
Round-off error and exceptional behavior analysis of explicit

Runge-Kutta methods

Sylvie Boldo1, Florian Faissole1, and Alexandre Chapoutot2

1Inria, Université Paris-Saclay, F-91120 Palaiseau,
LRI, CNRS & Univ. Paris-Sud, F-91405 Orsay,

Email: {sylvie.boldo,florian.faissole}@inria.fr
2U2IS, ENSTA ParisTech, Université Paris-Saclay,

828 bd des Maréchaux, 91762 Palaiseau cedex France,
Email: alexandre.chapoutot@ensta-paristech.fr

Abstract

Numerical integration schemes are mandatory to understand complex behaviors of dynamical sys-
tems described by ordinary differential equations. Implementation of these numerical methods involve
floating-point computations and propagation of round-off errors. This paper presents a new fine-grained
analysis of round-off errors in explicit Runge-Kutta integration methods, taking into account exceptional
behaviors, such as underflow and overflow. Linear stability properties play a central role in the proposed
approach. For a large class of Runge-Kutta methods applied on linear problems, a tight bound of the
round-off errors is provided. A simple test is defined and ensures the absence of underflow and a tighter
round-off error bound. The absence of overflow is guaranteed as linear stability properties imply that
(computed) solutions are non-increasing.

Keywords: Round-off error, Numerical integration, Runge-Kutta method, Underflow, Overflow, Linear
stability.

1 Introduction

Ordinary differential equations (ODEs) are essential to model physical or biological phenomena. Such
equations are the most common way to mathematically describe the temporal evolution and the variations
of physical quantities. They spread their use in physics, biology, medicine, meteorology, economics and
various other scientific fields [1]. As an example, the study of population dynamics is useful to model the
spread of diseases in a population [2]. The Cauchy-Lipschitz Theorem ensures the existence of a unique
solution for ordinary differential equations when the initial state of the studied quantity is known [3]. An
ordinary differential equation together with an initial condition is called an Initial Value Problem (IVP).

In general, finding a quadrature method to solve an ODE could be difficult, i.e., there is no way to
exhibit an exact solution of the equation. Numerical integration methods have been designed in order to
provide an approximation of the solution. They consist in partitioning a time interval by a set of discrete
time instants and then to approximate the image of the solution at each point of the subdivision. Such
methods are iterative: from the initial condition provided by the IVP, the approximation of the solution is
built step by step, discrete point by discrete point.

There exists a wide variety of numerical integration methods. They can be fixed step-size or variable
step-size, i.e., time instants are equidistant from each other or not; they can be single step or multi-step,
i.e., they use one or several initial conditions; and they can be explicit or implicit, i.e., the solution at a
given time instant is only computed from initial conditions or it is computed as the solution of a fixed-point
equation. Depending on its properties, a method is suitable for different classes of Initial Value Problems.
For instance, explicit methods are generally not suitable to numerically solve stiff equations. That is why
numerical tools provide several numerical methods: for example, Simulink is a tool to model and simulate
dynamical systems widely used in the industry, it provides 13 numerical integration methods whose 11 belong
to the Runge-Kutta family1. In this article, we focus on explicit single-fixed-step-size methods belonging to
the class of Runge-Kutta methods.

1https://fr.mathworks.com/help/simulink/index.html

1

The main active research on numerical integration methods consists in developing new methods which
are able to deal efficiently with the largest class of problems [4]. That is why most of the research is focused
on increasing the order of the method while keeping the computation complexity as low as possible and
on defining more stable numerical methods. There are several formal definitions of the notion of numerical
stability. Intuitively, it means that the error made on the numerical solution of an ODE does not increase
too much. If one considers an Initial Value Problem whose exact solution converges to zero, a method is
stable if there exists a step-size such that the numerical solutions also converge to zero (see Section 2 for
a more precise definition). We refer to [5] for a more comprehensive presentation of stability notions of
numerical integration methods.

Numerical integration methods are built in order to provide a good approximation of the exact solution.
As numerical schemes are inextricably tied to the method errors they induce, these errors are well-known
and have been studied for a long time. When implemented on a machine with finite memory, numerical
algorithms use computer arithmetic (floating-point arithmetic for instance) [6]. Floating-point arithmetic
(FP) is known to be inaccurate and each step of computation may lead to round-off errors. As numerical
integration methods are iterative methods, these round-off errors may accumulate and bias the final result.
Surprisingly, numerical accuracy problems in computations have been studied even before computers when
considering hand calculations [7]. Even if mathematicians are aware of the round-off errors, they are
usually dismissing this problem. For instance, [8] claims the rounding errors “merely accumulate roughly in
proportion to the square root of the number of steps in the calculation”, but without any proof. We have
provided in [9] an analysis of round-off errors of Runge-Kutta methods. However, we assumed there were
neither underflow nor overflow. The contribution of this paper is to adapt the methodology of [9] taking
exceptional behavior into account and to provide better error bounds:

• In [9], we postulate that overflow is easy to check a posteriori as the result will be a NaN or an infinity.
We take here another way: we assume the initial condition of the ODE is bounded by a reasonable
value and use the linear stability to prove that no overflow occurs in all the computations.

• On the contrary, underflow cannot be prevented. It has to be taken into account in the bounds on
round-off errors we provide. Still, as long as no underflow occurs, we prove bounds as tight as in [9].

• We provide slightly tighter bounds using optimal bounds on relative errors studied in details by
Jeannerod and Rump [10]. See Theorem 3 in Section 5.

The paper is organized as follows. Section 2 presents the Runge-Kutta methods we are interested in,
together with their mathematical properties and their FP implementations. Section 3 describes a systematic
methodology to bound round-off errors induced by Runge-Kutta methods taking exceptional behaviors into
account. Section 4 proves that iterations of stable Runge-Kutta methods are non-increasing as long as no
underflow occurs. Section 5 is devoted to overflow’s handling. Then, Section 6 focuses on generic results
to bound local round-off errors of Runge-Kutta methods taking underflow into account and applications on
Euler, Runge-Kutta 2 and Runge-Kutta 4 methods. Section 7 provides a way to bound global round-off
errors from local errors and then gives bounds on global error for the same methods. Section 8 presents
related work. Finally, Section 9 concludes and gives some perspectives.

2 Runge-Kutta methods

In this section, a brief introduction on Runge-Kutta methods is recalled. A mathematical description of the
integration process is in Section 2.1. Their mathematical properties and the link with linear stability are in
Section 2.2. Finally, their FP counterpart is in Section 2.3.

2.1 Mathematical formulation

Runge-Kutta methods are able to solve initial value problem (IVP) of non-autonomous Ordinary Differential
Equations (ODEs) defined by

ẏ = f(t,y) with y(0) = y0 and t ∈ [0, tend]. (1)

The function f : R×Rm → Rm is the dynamic, y ∈ Rm is the vector of state variables and ẏ is the derivative
of y with respect to time t. We shall always assume at least that f is globally Lipschitz in y, so Equation (1)
admits a unique solution for a given initial condition y0 [11]. The exact solution of Equation (1) is denoted
by y(t; y0). Usually, a closed form of y(t; y0) is not computable and numerical methods to approximate it
are used.

2

A Runge-Kutta method, starting from an initial value y` at time t` and a finite time horizon h, the step
size, produces an approximated solution y`+1 at time t`+1, with t`+1 − t` = h, of the solution y(t`+1; y`).
Furthermore, to compute y`+1, a Runge-Kutta method computes s evaluations of f at predetermined time
instants. The number s is known as the number of stages of a Runge-Kutta method. More precisely, a
Runge-Kutta method is defined by

y`+1 = y` + h

s∑
i=1

biki, (2)

with ki defined by

ki = f

t` + cih,y` + h

s∑
j=1

aijkj

 . (3)

The coefficients ci, aij and bi, for i, j = 1, 2, · · · , s, fully characterize a Runge-Kutta method and they
are usually summarized into a Butcher tableau [11]. In this paper, only explicit Runge-Kutta methods are
considered that is the computation of the intermediate ki only depends on the previous steps kj for j < i.

The order of a Runge-Kutta method is p if and only if the local truncation error is such that

y(t`; y`−1)− y` = O(hp+1).

Basically, the order of a Runge-Kutta method gives an indication on the magnitude of the method error for
one integration step.

2.2 Mathematical properties

An important mathematical property of Runge-Kutta methods is their stability properties which make them
suitable to solve a wide class of problems. Starting from a stable IVP-ODE, a Runge-Kutta method is stable
if there is at least an integration step which makes the numerical solution preserving the stability of the
solution of IVP-ODE. The stability property depends on the class of IVP-ODEs. The most basic class of
IVP-ODEs is associated to linear ODEs of the form (with λ ∈ C):

ẏ = λy. (4)

This equation produces a stable solution, i.e., convergent to zero, if and only if <(λ) < 0, where < stands
for the real part of λ. Note that, a very general class of linear systems is considered by using a complex
value for the constant but we will focus in the following on real numbers only. While general class of linear
systems is high dimensional, it is sufficient to consider scalar problems, as defined in Equation (4), to study
the linear stability of numerical integration methods.

The application of explicit Runge-Kutta methods for the linear problem defined in Equation (4) defines
the relation

yn+1 = R(h, λ)yn. (5)

Example 1. Application of forward Euler’s method produces

yn+1 = yn + hλyn = (1 + hλ)yn = REuler(h, λ)yn.

Example 2. Application of RK2 (a.k.a. explicit midpoint) method on Equation (4) produces

k1 = λyn

k2 = λ(yn + 0.5hλk1) = (λ+ 0.5hλ2)yn

yn+1 = yn + hk2

= (1 + hλ+ 0.5h2λ2)yn = RRK2(h, λ)yn. (6)

Example 3. Application of RK4 method on Equation (4) produces

k1 = λyn

k2 = λ(yn +
1

2
hk1) = (λ+

1

2
hλ2)yn

k3 = λ(yn +
1

2
hk2) = (λ+

1

2
hλ2 +

1

4
h2λ3)yn

k4 = λ(yn + hk3) = (λ+ hλ2 +
1

2
h2λ3 +

1

4
h3λ4)yn

3

yn+1 = yn + h(
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4)

=

(
1 + λh+

1

2
(λh)2 +

1

6
(λh)3 +

1

24
(λh)4

)
yn

= RRK4(h, λ)yn. (7)

Equation (5) defines a geometric sequence, which only converges if |R(h, λ)| < 1. The function R is
known as the linear stability function of Runge-Kutta methods. It is a polynomial function for explicit
Runge-Kutta methods. The region of absolute convergence of Equation (5) determines the different values
of λh for which the method is stable. These regions can be determined, see [5] for more details. From now
on, we will only consider linear-stable methods.

2.3 Algorithmic formulation

As in Section 2.2, we focus on differential equations for functions valued in R. The function R, defined
by Equation (5), only depends on the employed method and is purely mathematical. It is important to

distinguish R and its FP counterpart R̃, which is an algorithm depending on the implementation of the
method.

In the rest of this article, variables mark with a tilde, e.g., ỹn or λ̃, will represent FP numbers. Operations
⊕, 	, ⊗, � are the FP counterpart of the mathematical operations, correctly rounded to nearest. To denote
the FP evaluation of a mathematical expression e, the notation ◦[e] will be used, meaning that each operation
of e inside the brackets is the FP one. For example, ◦[a+ b+ c× d] stands for a⊕ (b⊕ (c⊗ d)).

Unlike in [9], we consider here that h is not a parameter of the problem. It can indeed be chosen by the
user or the program within a certain range, therefore we assume it can be chosen to be a correct FP number.
This both increases the accuracy of the final result and simplifies the reasoning. An explicit integration
method corresponding to Equation (5) is implemented by the algorithm{

ỹ0 ≈ y0 ∈ R
∀n, ỹn+1 = R̃(h, λ̃, ỹn) ∈ R. (8)

Example 4. Let us consider the RK2 method on the linear IVP-ODE problem defined in Equation (4), an
associated algorithm is defined by

ỹn+1 = ◦
[
ỹn + hλ̃ỹn + hh

1

2
λ̃λ̃ỹn

]
.

Example 5. Let us consider the RK4 method. The exact iterative relation yn+1 = RRK4(h, λ)yn is given
in Equation (7). However, the FP implementation automatically obtained is more intricate:

ỹn+1 = ◦
[
ỹn +

h

6
λ̃ỹn +

h

3
λ̃ỹn +

h2

6
λ̃2ỹn +

h

3
λ̃ỹn+

h2

6
λ̃2ỹn +

h3

12
λ̃3ỹn +

h

6
λ̃ỹn +

h2

6
λ̃2ỹn+

h3

12
λ̃3ỹn +

h4

24
λ̃4ỹn

]
. (9)

We could have manually written a simpler algorithm, but this is the one automatically generated from
the basic definitions by tools such as Simulink.

The implementation is correct when the algorithm corresponds to the numerical method. It means that,
if R̃(h, λ, yn) was computed without rounding error, it would be mathematically equal to R(h, λ)yn and we
aim at providing bounds on the distance between yn and ỹn.

3 Overview of the method

In this work, we study the FP behavior of these numerical schemes. Seen as FP programs, we want to
ensure their behavior regarding both underflow and overflow, and bound the round-off errors with reasonable
bounds. For that, we assume an FP format with radix 2 and p bits of significand. An FP number is therefore
a value equal to

d0.d1 · · · dp−1 × 2e

4

with emin ≤ e ≤ emax and d0 is 1 except for subnormal values where e = emin.
We then denote the unit round-off as u = 2−p. We denote by Ω the largest positive FP number, that

is 2emax
(
2− 21−p). We denote by ξ the smallest positive normal number, that is ξ = 2emin . We denote

by η the smallest positive number, that is the subnormal η = 2emin−p+1. We only consider rounding to
nearest, with any tie-breaking rule. For instance in binary64 [12], we have ub64 = 2−53, Ωb64 ≈ 21024,
ξb64 = 2−1022 and ηb64 = 2−1074. Given a generic FP format, we want to bound the global round-off error
of a Runge-Kutta method as defined above denoted by En:

En = ỹn − yn. (10)

For that, we will rely on a local round-off error εn, that roughly corresponds to the round-off error made
at step n assuming the inputs are correct:

ε0 = |ỹ0 − y0|

∀n ∈ N∗, εn = |R̃(h, λ̃, ỹn−1)−R(h, λ)ỹn−1|. (11)

With similar notations, our previous work proved the following result [9]: Let C > 0. Suppose that we
have ∀n ∈ N∗, εn 6 Cu|ỹn−1| then ∀n,

|En| 6 (Cu+ |R(h, λ)|)n
(
ε0 + n

Cu|y0|
Cu+ |R(h, λ)|

)
.

But it is assumed an infinite exponent range. Our goal is to take into account the finite range of FP. The
previous bound does not hold anymore, but we try to have a similar result. The idea is to have the same
result as long as underflow does not occur and have a correct but coarser result in case of underflow. One
difficulty lies in a possible oscillation around the underflow threshold: one computation underflows while
the next does not and the analysis must remain correct.

In order to handle all exceptional behaviors, we look into the possible ones. Given the considered
computations that are only additions and multiplications with finite constant coefficients, the possible
exceptions are overflow and underflow. We assume the input value ỹ0 is neither an infinity, nor a NaN. It is
rather easy to prevent overflow (see Section 5), as we will prove that no infinity can be produced provided
a mild hypothesis on the input.

Underflow is more complicated to handle. We indeed have to modify all the error bounds from [9]. Let
us recall the results and let us see how we will modify them:

• We assumed the local error was bounded by εn 6 Cu|ỹn−1| with C being a small constant (such as
11 or 28). We now assume the local error is bounded by εn 6 Cu|ỹn−1| + Dη, with both C and D
being small constants and η the smallest subnormal number.

• We prove that this kind of formula for the local error actually holds for the common Runge-Kutta
methods. This is done in Section 6 and, in particular, in Section 6.2 for Euler’s, RK2 and RK4
methods.

• At last, we need to combine these local errors into a global error taking underflow into account and
this is done in Theorem 12 of Section 7.

This underflow handling gives a slightly larger error bound (with an additional term nDη, which is small
unless n is massive), but we want to keep the preceding result without η when no underflow occurred at all.
For that, we provide a value M such that, when |ỹn| > M , the local error is bounded only by the relative
error term εn 6 Cu|ỹn−1| (without Dη). For instance, if we were looking at a single multiplication, we have
that if |ỹn| > 16ξ, then ◦(ỹn/12) does not underflow, therefore its relative round-off error is bounded by u.
The value of M is non-trivial and depends upon the scheme. Values will be given for our example methods
in Section 6. More precisely, in this section, we will build the values of both C, D and M for each scheme.
These values may be computed in a systematic way for any Runge-Kutta scheme, from the lemmas given
in Section 6.1.

4 Non-increasing computations

As explained in Section 2.2, we only consider stable methods. From the mathematical point of view, it means
that the solutions computed by these methods are non-increasing. We can prove that the FP counterparts
are also non-increasing as long as no underflow occurs.

5

Lemma 1. Let C > 0,M > 0. Suppose that:

• Cu+ |R(h, λ)| 6 1;

• ∀n ∈ N∗, |ỹn| >M ⇒ εn 6 Cu|ỹn−1|;

Then: ∀n ∈ N∗, |ỹn| >M ⇒ |ỹn−1| > |ỹn| >M .

Proof. Let n ∈ N∗. Suppose that |ỹn| >M . We have:

|ỹn| = |R̃(h, λ̃, ỹn−1)| = |R̃(h, λ̃, ỹn−1)−R(h, λ)ỹn−1 +R(h, λ)ỹn−1|.

By triangular inequality and by definition of local errors:

|ỹn| 6 |R̃(h, λ̃, ỹn−1)−R(h, λ)ỹn−1|+ |R(h, λ)||ỹn−1| = εn + |R(h, λ)||ỹn−1|.

As |ỹn| >M , εn 6 Cu|ỹn−1|.
Moreover, Cu+ |R(h, λ)| 6 1, thus:
M 6 |ỹn| 6 (Cu+ |R(h, λ)|)|ỹn−1| 6 |ỹn−1|.

Then, a simple induction provide the following result:

Lemma 2. Let C > 0,M > 0. Suppose that:

• Cu+ |R(h, λ)| 6 1;

• ∀n ∈ N∗, |ỹn| >M ⇒ εn 6 Cu|ỹn−1|;

Then:
∀n ∈ N, |ỹn| >M ⇒ |ỹn| 6 |ỹn−1| 6 · · · 6 |ỹ1| 6 |ỹ0|.

Thus, as long as no underflow occurs, the computed ỹi are non-increasing. However, as soon as an
underflow occurs, the computations are not necessarily non-increasing, but still stay away from overflow.

5 Overflow’s handling

It is easy to check a posteriori if an overflow occurs. However, as we only consider stable methods, Lemma 2
shows that the computations are non-increasing as long as no underflow occurs. Thus, we prove that there
is no risk of overflow if the initial value ỹ0 is bounded by a reasonable value.

Let us first state an adaptation of a result proved by Jeannerod and Rump that provides an optimal
bound for one FP operation [10]. Note that we also take gradual underflow into account:

Theorem 3. (Jeannerod, Rump) [10] Let t ∈ R. Then:

|◦(t)− t| 6 |t| u

1 + u
+
η

2
.

Our main concern is the occurrence of ”local overflow”: local overflow means that there is an overflow
in an intermediate computation at a given step of the method. For a Runge-Kutta method described by
the iterative process ỹn+1 =

⊕s
i=0 α̃i ⊗ ỹn, i.e., ỹn+1 = (α̃0 ⊗ ỹn ⊕ (α̃1 ⊗ ỹn ⊕ (· · · ⊕ (α̃s ⊗ ỹn)) . . .), local

overflow means that at least one sub-sum
⊕k

i=0 α̃i+s−k ⊗ ỹn (with k 6 s) overflows.

Lemma 4. Local overflow
Let s ∈ N. Let (α̃i)n∈N a sequence of FP numbers. Let y an FP number. Let 0 < V . Suppose that:

•
∑s
i=0 |α̃i| 6 V ;

• |y| 6 Ω
(1+(s+1)u)V ;

• (s+ 1)u 6 1;

• ξ 6 2emax−p.

Then: ∀k ∈ N, k 6 s, ∣∣∣∣∣
k⊕
i=0

α̃i+s−k ⊗ y

∣∣∣∣∣ ≤ Ω.

6

Proof. By Jeannerod-Rump [10, Th 4.1], even if underflow occurs, we have:∣∣∣∣∣
k⊕
i=0

α̃i+s−k ⊗ y −
k∑
i=0

α̃i+s−k ⊗ y

∣∣∣∣∣ 6 ku

1 + u

k∑
i=0

|α̃i+s−k ⊗ y|.

Thus: ∣∣∣∣∣
k⊕
i=0

α̃i+s−k ⊗ y

∣∣∣∣∣ 6 ku

1 + u

k∑
i=0

|α̃i+s−k ⊗ y|+

∣∣∣∣∣
k∑
i=0

α̃i+s−k ⊗ y

∣∣∣∣∣ .
Hence, by triangular inequalities inside the sum:∣∣∣∣∣

k⊕
i=0

α̃i+s−k ⊗ y

∣∣∣∣∣ 6
(

ku

1 + u
+ 1

) k∑
i=0

|α̃i+s−k ⊗ y|.

Let us bound the above-mentioned sum. We note that underflow may happen in the multiplication by
y. Hence, η appears for each term of the sum.

k∑
i=0

|α̃i+s−k ⊗ y| 6
k∑
i=0

(
|y||α̃i+s−k|(1 + u) +

η

2

)

6
Ω

V (1 + (s+ 1)u)
V (1 + u) + (k + 1)

η

2
=

Ω

1 + (s+ 1)u
(1 + u) + (k + 1)

η

2
.

So, we have: ∣∣∣∣∣
k⊕
i=0

α̃i+s−k ⊗ y

∣∣∣∣∣ 6
(

1 + (k + 1)u

1 + u

)(
Ω

1 + (s+ 1)u)
(1 + u) + (k + 1)

η

2

)

<
1 + (k + 1)u

1 + (s+ 1)u
Ω + (1 + (k + 1)u)(k + 1)

η

2
.

So, as k 6 s and (k + 1)u 6 (s+ 1)u 6 1:∣∣∣∣∣
k⊕
i=0

α̃i+s−k ⊗ y

∣∣∣∣∣ < Ω + (1 + (k + 1)u)(k + 1)
η

2

6 Ω +
η

u
= Ω + 2ξ 6 Ω + 2× 2emax−p = Ω + ulp(Ω).

Thus, as
⊕k

i=0 α̃i+s−k ⊗ y is an FP number,
∣∣∣⊕k

i=0 α̃i+s−k ⊗ y
∣∣∣ 6 Ω.

As the sequence (ỹi)i∈N is non-increasing as long as no underflow occurs (see Lemma 2 in Section 4), we
prevent overflow along the iterations of the method:

Theorem 5. Global overflow
Let C > 0, M > 0. Let a Runge-Kutta method described by the relation ∀n ∈ N, ỹn+1 =

⊕s
i=0 α̃i ⊗ ỹn.

Suppose that:

•
∑s
i=0 |α̃i| 6 V ;

• (s+ 1)u 6 1;

• ∀n ∈ N∗, |ỹn| >M ⇒ εn 6 Cu|ỹn−1|;

• M 6 Ω
(1+(s+1)u)V ;

• ξ 6 2emax−p.

• |ỹ0| 6 Ω
(1+(s+1)u)V .

Then, for all n ∈ N, no overflow occurs in the computation of ỹn by the Runge-Kutta method.

7

Proof. Let us prove the result by induction.
If n = 0, as ỹ0 is finite, there is no overflow.
Let n a given natural number. Suppose there is no overflow up to iteration n.
If |ỹn| > M , then by Lemma 2, |ỹn| 6 |ỹ0| 6 Ω

(1+(s+1)u)V . If |ỹn| < M then |ỹn| < Ω
(1+(s+1)u)V too.

Thus, in both cases, by Lemma 4, for all k 6 s, we have:∣∣∣∣∣
k⊕
i=0

α̃i+s−k ⊗ ỹn

∣∣∣∣∣ 6 Ω.

Thus, no overflow occurs in the computation of ỹn+1. Using the induction hypothesis, it means that no
overflow occurs up to iteration n+ 1 and so the result.

Let us discuss the hypotheses of Theorem 5:

• To prevent overflow, it is sufficient to check that |ỹ0| is not too huge. Table 1 gives the values of s and
the order of magnitude of V and Ω

(1+(s+1)u)V for classic methods in radix 2 binary64 format. Actually,

classic problems solved by Runge-Kutta methods commonly involve reasonable values. For instance,
even in astrophysics, initial conditions never exceed 1024 [13], which is much smaller than the values
exhibited in Table 1.

• Furthermore, Theorem 5 assumes ξ 6 2emax−p. Actually, all useful FP formats verify this assumption.
For instance, in binary64, ξ = 2−1022 and 2emax−p = 2970.

Table 1: Values of V , s, and Ω
(1+(s+1)u)V for classic methods in binary64

Method V s Ω
(1+(s+1)u)V

Euler 3 2 Ω
3+9u

' 5.99× 10307

RK2 5 3 Ω
5+20u

' 3.6× 10307

RK4 16.5 11 Ω
16.5+198u

' 1.09× 10307

In the next sections, the contribution of gradual underflow is taken into account in round-off errors.

6 Local errors

Following our methodology (see Section 3), a first step is to bound local errors of Runge-Kutta methods.
This section is devoted to local errors and is organized as follows. In Section 6.1, we give preliminary results
which apply to a wide range of algorithms, taking underflow into account. Then, Section 6.2 provides
bounds on local errors for both Euler’s, Runge-Kutta 2 and Runge-Kutta 4 methods.

6.1 Floating-point preliminaries

Before studying particular Runge-Kutta methods, we focus on generic and quite technical results used
to bound local round-off errors. First, we focus on the addition of two FP values X1 and X2 that both
correspond to a multiple of a given value y. Second, we focus on the computation of X1⊕ (X2⊗ y) with X1

corresponding to a multiple of y. Underflow may then occur, but we retain the error bound corresponding
to an unbounded exponent range as in [9], provided a few hypotheses, including the fact that y is sufficiently
large.

Lemma 6. Let y ∈ R. Let C1, C2, D1, D2 ∈ R+. Let α1, α2 ∈ R. Let X1 and X2 be FP numbers such that:

• |X1 − α1y| 6 C1u|y|+D1η;

• |X2 − α2y| 6 C2u|y|+D2η.

Then:

|X1 ⊕X2 − (α1 + α2)y|

6

(
C1u+ C2u+

u

1 + u
(|α1|+ |α2|+ C1u+ C2u)

)
|y|+ (1 + u)(D1 +D2)η.

8

Proof. The proof combines FP facts, e.g. underflowing additions are correct and Theorem 3, and the hy-
potheses.
| X1 ⊕X2 − (α1 + α2)y |
6 |X1 ⊕X2 − (X1 +X2)|+ |X1 +X2 − (α1 + α2)y|

6
u

1 + u
× |X1 +X2|+ (C1u+ C2u)|y|+ (D1 +D2)η

6
u

1 + u
× ((C1u+ |α1|)|y|+ (C2u+ |α2|)|y|)

+ (C1u+ C2u)|y|+ (D1 +D2)

(
1 +

u

1 + u

)
η

=

(
(C1 + C2)u+

u

1 + u
× (|α1|+ |α2|+ (C1 + C2)u)

)
|y|+ η

1 + 2u

1 + u
(D1 +D2)

6

(
(C1 + C2)u+

u

1 + u
× (|α1|+ |α2|+ (C1 + C2)u)

)
|y|+ η(1 + u)(D1 +D2).

We now focus on computing X1 ⊕ (X2 ⊗ y), with a possible underflow in the multiplication.

Lemma 7. Let y an FP number. Let C1, C2, D1,M, P2 ∈ R+. Let α1 ∈ R, α2 ∈ R∗. Let X1 and X2 be FP
numbers such that:

• |X1 − α1y| 6 C1u|y|+D1η;

• |y] >M ⇒ |X1 − α1y| 6 C1u|y|;

• |X2 − α2| 6 C2u;

•
∣∣∣X2−α2

α2

∣∣∣ 6 P2 < 1;

• M > ξ
|α2|(1−P2) .

Then, |y| >M ⇒
|X1 ⊕ (X2 ⊗ y)− (α1 + α2)y|

6 |y|

(
C1u+ C2u+

u

1 + u
(|α1|+ 2|α2|+ C1u+ 2C2u) +

(
u

1 + u

)2

(C2u+ |α2|)

)
and

|X1 ⊕ (X2 ⊗ y)− (α1 + α2)y|

6 |y|

(
C1u+ C2u+

u

1 + u
(|α1|+ 2|α2|+ C1u+ 2C2u) +

(
u

1 + u

)2

(C2u+ |α2|)

)
+ η(1 + u)

(
1

2
+D1

)
.

Proof. • Assume |y| < M .

The proof relies on an application of Lemma 6 with X1, α1 and α2 being the same. But the X2 of
Lemma 6 is then X2 ⊗ y. We have the expected assumptions on X1, α1, C1 and D1. As for C2 and
D2, we need to bound the error on X2 ⊗ y:

|X2 ⊗ y − α2y| 6 |X2 ⊗ y −X2 × y|+ |y| |X2 − α2|

6
u

1 + u
|X2| |y|+

η

2
+ |y|C2u

6
u

1 + u
(C2u+ |α2|) |y|+ |y|C2u+

η

2

= |y|
(
C2u+

u

1 + u
(C2u+ |α2|)

)
+
η

2
.

So we can take for C2 the value
(
C2 + 1

1+u (C2u+ |α2|)
)

, for D2 the value 1
2 and have all the required

hypotheses. Applying Lemma 6, we get

9

|X1 ⊕X2 ⊗ y − (α1 + α2)y| 6
(
C1u+ C2u+

u

1 + u
(C2u+ |α2|)+

u

1 + u
(|α1|+ |α2|+ C1u+ C2u+

u

1 + u
(C2u+ |α2|))

)
|y|+ η(1 + u)

(
1

2
+D1

)
=

(
C1u+ C2u+

u

1 + u
(|α1|+ 2|α2|+ C1u+ 2C2u) +

(
u

1 + u

)2

(C2u+ |α2|)

)
|y|

+ η(1 + u)

(
1

2
+D1

)
.

• Assume |y| >M .

We know that |y| > ξ
|α2|(1−P2) . Moreover,

∣∣∣X2−α2

α2

∣∣∣ 6 P2 i.e. |X2 − α2| 6 P2|α2| and thus:

|α2| − |X2| 6 P2|α2| i.e |X2| > (1− P2)|α2|

and as P2 < 1: |X2y| > (1− P2)|α2| ξ
|α2|(1−P2) = ξ

So |X2 ⊗ y −X2y| 6 u
1+u |X2| |y| because the multiplication of X2 and y does not underflow.

Then, as in the other case, we apply Lemma 6 with X1, α1 and α2 being the same, X2 being X2 ⊗ y.
We have the right assumption on X1, α1 and C1. As for C2, we need to bound the error on X2 ⊗ y:

|X2 ⊗ y − α2y| 6 |X2 ⊗ y −X2 × y|+ |y| |X2 − α2|

6
u

1 + u
|X2| |y|+ |y|C2u

6
u

1 + u
(C2u+ |α2|) |y|+ |y|C2u

= |y|
(
C2u+

u

1 + u
(C2u+ |α2|)

)
.

So we can take for C2 the same value as before C2 + 1
1+u (C2u+ |α2|) and take D1 = D2 = 0, so that

we have all the required hypotheses. Applying Lemma 6, we get

|X1 ⊕X2 ⊗ y − (α1 + α2)y|

6
(
C1u+ C2u+

u

1 + u
(C2u+ |α2|) + u(|α1|+ |α2|+ C1u+ C2u+

u

1 + u
(C2u+ |α2|))

)
|y|

= (C1 + C2)u+
u

1 + u
(|α1|+ 2|α2|+ (C1 + 2C2)u) +

(
u

1 + u

)2

(C2u+ |α2|))|y|.

The hypotheses of this lemma may seem redundant. There is indeed a bound P2 on the relative round-off
error of α2 and a bound C2 on its absolute error. Of course, one could deduce one from the other. But in
our application, α2 will not be a known constant but will live in an interval, and we need an error bound
whatever the value in this interval. The P2 and C2 will be obtained automatically depending on the stability

interval for hλ. For instance, α2 may be h2λ2

6 and X2 may be ◦
[
h2 1

6 λ̃
2
]
. As −3 6 hλ 6 0, we only know

that 0 6 α2 6 1.5 and we bound the round-off errors whatever the effective values of h and λ. If we had the
value of α2, we would have better error bounds and no need for both errors. But as we only have an interval,
in order to prevent a correlation on α2 and to have better bounds, we have to consider both bounds.

These results are precisely tailored for their use in Section 6.2 for bounding the local round-off errors of
the numerical methods taking possible underflow into account.

We note that if no underflow occurs (which corresponds here to |y| greater than or equal to the threshold
M), we get a result similar to the one of [9]. Nonetheless, the bound provided by Lemma 7 is a bit tighter,
as we use the bound u

1+u provided by Jeannerod and Rump [10]. Unfortunately, this tighter bound is not

enough to get rid of u2 (and higher) terms, contrary to the seminal work [10] where error bounds were
simplified. This is slightly disappointing but this improves the error bounds anyway. If an underflow may
have occurred, a term depending on η is added.

6.2 Bound on local round-off errors of classic methods

In this section, we use the general results of Section 6.1 to bound relative local errors of classic Runge-Kutta

methods. To perform it, we have to bound each term of the R(h, λ) polynomial (such as hλ
6 ,

h2λ2

2 , h
3λ3

12
and their FP errors). For this purpose, we use Gappa, a tool to formally verify properties on numerical

10

programs using FP arithmetic [14,15].2. It bounds FP errors and values, and produces a proof term which
could be checked by proof assistants such as Coq. In this section, we assume that computations are done
in the binary64 IEEE-754 format. To refine our results, we focus on stable methods and use their region of
stability for hλ. First, we study the Runge-Kutta method of order 1, well-known as Euler’s method.

Lemma 8. Bound on Euler local round-off errors. Let us assume −2 6 hλ 6 −2−100 and 2−60 6
h 6 1. Let n ∈ N. Then: |ỹn| > ξ

2(1−2.01u) ⇒ εn+1 6 9.01u |ỹn| and εn+1 6 9.01u |ỹn|+ (0.5 + u)η.

Proof. This proof relies on an application of Lemma 7 with y = ỹn. Then X1 = ỹn, α1 = 1, C1 = 0 and
D1 = 0. And X2 = h⊗λ̃, α2 = hλ. We then need a correct C2. Using Gappa, we obtain |X2−hλ| 6 4×2−53

from intervals on hλ and on h, so we choose C2 = 4. Moreover, Gappa provides a bound on the relative
error

∣∣X2−hλ
hλ

∣∣ 6 2.01 × 2−53. So we choose P2 = 2.01u. The application of Lemma 7 then gives that

|ỹn| > ξ
2(1−2.01u) implies

εn+1 6 |ỹn|
(
4u+ u (1 + 2|hλ|+ 8u) + u2(4u+ |hλ|)

)
.

Note that ξ
2(1−2.01u) has been chosen in order to have the conditions of Lemma 7 on M . Moreover, Lemma 7

gives:

εn+1 6 |ỹn| (4u+ u (1 + 2|hλ|+ 8u) + u2(4u+ |hλ|)) + (0.5 + u)η.
As |hλ| ≤ 2, we have

εn+1 ≤ |ỹn|
(
9u+ 14u2 + 6u3

)
+ (0.5 + u)η

6 9.01u |ỹn|+ (0.5 + u)η.

and |ỹn| > ξ
2(1−2.01u) ⇒

εn+1 ≤ |ỹn|
(
9u+ 14u2 + 6u3

)
6 9.01u |ỹn| .

Lemma 9. Bound on Runge-Kutta 2 local round-off errors. Let us assume stability, that −2 6
hλ 6 −2−100 and 2−60 6 h 6 1. Then for all n, |ỹn| > ξ

2(1−8u) ⇒ εn+1 6 27.01u |ỹn| and εn+1 6
27.01u |ỹn|+ 1.01η.

Proof. As explained, we have for the RK2 method

ỹn+1 = ◦
[
ỹn + hλ̃ỹn + hh 1

2 λ̃λ̃ỹn

]
.

Stability means that |1 +hλ+ h2λ2

2 | 6 1. As in Euler’s method, we rely on Lemma 7. We put in Table 2
the corresponding α, C, P2 and D. To determine the threshold M at which there is no underflow in a step of
computation, we determine an underflow’s threshold Mloc for each term of the corresponding computation.
Then, we just need to choose M as the maximum of all the Mloc values.

The first 3 lines are similar to the local error of Euler’s method above (as the hypotheses on hλ are the
same).

Then Gappa gives us the bound of Line 4∣∣∣∣◦ [hh1

2
λ̃λ̃

]
− h2λ2

2

∣∣∣∣ 6 13u

under the given hypotheses on hλ and h. It also gives the bound on the relative error:∣∣∣∣∣∣
◦
[
hh 1

2 λ̃λ̃
]
− h2λ2

2

h2λ2

2

∣∣∣∣∣∣ 6 2−50 = 8u

Many other lines have been removed for the sake of brevity. The last line corresponds to using Lemma 7
with the C and α of Lines 3 and 4, while bounding the u2 and u3 terms.
Here, M is the maximum of all the Mloc values, i.e., ξ

2(1−8u) .

Lemma 10. Bound on Runge-Kutta 4 local round-off errors Let us assume stability, that −3 6 hλ 6
−2−100 and 2−60 6 h 6 1. Then for all n, |ỹn| > ξ

0.5(1−4u) ⇒ εn+1 6 164u |ỹn| and εn+1 6 164u |ỹn|+ 5.6η.

2The corresponding Gappa scripts are available online at the following address: https://www.lri.fr/~faissole/Gappa_RK/

11

Table 2: Steps for the local round-off error bound of RK2.
FPterm C P2 Mloc D

ỹn 0 − 0 0

h⊗ λ̃ 4 2.01u − −
◦
[
ỹn + hλ̃ỹn

]
9 + 15u − ξ

2(1−2.01u)
0.5 + u

◦
[
hh 1

2
λ̃λ̃

]
13 8u − −

◦ [ỹn + . . .] 27.01 − ξ
2(1−8u)

1.01

Proof. The RK4 method is defined by Equation (9). In this case, stability means:∣∣∣∣1 + hλ+
h2λ2

2
+
h3λ3

12
+
h4λ4

24

∣∣∣∣ 6 1

which leads to −3 6 hλ 6 0. As previously, we rely on Lemma 7 and on Gappa under the given hypotheses
on hλ and h. We put in Table 3 the corresponding α, C, P2, D and Mloc of some FP terms. Here, we can
take M = ξ

0.5(1−4u) , which is the maximum of the Mloc values. Here, contrarily to Lemmas 8 and 9, M is

not the Mloc value corresponding to the last term.

Table 3: Steps for the local round-off error bound of RK4.
FPterm C P2 Mloc D

ỹn 0 − 0 0

h⊗ 1
6
⊗ λ̃ 2 4u − −

◦
[
ỹn + h 1

6
λ̃
]

4 − ξ
0.5(1−4u)

0.5 + u

h⊗ 1
3
⊗ λ̃ 4 4u − −

◦
[
h2 1

6
λ̃2

]
9 8u − −

◦
[
h3 1

12
λ̃3

]
21 16u − −

◦
[
h4 1

24
λ̃4

]
40 16u − −

◦ [ỹn + . . .] 164 − ξ
3.375(1−16u)

5.6

7 Global errors

In Section 6, we have exhibited bounds on local errors for classic methods. Following our methodology (see
Section 3), we now want to bound the global round-off error of these methods, i.e., the total round-off error
after a given number of iterations. We first prove, in Section 7.1, that we can find bounds on global errors
from bounds on all the previous local errors. Then, we provide bounds on global round-off errors of classic
Runge-Kutta methods in Section 7.2.

7.1 From local to global round-off errors

This section is devoted to the dependency between local and global round-off errors. More particularly, if
we take underflow into account to bound local errors, we have to take it into account when bounding the
global error. We first prove a technical lemma to relate local and global errors.

Lemma 11. Let C > 0. Suppose that 0 < Cu+ |R(h, λ)|. Then, for all n ∈ N:

(Cu+ |R(h, λ)|)n+1
(ε0 + n Cu|y0|

Cu+|R(h,λ)|) + Cu|R(h, λ)|n|y0|

≤ (Cu+ |R(h, λ)|)n+1
(
ε0 + (n+ 1) Cu|y0|

Cu+|R(h,λ)|

)
Proof. By simplifying the (Cu+ |R(h, λ)|)n+1

ε0 value, it remains to prove that

(Cu+ |R(h, λ)|)n+1
n

Cu|y0|
Cu+ |R(h, λ)|

+ Cu |R(h, λ)|n |y0| 6 (Cu+ |R(h, λ)|)n+1
(n+ 1)

Cu|y0|
Cu+ |R(h, λ)|

.

12

By simplifying again by (Cu+ |R(h, λ)|)n+1
n Cu|y0|
Cu+|R(h,λ)| , it remains to prove that

Cu |R(h, λ)|n |y0| 6 (Cu+ |R(h, λ)|)n+1 Cu|y0|
Cu+ |R(h, λ)|

.

This is true if y0 = 0 or C = 0. Otherwise, we have to prove

|R(h, λ)|n 6 (Cu+ |R(h, λ)|)n+1 1

Cu+ |R(h, λ)|
= (Cu+ |R(h, λ)|)n.

As C > 0, this inequality holds and so the result.

The following theorem provides the bound on the global round-off error of a method from all the previous
local errors. In Section 6, the local error of the method at iteration n depends on whether an underflow
occurs. Actually, stability of our methods implies that there is no underflow contribution in the global error
until there is an underflow contribution in the last local error.

Theorem 12. From local to global round-off error. Let C > 0, D > 0,M > 0. Suppose that:

• ∀n ∈ N∗, |ỹn| >M ⇒ εn 6 Cu|ỹn−1|;

• ∀n ∈ N∗, εn 6 Cu|ỹn−1|+Dη;

• 0 < Cu+ |R(h, λ)| < 1.

Then:

• ∀n, |ỹn| >M ⇒ |En| 6 (Cu+ |R(h, λ)|)n
(
ε0 + n Cu|y0|

Cu+|R(h,λ)|

)
.

• ∀n, |En| 6 (Cu+ |R(h, λ)|)n
(
ε0 + n Cu|y0|

Cu+|R(h,λ)|

)
+ nDη.

Proof. We do an induction on n. For n = 0, we have:

|E0| = ε0 = (Cu+ |R(h, λ)|)0

(
ε0 + 0

Cu|y0|
Cu+ |R(h, λ)|

)
+ 0Dη

and both results hold.
Suppose the result is true for a given n ∈ N.

• Assume |ỹn+1| >M .

By Lemma 1, we have |ỹn| >M . Let us try to bound |En+1| by a simple unfolding of the definitions
given in Equations (11) and (10) and a triangular inequality:

|En+1| 6 |ỹn+1 −R(h, λ)ỹn|+ |R(h, λ)ỹn −R(h, λ)yn| = εn+1 + |R(h, λ)| |En|.

Let us use the hypothesis on εn+1 to bound it:

εn+1 6 Cu|ỹn| 6 Cu (|ỹn − yn|+ |yn|) = Cu|En|+ Cu |R(h, λ)|n |y0|. (12)

Then, using Equation (12):

|En+1| 6 Cu|En|+ Cu|R(h, λ)|n|y0|+ |R(h, λ)||En| = (Cu+ |R(h, λ)|)|En|+ Cu|R(h, λ)|n|y0|.

Using the induction hypothesis, we now have

|En+1| 6 (Cu+ |R(h, λ)|)(Cu+ |R(h, λ)|)n ×
(
ε0 + n

Cu|y0|
Cu+ |R(h, λ)|

)
+ Cu |R(h, λ)|n |y0|

= (Cu+ |R(h, λ)|)n+1

(
ε0 + n

Cu|y0|
Cu+ |R(h, λ)|

)
+ Cu |R(h, λ)|n |y0|.

Applying Lemma 11, we get:

|En+1| 6

(Cu+ |R(h, λ)|)n+1
(
ε0 + (n+ 1) Cu|y0|

Cu+|R(h,λ)|

)
.

13

• Assume |ỹn+1| < M .

Bounding εn+1 from the assumptions, we have:

|En+1| 6 εn+1 + |R(h, λ)||En| 6 Cu|ỹn|+Dη + |R(h, λ)||En|
6 Cu (|ỹn − yn|+ |yn|) +Dη + |R(h, λ)||En|
= Cu|En|+ Cu |R(h, λ)|n|y0|+Dη + |R(h, λ)||En|
= (Cu+ |R(h, λ)|)|En|+ Cu|R(h, λ)|n|y0|+Dη.

Using the induction hypothesis, we now have

|En+1| 6 (Cu+ |R(h, λ)|)

×
(

(Cu+ |R(h, λ)|)n
(
ε0 + n Cu|y0|

Cu+|R(h,λ)|

)
+ nDη

)
+ Cu|R(h, λ)|n|y0|+Dη

= (Cu+ |R(h, λ)|)n+1
(
ε0 + n Cu|y0|

Cu+|R(h,λ)|

)
+ Cu|R(h, λ)|n |y0|+ (Cu+ |R(h, λ)|)nDη +Dη.

= (Cu+ |R(h, λ)|)n+1
(
ε0 + n Cu|y0|

Cu+|R(h,λ)|

)
+ Cu|R(h, λ)|n |y0|+ (n+ 1)Dη.

Applying Lemma 11, we get:

|En+1| 6 (Cu+ |R(h, λ)|)n+1
(
ε0 + (n+ 1) Cu|y0|

Cu+|R(h,λ)|

)
+ (n+ 1)Dη.

This theorem bounds the global round-off error in a general way, even if underflow occurs. Applying
Theorem 12 on stable methods gives an interesting property: even if local round-off errors can accumulate
through the iterations, the global error does not diverge too fast. The first errors are attenuated by the
computations as they are multiplied by a power of |R(h, λ)| < 1. It ensures a reasonable final error bound and
gives a link between stability in the sense of numerical analysis and stability in the sense of FP arithmetic.

As in Section 6, we get a slightly better result than in [9] (due to the bounds from [10]) as long as no
underflow occurs. In case underflow may have occurred, we get the same result to which is added a term
proportional to η.

Note also that from Theorem 12 we can bound the relative round-off error when no underflow occurs:∣∣∣ ỹn−ynyn

∣∣∣ 6 (Cu+|R(h,λ)|
|R(h,λ)|

)n (∣∣∣ ỹ0−y0y0

∣∣∣+ n Cu
Cu+|R(h,λ)|

)
.

If we assume that Cu� |R(h, λ)|, this reduces to∣∣∣∣ ỹn − ynyn

∣∣∣∣ . ∣∣∣∣ ỹ0 − y0

y0

∣∣∣∣+ n
Cu

|R(h, λ)|
. (13)

As seen in Section 6, C is actually never above a small constant (at most 200 for the Runge-Kutta
methods we consider). Thus, assuming that Cu� |R(h, λ)|, this relative bound is proportional to n, as is
the number of FP operations involved in the computation of ỹn.

7.2 Bound on global error of Runge-Kutta methods

In Section 6, we have exhibited bounds on the local errors of classic Runge-Kutta methods. In Section 7.1, we
have shown how to bound the global error of a scheme from all its local round-off errors. Hence, computing
bounds on global round-off errors of classic methods is a generic process. In this section, we give bounds
on global errors for Euler, Runge-Kutta 2 and Runge-Kutta 4 methods. As in Section 6, we assume that
computations are done in binary64.

First, we can give a bound on the global round-off error of the Euler’s method instantiating Theorem 12
with C = 9.01, D = 0.5 + u and M = ξ

2(1−2.01u) .

Theorem 13. Bound on absolute error of Euler scheme. Let us assume −2 6 hλ 6 −2−100 and
2−60 6 h 6 1. Then ∀n,

|En| 6 (9.01u+ |R(h, λ)|)n
(
ε0 + n 9.01u|y0|

9.01u+|R(h,λ)|

)
+ n(0.5 + u)η

and
|ỹn| > ξ

2(1−2.01u) ⇒ |En| 6 (9.01u+ |R(h, λ)|)n
(
ε0 + n 9.01u|y0|

9.01u+|R(h,λ)|

)
.

The reasoning is the same for higher-order methods as for Euler’s method. For Runge-Kutta 2 methods,
we instantiate Theorem 12 with the constants provided by Lemma 9.

14

Theorem 14. Bound on absolute error of RK2 method. Let us assume −2 6 hλ 6 −2−100 and
2−60 6 h 6 1. Then ∀n,

|En| 6 (27.01u+ |R(h, λ)|)n
(
ε0 + n 27.01u|y0|

27.01u+|R(h,λ)|

)
+ 1.01nη

and
|ỹn| > ξ

2(1−8u) ⇒ |En| 6 (27.01u+ |R(h, λ)|)n
(
ε0 + n 27.01u|y0|

27.01u+|R(h,λ)|

)
.

At last, we provide a bound on the global round-off error of the Runge-Kutta 4 method using the bounds
on local errors of Lemma 10.

Theorem 15. Bound on absolute error of RK4 method. Let us assume −3 6 hλ 6 −2−100 and
2−60 6 h 6 1. Then ∀n,

|En| 6 (164u+ |R(h, λ)|)n
(
ε0 + n 164u|y0|

164u+|R(h,λ)|

)
+ 5.6nη

and
|ỹn| > ξ

0.5(1−4u) ⇒ |En| 6 (164u+ |R(h, λ)|)n
(
ε0 + n 164u|y0|

164u+|R(h,λ)|

)
.

8 Related work

We review here part of the previous works on the numerical accuracy of one-step numerical integration
methods.

Defining new numerical integration methods which produce small method errors while preserving effi-
ciency has been an important research direction. But in particular cases, for long-time integration as for
Hamiltonian systems [16, 17, 18, 19, 20, 21] (see below) which preserved total energy properties, round-off
errors shall not be neglected. Mostly, compensated summation techniques [6, Chap. 5] are used to increase
the accuracy of FP computation while preserving the overall efficiency of integration methods. In particular,
it is applied in [16,19,20,21]. Note that for implicit Runge-Kutta methods, another source of inaccuracy is
the FP representation of the coefficients of the Butcher tableau which usually breaks mathematical proper-
ties such as energy preservation. A study with an interval analysis approach of this phenomenon is provided
in [22]. Note that only [21] provides an estimation of the propagation of round-off errors. FP errors are esti-
mated using a second implementation of the integration scheme with a lower precision FP arithmetic. The
difference between the full precision integration scheme and the lower precision one is then used as a rough
estimation of the round-off error propagation. In [17,18], FP errors are avoided by recasting the integration
methods into integer arithmetic by scaling all values. [18] extends [17] by considering that the increment
part of integration, i.e., h⊗f , is not exactly computed and proposes a problem-dependent rounding function
to ensure the energy preservation properties of the numerical scheme. No analysis of the propagation of FP
errors is given but a method to measure the ratio between round-off error and truncation error is given to
understand what kind of error is preponderant during the numerical integration.

[23, 24, 25, 26, 27] are among the few existing work on the propagation of round-off errors in numerical
integration schemes. In [23], a particular two-dimensional linear IVP-ODE is considered and it is solved
with Heun’s method (a variant of RK2 method). Note that IEEE754 standard is not considered in this
limited study on one example. In [25], the propagation of round-off errors on the initial values are considered
for two-dimensional non-linear IVP-ODE. An explicit formula of the propagation of all errors (method and
round-off errors) is presented involving partial derivative of f , the local truncation error, and an estimation
of the round-off errors induce by the evaluation of f . But some assumptions are made for simplification, i.e.,
only linear terms of the Taylor expansion of the error expression are considered. In [24] a general method
is presented to study the propagation of round-off errors and method errors for multi-dimensional linear
IVP-ODE. This method is based on sensitivity analysis of the problems with respect to the initial conditions
to estimate the propagation of the errors. In [26] a framework to analyze the propagation of round-off errors
based on Lipschitz constant of non-linear of IVP-ODE is considered. A special case of FP errors analysis
is in [27] which proposes a variable step-size integration method based on Euler’s formula with a goal to
reach optimal accuracy for non-linear IVP-ODE. A theorem in [27] states that “The value of the total error
is minimum when the global truncation error coincides with the rounding error” so a step-size h is looked
for such as the round-off error has the same magnitude than the truncation error. All these approaches
produce a rough bound on the FP errors in regards to our fine-grained analysis mainly because they are
based on a more general setting and exceptional behaviors are not considered.

In validated numerical integration methods, interval arithmetic is used in order to bound round-off
errors and method errors. Despite these methods produce rigorous results, in case of numerical integration
methods based on Taylor series [28, 29] or based on Runge-Kutta methods [30, 31], the distinction between
round-off errors and method errors is not considered, and so no information on the propagation of round-off
errors is provided nor considered. Note that an implementation of the approach of [30] has been formally

15

Figure 1: RK2 example: round-off error bound.

proved in [32] but without giving much attention on the propagation on round-off errors as they rely on
multi-precision. A special case is the work [33] in which a more precise study on the propagation of round-
off errors in the numerical integration method is considered in order to reduce the pessimism of interval
computations. Mainly, in [33] the implementation mixes FP computations and interval computations. Error
free transformations [6] are used to compute round-off errors of the FP part which are then accumulated
and added in a high order interval term associated to the method error. A probabilistic propagation of
round-off errors is considered in [34] which uses stochastic arithmetic to assert the accuracy of the results.

In computer arithmetic community, sharper round-off analysis are usually performed as in [35,36] which
study the implementation of quadrature formula with multi-precision arithmetic in order to guarantee the
accuracy of the computed result. In [35], Newton-Cotes quadrature is considered and in [36], Gauss-Legendre
quadrature method is studied. In both articles a comprehensive analysis to bound the FP errors is given but
without considering exceptional behaviors. They consider approximation on the evaluation of the function
to integrate and the coefficients of the quadrature methods in order to produce a p-bit correct approximation
of the integral. Quadrature formula share important properties with numerical methods to solve IVP-ODE.
The main difference is that quadrature formula usually assume the expression of functions to integrate is
known while in numerical methods for IVP-ODE, some approximations of the function to integrate have to
be introduced. Our work can be considered as an extension of these previous works by considering more
elaborate algorithms.

9 Conclusion and future work

We have studied a large family of numerical integration methods that are commonly used to solve ordinary
differential equations. We have done a fine-grained FP analysis, providing a new and tight error bound
on the computed values, that includes exceptional behavior. More precisely, we have given a sufficient
condition to prevent overflow during the whole computation and we have given round-off error bounds even
in presence of underflow. Moreover, under an easy-to-check assumption, we provide an error bound that is
as with an unbounded exponent range.

Let us now describe in details an example. The ODE is ẏ = −y2 , that is to say λ = −0.5 with y0 = 1.
We choose the RK2 method, h = 1

64 and we compute n = 1, 000 iterations. To compute the wanted
errors, we have compared them with a multi-precision (1, 000 bits) computations of the RK2 iterates using
MPFR. Figure 1 shows our round-off error bound on this example. It exhibits a bump for small n before

a fast decrease. Indeed, the bound is here (Cu+ |R(h, λ)|)n n Cu|y0|
Cu+|R(h,λ)| with C ≈ 28. For small n, the

dominating term is about nCu|y0|. When n increases, the (Cu+ |R(h, λ)|)n term is dominating and the
error (near-) exponentially decreases. To compare with reality, Figure 2 shows the real round-off error of
this numerical scheme. Both figures exhibit the same behavior with a bump and a fast decrease. Our error
bounds are of course larger than the real errors, but it is reassuring that the curves look alike. As far as
the method error comes into play, things are very different. Figure 3 shows on a logarithmic scale both the
real method error (compared with the 1000-bit MPFR exp function), the round-off error bound and the
real error bound. We have plotted the errors for other values of λ, h and other schemes. When λ gets near
zero, the bump is more flat, but the behavior is very similar in all cases. In particular, even for the RK2
method, which is assumed to be reasonably correct, our example shows that the method error is overriding.
It also demonstrates that, even if larger than reality, our error bound is quite sufficient to ensure that the
errors due to FP computations are negligible in this case.

A natural perspective is to enlarge the class of methods we consider. We tackled constant-step methods
, but variable-step methods exist, where the h is a function of n. This is difficult due to the choice
of the value hn, that depends upon the dynamics of the system. Another choice was to only consider
unidimensional problems, but we are also interested in multi-dimensional problems: the scalar λ is then

16

Figure 2: RK2 example: signed round-off error.

Figure 3: RK2 example: method error (red line), round-off error bound (blue line) and signed round-off
error (yellow line) on a logarithmic scale.

a matrix and matrix-vector multiplications are done at each step. The corresponding stability conditions
would expectedly depend on the eigenvalues of the matrix. As we tackled only one-step methods, we may
also want to extend our round-off error analysis to other numerical integration methods, e.g., the multi-step
methods belonging into Adams-Bashworth family. A last family to be studied is the implicit numerical
integration methods family; they usually require the solution of fixed-point equations and so they involve
more complex numerical algorithms which may produce more round-off errors.

A related perspective is to enlarge the class of the systems we consider by allowing a more complex
dynamics: we want to consider non-linear ODEs. As for linear stability, some classes of non-linear problems
have been studied from a stability perspectives such that contracting non-linear systems. The presented
round-off error analysis in this article could be extended to deal with such non-linear problems.

The pen-and-paper proofs displayed here are quite complex and may be hard to trust. A solution would
be to formally prove the theorems presented here in order to increase the trust in them. It would also
probably help in finding the values M , C, P2 and D as the methodology is quite systematic. To choose
the proof assistant to be used, we will look into the available libraries, to decrease the proof burden. For
instance, Coq has a large library for FP arithmetic [37,38] and mixes well with Gappa while Isabelle/HOL
has a large library about ODEs [39].

Acknowledgments

This research was partially supported by Labex DigiCosme (project ANR-11-LABEX-0045-DIGICOSME)
operated by ANR as part of the program “Investissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-
02) and by FastRelax ANR-14-CE25-0018-01.

References

[1] Julien Alexandre dit Sandretto. Runge-Kutta theory and constraint programming. Reliable Computing,
25:178–201, 2017.

[2] Julien Alexandre dit Sandretto and Alexandre Chapoutot. Validated explicit and implicit Runge-Kutta
methods. Reliable Computing, 22, 2016.

17

[3] René Alt and Jean Vignes. Validation of results of collocation methods for ODEs with the CADNA
library. Applied Numerical Mathematics, 21(2):119–139, 1996.

[4] Mikel Antoñana, Joseba Makazaga, and Ander Murua. Reducing and monitoring round-off error prop-
agation for symplectic implicit Runge-Kutta schemes. Numerical Algorithms, 76(4):861–880, 2017.

[5] Martin Berz and Kyoko Makino. Verified integration of ODEs and flows using differential algebraic
methods on high-order Taylor models. Reliable Computing, 4(4):361–369, 1998.

[6] P. Bodenheimer, G.P. Laughlin, M. Rozyczka, T. Plewa, H.W. Yorke, and H.W. Yorke. Numerical
Methods in Astrophysics: An Introduction. Series in Astronomy and Astrophysics. CRC Press, 2006.

[7] Sylvie Boldo, Florian Faissole, and Alexandre Chapoutot. Round-off Error Analysis of Explicit One-
Step Numerical Integration Methods. In 24th IEEE Symposium on Computer Arithmetic, pages 82–89,
London, United Kingdom, July 2017.

[8] Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library for proving floating-point algorithms
in Coq. In Proceedings of the 20th IEEE Symposium on Computer Arithmetic, pages 243–252, July
2011.

[9] Sylvie Boldo and Guillaume Melquiond. Computer Arithmetic and Formal Proofs. ISTE Press -
Elsevier, December 2017.

[10] Olivier Bouissou, Alexandre Chapoutot, and Adel Djoudi. Enclosing temporal evolution of dynamical
systems using numerical methods. In NASA Formal Methods, number 7871 in LNCS, pages 108–123.
Springer, 2013.

[11] Dirk Brouwer. On the accumulation of errors in numerical integration. The Astronomical Journal,
46:149–153, 1937.

[12] Marc Daumas and Guillaume Melquiond. Certification of bounds on expressions involving rounded
operators. Transactions on Mathematical Software, 37(1):1–20, 2010.

[13] Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond. Certifying the floating-point imple-
mentation of an elementary function using Gappa. Transactions on Computers, 60(2):242–253, 2011.

[14] R.C. DiPrima. Elementary Differential Equations and Boundary Value Problems. Wiley, 2008.

[15] David J. D. Earn. Symplectic integration without roundoff error. In Ergodic Concepts in Stellar
Dynamics, volume 430 of LNP, pages 122–130. Springer Berlin Heidelberg, 1994.

[16] Erwin Fehlberg. Error propagation in Runge-Kutta type integration formulas. Technical Report NASA-
TR-R-352, M-530, NASA Marshall Space Flight Center, 1970.

[17] Laurent Fousse. Accurate multiple-precision Gauss-Legendre quadrature. In 18th IEEE Symposium on
Computer Arithmetic, pages 150–160. IEEE Computer Society, 2007.

[18] Laurent Fousse. Multiple-precision correctly rounded Newton-Cotes quadrature. ITA, 41(1):103–121,
2007.

[19] Toshio Fukushima. Reduction of round-off errors in the extrapolation methods and its application to
the integration of orbital motion. Astronomical Journal, 112(3), 1996.

[20] E. Hairer, R. I. McLachlan, and A. Razakarivony. Achieving Brouwer’s law with implicit Runge–Kutta
methods. BIT Numerical Mathematics, 48(2):231–243, Jun 2008.

[21] E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems,
volume 8. Springer-Verlag, 1993.

[22] Harry B. Huskey. On the precision of a certain procedure of numerical integration. Journale of Research
of the National Bureau of Standards, 42:57–62, 1949.

[23] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, Aug 2008.

[24] Fabian Immler. Formally verified computation of enclosures of solutions of ODEs. In NASA Formal
Methods, pages 113–127. Springer, 2014.

18

[25] Fabian Immler and Johannes Hölzl. Numerical analysis of ordinary differential equations in Is-
abelle/HOL. In Interactive Theorem Proving, volume 7406 of LNCS, pages 377–392. Springer Berlin
Heidelberg, 2012.

[26] Claude-Pierre Jeannerod and Siegfried M. Rump. On relative errors of floating-point operations: op-
timal bounds and applications. Mathematics of Computation, pages 803–819, 2016.

[27] Elizabeth A. Kalinina. The most precise computations using Euler’s method in standard floating-point
arithmetic applied to modelling of biological systems. Computer Methods and Programs in Biomedicine,
111(2):471 – 479, 2013.

[28] J. D. Lambert. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. John
Wiley & Sons, Inc., 1991.

[29] S. Lang. Analyse réelle. InterEditions, 1977.

[30] Gustavo Migoni, Ernesto Kofman, and Franois Cellier. Quantization-based new integration methods
for stiff ordinary differential equations. SIMULATION, 88(4):387–407, 2012.

[31] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod, Mioara Joldes,
Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, and Serge Torres. Handbook of Floating-Point
Arithmetic. Birkhäuser Basel, 2 edition, 2018.

[32] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated solutions of initial value problems for
ODEs. Applied Mathematics and Computation, 105(1):21 – 68, 1999.

[33] Ken Newman, Stephen Terrence Buckland, Byron Morgan, Ruth King, David Louis Borchers, Diana
Cole, Panagiotis Besbeas, Olivier Gimenez, and Len Thomas. Modelling population dynamics: Model
formulation, fitting and assessment using state-space methods. Methods in Statistical Ecology. Springer,
2014.

[34] Gerald D. Quinlan. Round-off error in long-term orbital integrations using multistep methods. Celestial
Mechanics and Dynamical Astronomy, 58(4):339–351, 1994.

[35] N. Revol, K. Makino, and M. Berz. Taylor models and floating-point arithmetic: proof that arithmetic
operations are validated in COSY. The Journal of Logic and Algebraic Programming, 64(1):135 – 154,
2005.

[36] R. D. Richtmyer and K. W. Morton. Difference methods for initial-value problems. Interscience Pub-
lishers, 1967.

[37] Robert D. Skeel. Symplectic integration with floating-point arithmetic and other approximations.
Applied Numerical Mathematics, 29(1):3 – 18, 1999.

[38] Marc N. Spijker. Error propagation in Runge-Kutta methods. Applied Numerical Mathematics, 22:309–
325, 1996.

[39] Theodore E. Sterne. The accuracy of numerical solutions of ordinary differential equations. Mathemat-
ical Tables and Other Aids to Computation, 7(43):159–164, 1953.

19

