of polyanalytic functions on C and related
projections.

We recall that a function f (z) is called a polyanalytic function of order q (or just q-analytic)
in the domain Ω ⊆ C if in this domain it satisfies the generalized Cauchy-Riemann equation

(1.1)
∂qf

∂z̄q
= 0.

Polyanalytic functions inherit some of the properties of analytic functions and the simplest
case is the so-called bianalytic functions. However, as in the theory of several complex variables,
many of the properties break down once we leave the analytic setting. They are naturally related
to polyharmonic functions see [7], [17] and [23] for further results.

Key words and phrases. Reproducing kernel, Polyanalytic function, Bergman space, Fock space.
1



2 HICHAM HACHADI AND EL HASSAN YOUSSFI

The properties of these functions was studied by several authors see Balk and Zuev [9], Balk
[8] and Dzhuraev [14] and the references therein. It is well known that any q-analytic function
in the domain Ω can be uniquely expressed as

(1.2) f (z) =

q−1∑
j=0

zjφj (z) .

where the φj (z) are holomorphic in Ω. This representation was used to study the boundary be-
havior and integral representation of polyanalytic functions. Hilbert spaces of polyanalytic func-
tions and related projections were considered for the case of the unit disc by Koshelev [19] and
later by Vasin [28] and A. K. Ramazanov [21] and [22]. In the latter reference a representation
of the space of polyanalytic functions as direct sum of orthogonal subspaces is given and applied
to rational approximation. The case of the Bargmann-Fock space of polyanalytic functions was
studied by N. L. Vasilevski [26]- [27] and later by L. D. Abreu [1]- [2] in connection with Gabor
and time-frequency analysis. A deep study of the general case of weighted Bargmann-Fock space
of polyanalytic functions was considered by A. Haimi and H. Hedenmalm [15]- [16], where they
obtain the asymptotic expansion of the polyanalytic Bergman kernel as well as the asymptotic be-
havior of the generating kernel and the asymptotic in the bulk for the q-analytic Bergman spaces
in the setting of the weights e−2mQ (see [16]). Their approach relies on the study of polyanalytic
Ginibre ensembles and appeals to the connection with random normal matrix theory and Landau
levels.

Polyanalytic functions of several variables were considered by Avanissian and Traoré [4] and
[5]. They are defined in an anlogous way. Namely, a function f (z) is called a polyanalytic
function of order q = (q1, · · · , qp) ∈ Np

0 (or just q-analytic) in the domain Ω ⊂ Cp if in this
domain it satisfies the generalized Cauchy-Riemann equation

(1.3)
∂q1+···qpf

∂z̄q11 · · · ∂z̄
qp
p

= 0.

They can be uniquely expressed as

(1.4) f (z) =

(q1−1,...,qp−1)∑
j=(0,··· ,0)

zjφj (z)

where the φj (z) are holomorphic in Ω where for j = (j1, · · · , jp), k = (k1, . . . , kp) ∈ Np
0

and z = (z1, · · · zp) ∈ Cp, the inequality j ≤ k means that jl ≤ kl for all l = 1, · · · , p and
zj := zj11 · · · z

jp
p .

However, there are very few results are available in this case.

2. STATEMENTS OF THE MAIN RESULTS

In this section we will state the main results in the one dimensional case. The higher dimen-
sional analogs will be stated at the end of the paper.
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The setting is the following. We recall that a sequence s = (sd), d ∈ N0, is said to be a Stieltjes
moment sequence if it has the form

sd =

∫ +∞

0

tddµ(t),

where µ is a non-negative measure on [0,+∞[, called a representing measure for s. These se-
quences have been characterized by Stieltjes [25] in terms of some positive definiteness condi-
tions. We denote by S the set of such sequences and if s ∈ S we let M(s) the convex cone of the
representing measures of s. It follows from the above integral representation that each s ∈ S is
either non-vanishing; that is, sd > 0 for all d, or else sd = δ0 for all d. We denote by S∗q the set of
all non-vanishing elements of S having a representing measure µ with support containing at least
q strictly positive elements. Fix an element s = (sd) ∈ S∗q and let µ ∈ M(s). It is known [12]

that the sequence (sd
1
2d ) converges to limit Rs ∈]0,+∞], where Rs is the supremum over all

t > 0 such that t is in the support of µ. We denote by Ds the disc in C centered at the origin with
radius Rs with the understanding that Ds = C when Rs = +∞.

For each pair of non-negative integers (d, n) such that n ≤ q− 1, let Pn(µ) be the subspace of
the Hilbert L2(xddµ(x)) consisting of all polynomials with degree at most n furnished with the
real inner product

〈f, g〉 :=

∫ +∞

0

f(x)g(x)xddµ(x), f, g ∈ Pn(µ)

and denote by Qd,n : (0,+∞)× (0,+∞)→ C the corresponding reproducing kernel.
Consider the following function

Fq,s(λ, x, y) :=
+∞∑
d=0

λdQd,q−1(x, y) +

q−1∑
d=1

λ̄dQd,q−1−d(x, y).(2.1)

where λ is a complex number and (x, y) ∈ [0,+∞[×[0,+∞[. Our first result is the following:

Theorem A. For all fixed non-negative real numbers x and y, the series λ 7→ Fq,s(λ, x, y)
converges uniformly on compact subsets of the disc centered at 0 with radius R2

s .

Next, let µ ∈ M(s) and denote by ν denote the image measure on C of µ ⊗ σ under the map
(t, ξ) 7→

√
tξ from [0,+∞[×T onto C, where σ is the rotation invariant probability measure on

the unit circle T in C. Then ν is rotation invariant. Conversely, it is known [10] that any rotation
invariant Borel probabiltiy ν on C is of this form. Since µ is supported in the interval [0,+Rs],
it follows that the support of ν is contained in closure Ds of the open disc Ds.

We consider the Hilbert space L2(ν) of square integrable complex-valued functions in Ds with
respect to the measure ν. We denote by A2

ν,q the space of those q-analytic functions on Ds which
are square integrable with respect to ν. The natural inner product inherited from that of L2(ν)
turns A2

ν,q into a pre-Hilbert space. We are now prepared to state our second main result.

Theorem B. The space A2
ν,q is a Hilbert space which coincides with the closure of the q-analytic

polynomials in L2(ν). Moreover, for each set compact K ⊂ Ds we have that

supz∈K |f(z)| ≤ C ‖ f ‖L2(ν)
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for all q-analytic polynomials f ∈ L2(ν), where

C = C(K) := supz∈K

√
Fq,s(|z|2, |z|2, |z|2).

Furthermore, the reproducing kernel of A2
ν,q is given by

Rν,q(z, w) = Fq,s(zw̄, |z|2, |w|2), z, w ∈ Ds.

Remark C . When the measure µ has a finite support and the number points of the support of µ
is q, then Theorem B gives Cauchy type formula for polyanalytic functions. Such an example
can be obtained using the Kroutchouk measure and related orthogonal polynomials.

A first application of our results provides the weighted polyanalytic Bergman kernel of the
unit disc {z ∈ C : |z| < 1}. More precisely, for α > −1, we consider the space A2

α,q of all
square integrable of q-analytic functions with respect to the measure dνα(z) : (1 − |z|2)α dA(z)

π
,

where dA(z) is the Lebesgue measure on D. We will prove the following

Theorem D. The space A2
α,q is a Hilbert space which coincides with the closure of the q-analytic

polynomials in L2(να) and its reproducing kernel is given by

Kα,q(z, w) = q
(
α+q−1
α

) (1−z̄w)q−1

(1−zw̄)α+q+1

∑q−1
j=0(−1)j

(
q−1
j

)(
α+q+j
α+q−1

) |z−w|2j
|1−zw̄|2j .

for all z, w ∈ D.

We point out that when α = 0, this result was established by Koshelev [19] by different
method limited to the case α = 0, but does not work for α 6= 0.

A third application of our results provides the weighted polyanalytic Bergman kernel for the
weighted Fock space. Namely, let α > 0, and denote by Fα,q(C) the space A2

α,q of all square
integrable of q-analytic functions with respect to the measure dνα(z) : |z|2αe−|z|2 dA(z)

π
, where

dA(z) is the Lebesgue measure on C We will establish the following

Theorem E. The space Fα,q is Hilbert space which coincides with the closure of the q-analytic
polynomials in L2(να) and its reproducing kernel is given by

Kα,q(z, w) = ezw̄Lα+1
q−1 (|z − w|2) , for all z, w ∈ C

where Lαq−1 is classical weighted Laguerre polynomials of degree q − 1 and weight α.

We point out that when α = 0, this result was established by Haimi and Hedenmalm [15]
using a different method which does not go trough for α 6= 0.

3. PRELIMINARY RESULTS

We collect a few preliminary results from the refrences [13] or [18]. Let s = (sn) be a
Stieltjes moment sequence and µ ∈ S representing measure of s. We assume in this section that
the support of µ has N(µ) ≥ q elements. For each non-negative integers n ≤ N(µ)− 1 set
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Dµ,n :=

∣∣∣∣∣∣∣∣
s0 s1 ... sn
s1 s2 ... sn+1
...

... · · · ...
sn sn+1 · · · s2n

∣∣∣∣∣∣∣∣
and for x ∈ C, let

Dµ,n(x) :=

∣∣∣∣∣∣∣∣∣∣

s0 s1 ... sn
s1 s2 ... sn+1
...

... · · · ...
sn−1 sn · · · s2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣
It is well-known that the sequence (Pµ,n)

N(µ)−1
n=0 of orthogonal polynomials with respect to the

measure dµ(x) is given by

Pµ,n(x) =
Dµ,n(x)√
Dµ,n−1Dµ,n

.(3.1)

so that the reproducing kernel Qµ,n is given by

Qµ,n(x, y) =
n∑
j=0

Dµ,j(x)Dµ,j(y)

Dµ,j−1Dµ,j

.(3.2)

We recall the following classical theorem of Heine a proof of which can be found in [13]

Lemma 3.1. The determinants Dn and Dn(x) have the integral representations

Dn =
1

(n+ 1)!

∫
[0,+∞[n+1

∏
1≤j<k≤n+1

(xj − xk)2dµ(x1) · · · dµ(xn+1)(3.3)

Dn(x) =
1

n!

∫
[0,+∞[n

n∏
i=1

(x− xi)
∏

1≤j<k≤n

(xj − xk)2dµ(x1) · · · dµ(xn)(3.4)

In what follows we shall fix the measure µ, and for each d ∈ N0, we consider determinants
and orthogonal polynomials with respect to the measure xddµ(x). Then we simply set

Dxdµ(x),n := Dd,n and Dxdµ(x),n(x) := Dd,n(x).(3.5)

The sequence of orthogonal polynomials with respect to the measure xddµ(x) will be then denote
by (Pd,m)

N(µ)−1
m=0 and it is given by

Pd,n(x) =
Dd,n(x)√
Dd,n−1Dd,n

.(3.6)

so that the corresponding reproducing kernel Qd,n is given by

Qd,n(x, y) =
n∑
j=0

Dd,j(x)Dd,j(y)

Dd,j−1Dd,j

.(3.7)
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Lemma 3.2. Suppose that the support of µ is unbounded. Then for any positive integer n and
x ∈ [0,+∞[, there exist tx > 0 and a constant Cx > 0 such that

|Pd,n(x)|µ ([tx,+∞[) ≤ Cx
td/2

(3.8)

for all t ≥ tx.

Proof. In view of Lemma 3.1 by Cauchy-Schwarz inequality we see that

|Dd,n(x)|2 ≤ Dd,n−1

∫
[0,+∞[n

n∏
i=1

(x− xi)2
∏

1≤j<k≤n

(xj − xk)2(x1 · · · xn)ddµ(x1) · · · dµ(xn)

Since the degree n of the polynomial Dd,n(x) is positive, there is tx > 0 such that

|Dd,n(x)| ≤ |Dd,n(t)|, for all t ≥ tx

and thus by Lemma 3.1 we get

|Dd,n(x)|2

Dd,n−1

∫ +∞

tx

xdn+1dµ(xn+1) ≤
∫ +∞

tx

|Dd,n(xn+1)|2 xdn+1dµ(xn+1)

≤ (n+ 1)!Dd,n

Taking C =
√

(n+ 1)! and using (3.6) completes the proof. �

4. ORTHOGONAL POLYNOMIALS WITH RESPECT TO ROTATION INVARIANT MEASURES

Throughout this section, fix an element s = (sd) ∈ S∗q and let µ ∈ M(s). For each pair of
non-negative integers (d, n), with d arbitrary and n ≤ q − 1, let (Pd,k), k ∈ {0, · · · , n} be a
sequence of orthonormal polynomials of Hilbert space Pn(xdµ) equipped the L2(xddµ(x)) inner
product. For all integers m,n ∈ N0, set

m ∧ n := min(m,n).(4.1)

and for all z = rξ ∈ C, r ≥ 0, |ξ| = 1,

Hm,n(z) := r|m−n|ξmξ̄nP|m−n|,m∧n(r2).(4.2)

Lemma 4.1. The family (Hm,n) forms an orthogonal system in L2(ν).

Proof. Let (m,n), (m′, n′) ∈ N2
0. We first observe that for m+ n′ = m′ + n, we have

∫ +∞

0

Hm,n(r1/2)Hm′,n′(r1/2)dµ(r) =

∫ +∞

0

r|m−n|P|m−n|,m∧n(r)P|m−n|,m′∧n′(r)dµ(r)

= δm∧n,m′∧n′
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By the change of variables formula, we see that∫
Ds
Hm,n(z)Hm′,n′(z)dν(z) =

∫ +∞

0

∫
T
Hm,n(r1/2ξ)Hm′,n′(r1/2ξ)dσ(ξ)dµ(r)

=

∫ +∞

0

Hm,n(r1/2)Hm′,n′(r1/2)dµ(r)

∫
T
ξm+n′ξm′+ndσ(ξ)

= δm+n′,m′+nδm∧n,m′∧n′

= δ(m,n),(m′,n′).

This completes the proof. �

Lemma 4.2. Let n and d be positive integers such that n ≤ q−1. Consider a polynomial f in n-
variables such that f(x1, · · · , xn) > 0 for all pairwise distinct elements x1, · · · , xn of [0,+∞[,
and set

γd,n(f) :=

∫ +∞

0

· · ·
∫ +∞

0

f(x1, · · · , xn)(x1 · · · xn)ddµ(x1) · · · dµ(xn)(4.3)

Then

lim
d→+∞

γd+1,n(f)

γd,n(f)
=

(
lim

d→+∞

sd+1

sd

)n
(4.4)

Proof. Let η be the image of the measure on [0,+∞[ of f(x1, · · · , xn)dµ(x1) · · · dµ(xn) under
the map (x1, · · · , xn) 7→ x1 · · ·xn. Then

γd,n(f) :=

∫ +∞

0

xddη(x)(4.5)

so that by [12] we see that

lim
d→+∞

γd+1,n(f)

γd,n(f)
= R(4.6)

where R is the supremum over all t > 0 such that t is in the support of η. Moreover, it can be
easily checked that if t > 0, then t is in the support of η if and only if t

1
n is in the support of µ.

This completes the proof. �

Now we prove Theorem A

Proof of Theorem A. We only need prove that for all non-negative real numbers x and y, the
series

Ss,q(λ) =

q−1∑
n=1

+∞∑
m=0

λmPm,n(x)Pm,n(y),(4.7)

converges uniformly on compact sets of Ds. We shall distinguish two cases. First, assume that
the support of µ is bounded; that is Rs is finite. In view (3.6), the latter series can be written if
the form

Ss,q(λ) :=

q−1∑
n=1

+∞∑
m=0

λm
Dm,n(x)Dm,n(y)

Dm,n−1Dm,n

.
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Using the integral expressions (3.3) and (3.4) with respect to the measure rmdµ(r) instead of
dµ(r), we see that Dm,n(x) is a finite sums of terms of the form xjγm,n(f) where j ∈ N0 and f
is a function of the form

f(x) = xk11 · · ·xknn
∏

1≤j<k≤n

(xj − xk)2.(4.8)

The same holds for Dm,n(y) with y instead of x. Finally, we observe that

Dm,n = γm,n(g), and Dm,n−1 = γm,n−1(g)

where

g(x) :=
∏

1≤j<k≤n

(xj − xk)2.(4.9)

Therefore the series Ss,q is a linear combination of series of the form

Ss,q,j,l(λ) :=

q−1∑
n=1

+∞∑
m=0

λmxjyl
γm,n(f)γm,n(h)

γm,n(g)γm,n−1(g)

where f and h are of the form (4.8) and g is given by (4.8). Appealing to Lemma 4.2 and using
D’Alembert’s rule yields that the series Ss,q,j,l(λ) converges as long as |λ| < Rs. From this it is
also clear that the series converges uniformly on compact sets of Ds.

Next, suppose that Rs = +∞. Let x, y be arbitrary non-negative real numbers. Then by
Lemma 3.2, there tx,y such that

|Pm,n(x)Pm,n(y)| ≤ (n+ 1)!

tm
,

for all t ≥ tx,y. This proves that the series (4.7) convergence absolutely.
Finally, the inequality in Theorem A follows by Cauchy-Schwarz inequality. The remaining

equality in the theorem is straightforward. This completes the proof. �

Next, we denote by A2(s) the subspace of L2(ν) consisting of all functions of the form

f(z) =

q−1∑
n=0

+∞∑
|m|=0

am,nHm,n(z)

on Ds that satisfy
q−1∑
n=1

+∞∑
m=0

|am,n|2 < +∞.

We equip the space A2(s) with the natural inner product

〈f, g〉s :=

q−1∑
n=0

+∞∑
m=0

am,nbm,n,(4.10)

for all members f(z) =
∑q−1

n=0

∑+∞
m=0 am,nHm,n(z) and g(z) =

∑q−1
n=0

∑+∞
m=0 bm,nHm,n(z) of

A2(s). It is standard that this is a Hilbert space which contains all q-analytic polynomials, which
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is contained in L2(ν) and its inner product coincides with the scalar product inherited from the
scalar product of L2(ν). Indeed, we have

Theorem 4.3. The space A2(s) consists of q-analytic functions and its reproducing Ks,q kernel
is given by

Ks,q(z, w) = Fs,q(zw̄, |z|2, |w|2), z, w ∈ Ds,

where Fs,q is the function defined by (2.1).

Proof. By virtue of Theorem A, the series

Ks,q(z, w) =

q−1∑
n=0

+∞∑
m=0

Hm,n(z)Hm,n(w).(4.11)

converges uniformly for zw̄ lying in a compact subset of Ds. Since the system (Hm,n),m, n ∈
N0, n ≤ q − 1 forms an orthonormal basis of A2(s), a little computing shows that

Ks,q(z, w) =

q−1∑
n=0

+∞∑
m=0

Hm,n(z)Hm,n(w)

=

q−1∑
n=0

+∞∑
m=0

(zw̄)mPm,n(|z|2)Pm,n(|w|2) +

q−1∑
n=1

n−1∑
m=0

(zw̄)mPn−m,m(|z|2)Pm,n(|w|2)

When q = 1, we are in the analytic case. Since Pm,0 is constant, the latter sum gives

Ks,1(z, w) =
+∞∑
m=0

(zw̄)mPm,0Pm,0.

However, , when q ≥ 2, we have

Ks,q(z, w) =
+∞∑
m=0

(zw̄)m
q−1∑
n=0

Pm,n(|z|2)Pm,n(|w|2) +

q−1∑
n=1

n−1∑
m=0

(z̄w)n−mPn−m,m(|z|2)Pn−m,m(|w|2)

= Fs,q(zw̄, |z|2, |w|2).

Now each element f of A2(s) admits a unique representation

f(z) =

q−1∑
n=0

+∞∑
m=0

am,nHm,n(w).

By Cauchy-Schwarz inequality, it follows that this series converges uniformly on compact sets
of Ds and hence it defines a q-analytic function. Moreover, it can be easily checked

f(z) = 〈f,Ks,q(·, z)〉.
for all z ∈ Ds. This completes the proof.

�

Now we are ready to prove Theorem B
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Proof of Theorem B. It suffices to show that each q-analytic function which belongs to L2(ν)
is an element of the space A2(s). Now let f be q-analytic function which belongs to L2(ν).
By (1.4) we know that f has a unique representation of the form

f(z) =

q−1∑
n=0

znfn(z), z ∈ Ds,

where the functions fn are analytic on Ds. Therefore, f can written in the form

f(z) =

q−1∑
n=0

+∞∑
m=0

znfm(z), z ∈ Ds,

where fm are anlytic polynomials and the series converges uniformly on compact sets of Ds. In
view of Theorem A, we see that f admits a unique representation of the

f(z) =

q−1∑
n=0

+∞∑
m=0

cm,nHm,n, z ∈ Ds,

where cm,n are complex coefficients and the series converging uniformly on compact sets of Ds.
Since f is in L2(ν) it follows that

q−1∑
n=0

+∞∑
m=0

|cm,n|2 < +∞

showing that f ∈ A2(s). The proof is now complete. �

5. THE POLYANALYTIC BERGMAN SPACE ON THE UNIT DISC

In this section apply our approach to different classes of orthogonal polynomials to produces
natural examples of Hilbert spaces of polyanalytic functions.

We start with the weighted polyanalytic Bergman space on D. Consider the weighted Lebesgue
measure on D given by

dAα(z) :=
(
1− |z|2

)α dA(z)

π
, α > −1,

where dA(z) is the Lebesgue measure on D. We denote by Aα
q (D), the weighted q-polyanalytic

Bergman space on D where q ∈ N0 and α > −1. This is the space of all q-polyanalytic functions
f on D which are square integrable with respect to dAα(z).

It can be easily checked that the measure ν is the image measure in D of µ⊗ σ under the map
(t, ξ) 7→

√
tξ from [0, 1[×T onto D where µ is the measure [0, 1[ given by

dµ(t) := (1− t)α dt.

The corresponding moment sequence is

(5.1) sd =

∫ 1

0

td (1− t)α dt =
Γ (d+ 1) Γ (α + 1)

Γ (d+ α + 2)
.
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Lemma 5.1. Suppose that ϕ is an automorphism of the unit disc. The the Bergman kernel Kq,α

of Aα
q (D) follows the transformation rule

Kq,α(z, ξ) =

(
ϕ′(z)ϕ′(ξ)

)(α+q+1)/2

(
ϕ′(z)ϕ′(ξ)

)(q−1)/2
Kq,α(ϕ(z), ϕ(ξ))(5.2)

for all z, ξ ∈ D.

Proof. It is sufficient to assume that ϕ ◦ ϕ(z) = z, for all z ∈ D. We recall the that the measure
dA(z)

(1−|z|2)2
is invariant under the action of the automorphism group of the unit disc. We also observe

that for any fixed ξ ∈ D, the function z 7→ (ϕ′)(z))(α+q+1)/2

(ϕ′(z))
(q−1)/2 Kq,α(ϕ(z), ξ) is an element of Aα

q (D).

By the reproducing property and change of variables formula we see that

(ϕ′(z))(α+q+1)/2(
ϕ′(z)

)(q−1)/2
Kq,α(ϕ(z), ξ) =

∫
D

(ϕ′(w))(α+q+1)/2(
ϕ′(w)

)(q−1)/2
Kq,α(ϕ(w), ξ)Kq,α(z, w)dAα(w)

=

∫
D

(
ϕ′(w)

)(α+q+1)/2

(ϕ′(w))(q−1)/2
Kq,α(w, ξ)Kq,α(z, ϕ(w))dAα(w)

=

∫
D

(ϕ′(w))(α+q+1)/2(
ϕ′(w)

)(q−1)/2
Kq,α(ξ, w)Kq,α(ϕ(w), z)dAα(w)

=

(
ϕ′(ξ)

)(α+q+1)/2

(ϕ′(ξ))(q−1)/2
Kq,α(z, ϕ(ξ))

Replacing ξ by ϕ(ξ) the latter equalities yield(
ϕ′(z)ϕ′(ξ)

)(α+q+1)/2

(
ϕ′(z)ϕ′(ξ)

)(q−1)/2
Kq,α(ϕ(z), ϕ(ξ)) = Kq,α(z, ξ)

This completes the proof. �

We shall make use of the classical Jacobi polynomials P (α,d)
n with parameters (α, d) and degree

n. An explicit formula for these polynomials is given by

P (α,d)
n (x) =

1

2n

n∑
k=0

(
α + n

k

)(
d+ n

n− k

)
(x− 1)n−k(x+ 1)k.(5.3)
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It is well-known by formula (3.96) in ( [24], p. 71) that these polynomials verify the equality

P (α,d)
n (1− 2x) =

Γ(n+ α + 1)

n!Γ(n+ α + d+ 1)

n∑
j=0

(−1)j
(
n

j

)
Γ(n+ j + α + d+ 1)

Γ(j + α + 1)
xj.(5.4)

The Jacobi polynomials satisfy the orthogonality condition

∫ 1

0

P (α,d)
n (2x− 1)P

(α,d)
n′ (2x− 1)xd(1− x)αdx = δn,n′h

α,d
n(5.5)

where

hα,dn :=
Γ (α + n+ 1)) Γ (d+ n+ 1)

Γ (α + d+ n+ 1) (α + d+ 2n+ 1)
.(5.6)

and hence for each non-negative integer d, the reproducing kernel of space of polynomials of
degree at most q − 1 with respect to the L2-inner product associated to the measure tddµ(t) is
then

Qd,q−1 (x, y) =

q−1∑
n=0

Pα,d
n (2x− 1)Pα,d

n (2y − 1)

hα,dn

=

q−1∑
n=0

P d,α
n (1− 2x)P d,α

n (1− 2y)

hα,dn
.

By the identity (3.114) in ( [24], p. 75) we see that

Q0,q−1 (x, 0) = Γ(q+α+1))
(q−1)!Γ(α+1)

P 1,α
q−1(1− 2x)(5.7)

so that by (5.4) we obtain

Fq,s(0, x, 0) = Q0,q−1 (x, 0)

= q

(
α + q − 1

α

) q−1∑
j=0

(−1)j
(
q − 1

j

)(
α + q + j

α + q − 1

)
xj

We observe that if z ∈ D, then Kq,α(z, 0) = Fq,s(0, |z|2, 0). Let z, w ∈ D let

ϕw(z) :=
z − w
1− zw̄

.

By Lemma 5.1, we have

Kq,α(z, w) =

(
ϕ′w(z)ϕ′w(w)

)(α+q+1)/2

(
ϕ′w(z)ϕ′w(w)

)(q−1)/2
Kq,α(ϕw(z), 0)

Since
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(
ϕ′w(z)ϕ′w(w)

)(α+q+1)/2

(
ϕ′w(z)ϕ′w(w)

)(q−1)/2
=

(1− z̄w)q−1

(1− zw̄)α+q+1

and

|ϕw(z)|2j =
[z − w|2j

|1− zw̄|2j
it follows that

Kq,α(z, w) = q
(
α+q−1
α

) (1−z̄w)q−1

(1−zw̄)α+q+1

∑q−1
j=0(−1)j

(
q−1
j

)(
α+q+j
α+q−1

) |z−w|2j
|1−zw̄|2j .

6. WEIGHTED POLYANALYTIC FOCK SPACES

The second example is the weighted measure defined on C by

dν (z) := |z|2αe−|z|
2

dA (z) , α > −1,

where dA (z) is the normalized Lebesgue measure on C. We denote by Aα
q (C) the weighted

q-polyanalytic Fock space on C where q is a positive integer. This is the space of all q-analytic
functions f on C which are square integrable with respect to dν(z). The measure ν is the image
measure in C of µ ⊗ σ under the map (t, ξ) 7→ t1/2ξ from [0,+∞[×T onto C where µ is the
measure on [0,+∞[ given by

dµ(t) :=
1

Γ(α + 1)
tαe−tdt.

The corresponding moment sequence is

(6.1) sd =

∫ +∞

0

tde−tdt =
Γ (α + d+ 1)

Γ(α + 1)
.

We will use the classical weighted Laguerre polynomials Lαn of degree n and weight α. These
polynomials satisfy,

(6.2)
∫ +∞

0

Ld+α
n (x)Ld+α

n′ (x)xd+αe−xdx =
Γ (d+ n+ 1)

n!
δn,n′ .

They have the following explicit representation

(6.3) Ld+α
n (x) =

n∑
r=0

(n+ d+ α)!

r!Γ (n+ d+ α + 1− r)
(−x)n−r

(n− r)!
.

We point out some useful formulas, the first one is due to Bailey [6]

(6.4) Ld+α
n (x)Ld+α

n (y) =
Γ (d+ α + n+ 1)

n!

n∑
l=0

(xy)n−l Ld+α+2n+−2l
l (x+ y)

(n− l)!Γ (d+ α + n+ 1− l)
.
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The others are

(6.5) Ld+α
n (x− y) =

n∑
r=0

yr

r!
Ld+α+r
n−r (x) .

(6.6) Ld+α
n (x− y) = e−y

+∞∑
r=0

yr

r!
Ld+α+r
n (x)

which are easy consequences of the definition of Ld+α
n (x). To compute the series Fq,s (λ, x, y)

in this case, it is sufficient to calculate the following expression

(6.7) Sα,q(λ) =

q−1∑
n=0

+∞∑
d=−n

n!λd

Γ (n+ d+ α + 1)
Ld+α
n (x)Ld+α

n (y) .

using first (6.4) and then (6.5) and (6.6) we have

Sα,q(λ) =

q−1∑
n=0

λ−nn!
+∞∑
d=n

λd+nLd+α
n (x)Ld+α

n (y)

Γ (d+ α + n+ 1)

=

q−1∑
n=0

λ−nn!
+∞∑
d=0

λd

Γ (d+ α + 1)
Ld+α−n
n (x)Ld+α−n

n (y)

=

q−1∑
n=0

λ−n
+∞∑
d=0

λd
n∑
r=0

(xy)n−r Ld+α+n−2r
r (x+ y)

(n− r)!Γ (d+ α− r + 1)

=

q−1∑
n=0

λ−n
n∑
r=0

(xy)n−r λr

(n− r)!

+∞∑
d=r

λd−r

Γ (d+ α− r + 1)!
Ld+α+n−2r
r (x+ y)

=

q−1∑
n=0

λ−n
n∑
r=0

(xy)n−r λr

(n− r)!

+∞∑
d=0

λd

Γ (d+ α + 1)
Ld+α+n−r
r (x+ y)

=

q−1∑
n=0

λ−n
n∑
r=0

(xy)n−r λr

(n− r)!
eλLα+n−r

r (x+ y − λ)

=

q−1∑
n=0

eλLαn

(
x+ y − λ− xy

λ

)
and since

∑q−1
r=0 L

β
r = Lβ+1

q−1 we deduce that

(6.8) Fq,s (λ, x, y) = eλLα+1
q−1

(
x+ y − λ− xy

λ

)
.

7. THE HIGHER DIMENSIONAL CASE

Consider p Stieltjes moment sequences s(1), · · · , s(p) ∈ S∗q and for each j let µj ∈ M(s(j))

and denote by νj denote the image measure on C of µj ⊗ σ under the map (t, ξ) 7→
√
tξ from
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[0,+∞[×T onto C, where σ is the rotation invariant probability measure on the unit circle T in
C. Then the support of each νj is contained in the closure of the disc Dj centred at 0 with radius
Rs(j). Then we set ν := ν1 ⊗ · · · ⊗ νp and consider the Hilbert space L2(ν) of square integrable
complex-valued functions in D1×· · ·×Dp with respect to the measure ν. We denote by A2

ν,q the
space of those q-analytic functions on D1 × · · · ×Dp which are square integrable with respect to
ν. The natural inner product inherited from that of L2(ν) turns A2

ν,q into a pre-Hilbert space. We
are now prepared to state the higher dimensional analog of Theorem B.

Theorem B’. The space A2
ν,q is Hilbert space which coincides with the closure of the q-analytic

polynomials in L2(ν). Moreover, for each set compact K ⊂ Ds we have that

supz∈K |f(z)| ≤ C ‖ f ‖L2(ν)

for all q-analytic polynomials f ∈ L2(ν), where

C = C(K) := supz∈K

n∏
j=1

√
Fq,s(j)(|zj|2, |zj|2, |zj|2).

Furthermore, the reproducing kernel of A2
ν is given by

Rν,q(z, w) =

p∏
j=1

Fq,s(j)(zjw̄j, |zj|2, |wj|2), z, w ∈ Ds.

Remark C’. As in Remark C, in the one variable case, when the measures µj have a finite
support with exacly q elements, provides the polyanalytic Cauchy type kernel of the unit polydisc
Dn := {z = (z1, · · · , zn) ∈ C : maxj=1,··· ,n |zj| < 1}.

In a similar manner, we obtain the weighted polyanalytic Bergman kernel of the unit polydisc
{z = (z1, · · · , zn) ∈ C : maxj=1,··· ,n |zj| < 1}. More precisely, for α > −1, we consider the
space A2

α,n,q of all square integrable of q-analytic functions with respect to the measure dνα,n(z) :
1
πn

∏n
j=1(1 − |zj|2)αdV (z), where dV (z) is the Lebesgue measure on Cn. We will obtain the

following

Theorem D’. The space A2
α,n,q is Hilbert space which coincides with the closure of the q-analytic

polynomials in L2(να) and its reproducing kernel is given by

Kα,n,q(z, w) =
∏n

j=1Kα,q(zj, wj)

for all z = (z1, · · · , zn), w = (w1, · · · , wn) ∈ Dn, where Kα,q is the weighted polyanalytic
Bergman kernel of the unit disc.

We also obtain by similar arguments the weighted polyanalytic Bergman kernel for the weighted
Fock space in Cn. Namely, let α > 0, and denote by Fα,q(C) the space A2

α,q of all square inte-
grable of q-analytic functions with respect to the measure

dνα(z) : |z|2αe−|z|2 dV (z)

πn
, α > −1

where dA(z) is the Lebesgue measure on Cn We will establish the following
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Theorem E’. The space Fα,q is Hilbert space which coincides with the closure of the q-analytic
polynomials in L2(να) and its reproducing kernel is given by

Kα,n,q(z, w) = e〈zw̄〉
∏n

j=1 L
α+1
q−1 (|zj − wj|2)

for all z = (z1, · · · , zn), w = (w1, · · · , wn) ∈ Cn.

REFERENCES

[1] L. D. Abreu, Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions, Appl. Comput.
Harmon. Anal. 29 (2010) 287-302.

[2] L. D. Abreu, On the structure of Gabor and super Gabor spaces, Monatsh Math (2010), 161, 237-253.
[3] D. Alpay. An advanced complex analysis problem book. Topological Vector Spaces, Functional Analysis, and

Hilbert spaces of analytic functions. Birkhauser (2015).
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plusieurs variables, C.R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 4, A263-A265.
[6] W. N. Bailey, On the product of two Legendre polynomials with different arguments, Proceeding of the London

Mathematical Society, Volume s2-41, Issue 1, 215-220, 1936.
[7] M.B. Balk. Polyanalytic functions and their generalizations, Complex analysis I.Encycl. Math. Sci, 85, 195-

253. Springer Verlag.
[8] M.B. Balk & M.Y. Mazalov, On the Hayman uniqueness problem for polyharmonic functions, in: Clifford

Algebras and Their Application in Mathematical Physics, Aachen, Germany, 1996, in: Fundam. Theor. Phys.,
vol. 94, Kluwer, Dordrecht, Germany, 1998, pp. 1116.

[9] M.B. Balk & M. F. Zuev, On polyanalytic functions. Russ. Math. Surveys, 25(5) (1970), 201-223.
[10] C. Berg & M. Thill, Rotation invariant moment problems, Acta Math., 167, (1991), 207227.
[11] H. Bommier-Hato & E. H. Youssfi, Hankel operators on weighted Fock spaces, Integr. Equ. Oper. Theory 59

(2007), 1–17.
[12] H. Bommier-Hato & E. H. Youssfi, Hankel operators and the Stieltjes moment problem, J. Funct. Anal. 258

(2010), 978–998.
[13] C.F Dunkl & Y. Xu, Orthogonal Polynomials of Several Variables, Cambridge Univ. Press, 2001.
[14] A. Dzhuraev, Multikernel functions of a domain, kernel operators, singular integral operators, Soviet Math.

Dokl. (1985) 32(1), 251-253.
[15] A. Haimi & Haakan Hedenmalm, The polyanaytic Ginibre ensembles, Journal of Statistical Physics (2013),

Volume 153, Issue 1, pp 10-47.
[16] A. Haimi & Haakan Hedenmalm, Asymptotic expansion of polyanalytic Bergman kernels, Journal of functional

Analysis, Volume 267, Issue 12, (2014), 4667-4731.
[17] W.K. Hayman & B. Korenblum, Representation and uniqueness theorems for polyharmonic functions, J. Anal.

Math. 60 (1993) 113-133.
[18] M.E.H.Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press,

Cambridge, 2005.
[19] A. D. Koshelev, The kernel function of a Hilbert space of functions that are polyanalytic in the disc, Dokl.

Akad. Nauk SSSR 232, no. 2 (1977), 277-279. English translation: Soviet Math. Dokl. 18 (1977), no. 1,
59–62.

[20] S. Lovera & E. H. Youssfi, Spectral properties of the ∂-canonical solution operator, Journal of Functional
Analysis 208 (2004), 360–376.

[21] A. K. Ramazanov,Representation of the Space of Polyanalytic Functions as a Direct Sum of Orthogonal Sub-
spaces. Application to Rational Approximations, Mathematical Notes, Vol.66, No. 5, 1999.



THE POLYANALYTIC REPRODUCING KERNELS 17

[22] A. K. Ramazanov, On the structure of spaces of polyanalytic functions, Mat. Zametki [Math. Notes], 72 (2002),
no. 5, 750-764.

[23] H. Render, Real Bargmann spaces, Fischer decompositions, and sets of uniqueness for polyharmonic functions,
Duke Math. J. 142 (2) (2008) 313-352.

[24] J. Shen T. Tang & L. Wang, Spectral methods: Algorithms, Analysis and Applications, Springer, 2011.
[25] T. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse 8 (1894) 1122; Ann. Fac. Sci.

Toulouse 9 (1895) 547
[26] N. L. Vasilevski, On the structure of Bergman and poly-Bergman spaces. Integral Equations Operator Theory,

33, (1999), 471-488.
[27] N. L. Vasilevski, Poly-Fock spaces, Operator theory advances and applications, v. 117 (2000), p 371-386.
[28] A. V. Vasin, Projections onto Lp-spaces of polyanalytic functions, Journal of Math. Scienes, Vol 71 no 1

(1991), ,2180-2191.
[29] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.
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