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Abstract – This paper presents a simple and intuitive syntax for proof nets of the

multiplicative cyclic fragment (McyLL) of linear logic (LL). The main technical

achievement of this work is to propose a correctness criterion that allows for

sequentialization (recovering a proof from a proof net) for all McyLL proof nets, including

those containing cut links. This is achieved by adapting the idea of contractibility

(originally introduced by Danos to give a quadratic time procedure for proof nets

correctness) to cyclic linear logic. This paper also gives a characterization of McyLL proof

nets for Lambek Calculus and thus a geometrical (i.e., non inductive) way to parse

phrases or sentences by means of Lambek proof nets.

Keywords – categorial grammars, cyclic orders, Lambek calculus, language parsing,

linear logic, non-commutative logic, proof nets, sequent calculus.

1. Introduction

Proof nets (PNs) are one of the most innovative inventions of linear logic (LL, [Girard

1987]): they are used to represent demonstrations in a geometric (i.e., non inductive)

manner, abstracting away from the technical bureaucracy of sequential proofs. Proof nets

quotient classes of derivations that are equivalent up to some irrelevant permutations of

inference rule instances. Following this spirit, we present a simple syntax for proof nets of

the multiplicative cyclic fragment of LL (shortly, McyLL). In particular, we introduce

a new correctness criterion for McyLL proof nets which can be considered as the non-

commutative counterpart of the famous contraction criterion by Vincent Danos [Danos

1990] for proof nets of linear logic. The proposed syntax (i.e., the correctness criterion) is

shown to be stable under (i.e., preserved by) cut elimination.

This work marks an important improvement compared to previous works on the same

subject by the authors (see e.g., [Abrusci and Ruet 2000, Maieli 2003]). The proposed

† This work contains new original contributions and improvements w.r.t. the contents of a previous
paper [Abrusci and Maieli 2015a] on the same subject presented by the authors at the 22nd Workshop

on Logic, Language, Information and Computation (WoLLIC2015), held at the Indiana University

(Bloomington, USA) from the 20th to the 23rd of July 2015.
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new syntax admits a sequentialization (that is, a way to associate a sequent proof to each

proof net) for the full class of McyLL PNs including those ones with cuts.

1.1. The multiplicative cyclic fragment of linear logic (McyLL )

We briefly recall the necessary background of the McyLL fragment without units. We

arbitrarily assume literals a, a⊥, b, b⊥, ... with a polarity: positive (+) for atoms, a, b, ...

and negative (−) a⊥, b⊥... for their duals. A formula is built from literals by means of

two groups of multiplicative connectives: negative, O (”par”) and positive, 4 (”tensor”).

For these connectives we have the following De Morgan laws: (A4B)⊥ = B⊥OA⊥ and

(AOB)⊥ = B⊥4A⊥. A McyLL proof is any derivation tree built by the following inference

rules where sequents Γ,∆ are lists of formulas occurrences endowed with a total cyclic

order (or cyclic permutation) (see the formal Definition 1):

id` A,A⊥
` Γ, A A⊥∆

cut` Γ,∆

` Γ, A ` B,∆ 4` Γ, A4B,∆

` Γ, A,B O` Γ, AOB
It is worth nothing that the formula (A 4 B)−◦(B 4 A) ≡ (A 4 B)⊥O(B 4 A) is

not provable in McyLL: that is the reason why this logic is called “non commutative“.

Negative (or asynchronous) connectives correspond to a kind of true determinism in the

way we apply bottom-up their corresponding inference rules (the application of O-rule is

completely deterministic). Vice-versa, positive (or synchronous) connectives correspond

to a kind of true non-determinism in the way we apply bottom-up their corresponding

rules (there is no deterministic way to split the context Γ,∆ in the 4-rule).

A total cyclic order can be thought of as follows; consider a set of points of an oriented

circle; the orientation induces a total order on these points as follows: if a, b and c are

three distinct points, then b is either between a and c (a < b < c) or between c and a

(c < b < a). Moreover, a < b < c is equivalent to b < c < a or c < a < b.

Definition 1 (total cyclic order). A total cyclic order is a pair (X,σ) where X is a

set and σ is a ternary relation over X satisfying the following properties:
1. ∀a, b, c ∈ X,σ(a, b, c)→ σ(b, c, a) (cyclic),

2. ∀a, b ∈ X,¬σ(a, a, b) (anti-reflexive),

3. ∀a, b, c, d ∈ X,σ(a, b, c) ∧ σ(c, d, a)→ σ(b, c, d) (transitive),

4. ∀a, b, c ∈ X,σ(a, b, c) ∨ σ(c, b, a) (total).

In the following we adopt the syntax σ(X) to denote a total cyclic order on a set X.

1.2. The quest of satisfactory syntaxes for McyLL proof nets

The most simple and intuitive definition of McyLL PNs is given by [Moot and Retoré

2012]: “proof nets for the cyclic fragment of MLL are intuitively quite simple graphs

(special kinds of MLL proof nets) which can be drawn on a plane without intersecting

axioms and keeping the same design and top-down orientation for links. This condition

is strictly stronger than being simply planar graphs because we ask for the links to be

drawn observing the left-right and up-down orientation as shown in the figures”.

While there is a variety of nice (satisfying, indeed) syntaxes and correctness criteria
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for the commutative proof nets of MLL, this is not the case with proof nets of the

non-commutative, cyclic, fragment of MLL. Actually, despite of the commutative MLL

case, the presence of cut links is ”quite tricky” in the non-commutative case, since cut

links are not equivalent, from a topological point of view, to tensor links: these latter

make appear new conclusions that may disrupt the original (i.e., in presence of cut links)

conclusions cyclic order.

But, what is supposed to be in general a ”satisfactory” correctness criterion for proof

nets? There is not a so obvious answer. Let us say that a ”good” correctness criterion

should at least meet the following conditions, according to [Moot and Retoré 2012]:

1 (de-sequentialization) every sequent proof should be mapped to a correct proof structure

in such a way that each instance of inference rule corresponds to a link; in particular,

each proof with cuts (resp. cut-free) should be mapped to a proof structure with the

corresponding cut links (resp., to a cut-free proof structure);

2 (sequentialization) every correct proof net should correspond to a sequent proof in

such a way that each link corresponds to an instance of inference rule; in particular,

each proof net with cuts (resp. cut-free) should be mapped to a sequent proof with

the corresponding cut rule instances (resp., to a cut-free sequent proof);

3 (canonicity) sequent proofs which only differ up to permutations of some inference

rule instances should be mapped to the same proof net;

4 (stability) the correctness criterion should be preserved by cut elimination.

There currently exist several syntaxes for McyLL proof nets, like notably those ones

of [Abrusci and Ruet 2000], [Maieli 2003] and [Melliès 2004]. As far as the authors know,

only the Melliès’syntax fully satisfies the four conditions above while both Abrusci-Ruet

and Maieli’s syntaxes only fully satisfy conditions 1 and 4 while they only partially satisfy

conditions 2 and 3 (only when proof nets are cut-free). We find interesting to recall and

compare in the following the two previous syntaxes, [Abrusci and Ruet 2000] and [Maieli

2003], given by the authors, highlighting the points where they mostly differ.

Definition 2 (concrete proof structure (PS)). A (concrete) proof-structure (shortly,

PS) of McyLL is an oriented graph π, in which edges are labeled by formulas and nodes are

labeled by connectives of McyLL , built by juxtaposing the following special graphs, called

links, in which incident (resp., emergent) edges are called premises (resp., conclusions):

A B A B

▽

A▽B

4

A 4 B

cut

A⊥A

A⊥

ax

A

In a PS π each premise (resp., conclusion) of a link must be conclusion (resp., premise) of

exactly (resp., at most) one link of π. We call conclusion of π any emergent edge that is

not premises of any link.

We are interested in those McyLL PSs that correspond to McyLL proofs.

1.2.1. ”Trip-based” criterion by Abrusci and Ruet – We recall some basic definitions of

Abrusci-Ruet’s syntax [Abrusci and Ruet 2000]. We consider as in [Girard 1987] formulas



V. Michele Abrusci and Roberto Maieli 4

with decorations: ↑ (question) or ↓ (answer). A decorated formula is of the form A↑ or A↓,

where A is a McyLL formula. For each link l we consider two sets of decorated formulas:

— lin is the set of all decorated formulas Ax, where A is a premisse of l and x is ↓, or A

is a conclusion of l and x is ↑;
— lout is the set of all Ax, where A is a premisse of l and x is ↑, or A is a conclusion of l

and x is ↓.

Definition 3 (switchings). For each link l we define a set S(l) of (partial) functions

from lin to lout, called switching positions of l, as follows (see also next picture):

— if l is an identity (or axiom) link A⊥ A, then S(l) = {id} where

id : (A⊥)↑ 7→ A↓, A↑ 7→ (A⊥)↓;

— if l is a cut link A⊥ A, then S(l) = {cut} where

cut : (A⊥)↓ 7→ A↑, A↓ 7→ (A⊥)↑;

— if l is a 4-link A B
A4B , then S(l) = {4R} where

4R : (A4B)↑ 7→ A↑, A↓ 7→ B↑, B↓ 7→ (A4B)↓;

— if l is a O-link A B
AOB , then S(l) = {OR,OL,O3} where

OR : (AOB)↑ 7→ B↑, A↓ 7→ A↑, B↓ 7→ (AOB)↓,

OL : (AOB)↑ 7→ A↑, A↓ 7→ (AOB)↓, B↓ 7→ B↑,

O3 : (AOB)↑ 7→ A↑, B↓ 7→ (AOB)↓.

cut 4

A 4 B

4R
A⊥A

A A⊥

ax

BA

▽▽ ▽

A B

A▽B A▽B

A BBA

A▽B

▽R ▽L ▽3

A switching for a proof structure π is a function s s.t. for every link l of π, s(l) ∈ S(l).

Given a proof structure π and a switching s for π, the switched proof structure s(π) is the

oriented graph with the decorated formulas labeling π as vertices and with an oriented

edge from Ax to By iff either By = s(l)(Ax) for some link l ∈ π or Ax = C↓ and By = C↑

for some conclusion C of π. Then we call trip any cycle or maximal path in s(π). A cycle

v in s(π) is bilateral if v is not of the form Ax, ..., By, ..., Ax̄, ..., Bȳ, ..., Ax where A and

B are occurrences of formulas in π and ↑̄ =↓ (resp., ↓̄ =↑).

Definition 4 (Abrusci-Ruet’s criterion). A PS π is AR-correct (i.e., it is a McyLL

proof net by [Abrusci and Ruet 2000]) iff for every switching s for (π):

1 there exists exactly one cycle σ in s(π),

2 σ contains all the conclusions of π,

3 σ is bilateral.

1.2.2. ”Seaweed-based” criterion by Maieli – We recall some basic definitions of Maieli’s

syntax for proof nets as presented in [Maieli 2003].

Definition 5 (switchings & seaweeds). Assume a McyLL PS π with conclusions Γ.

— A Danos-Regnier switching (see [Danos and Regnier 1989]) S for π, denoted S(π), is
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Xk

XjXi

4l

c

d
a

b

e

4

4 4

;

c

d

a

b

e

4

4

;

c

b

ea

d

4

Fig. 1. seaweeds and total cyclic orders

the non oriented graph built on nodes and edges of π with the modification that for

each O-node we take only one premise, that is called left or right O-switch.

— Let S(π) be an acyclic and connected switching for π; S(π) is the rootless planar tree†

whose nodes are labeled by 4-nodes, and whose leaves X1, ..., Xn (with Γ ⊆ X1, ..., Xn)

are the terminal, i.e., pending, edges of S(π); then S(π) is a ternary relation, called

seaweed, with support X1, ..., Xn; we say that an ordered triple (Xi, Xj , Xk) belongs

to the seaweed S(π) iff:

– the intersection of the three paths XiXj , XjXk and XkXi is a node 4l;

– the three paths Xi4l, Xj4l and Xk4l are in this cyclic order while moving

anticlockwise around the 4l-nod, like in the leftmost hand side picture of Figure 1:

If A is an edge of the seaweed S(π), then Si(π) ↓A is the restriction of the seaweed

S(π), that is, the sub-graph of S(π) obtained as follows:

1 disconnecting the graph below (w.r.t. the orientation of π) the edge A;

2 deleting the graph not containing A.

The restriction of a seaweed can easily be extended to consider a set of formulas.

Fact 1 (seaweeds as cyclic orders). Any seaweed S(π) can be viewed as a cyclic total

order (Definition 1) on its support X1, ..., Xn; in other words, if a triple (Xi, Xj , Xk) ∈
S(π), then Xi, Xj , Xk are in this cyclic order Xi < Xj < Xk.

Naively, we may contract (“;”) any seaweed (by associating the 4-nodes while preserving

the order of the incident edges) until we get a (collapsed) single n-ary 4-node with n

pending edges (its support), like the rightmost h.s. seaweed of Figure 1.

Definition 6 (Maieli’s criterion). A PS π is M-correct (i.e., it is a McyLL proof net

by [Maieli 2003]) iff:

1 π is a standard MLL PN, that is, by [Danos and Regnier 1989], any switching S(π) is

a connected and acyclic graph (therefore, S(π) is a seaweed);

2 for any O-link A B
AOB the triple (A,B,C) must occur with this cyclic order A < B < C in

any seaweed S(π) restricted to A,B (i.e., (A,B,C) ∈ S(π) ↓(A,B)) for every conclusion

C (if any) in the support of S(π) ↓(A,B).

† In any switching we can consider as a simple edge every axiom, cut and O-link that remains after the

mutilation of one of the two premises.
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1.2.3. Comparing the two previous syntaxes – Abrusci-Ruet’s criterion and Maieli’s

criterion are not equivalent; moreover, even though they are both stable under cut

reduction, they suffer of the same drawback: they do not allow a direct sequentialization

of proof nets with cuts; this means that proof nets must be normalized (reduced in cut-free

normal form) before sequentialialization, as shown by the following proof structures:

π1 is not correct according to Abrusci-Ruet; you can find a switching, like the s(π1) on

the right hand side picture, containing only two paths, the dotted and the dashed one:

neither of them is a cycle.

4

ax

4

▽

▽

ax

cut

ax ax

C

▽

4

▽

π2

A A
A A⊥A⊥ A

A 4 A⊥ax
A▽A⊥

A⊥ A⊥

4

4

▽

▽

cutC

▽

4

▽

s(π2)

▽L ▽L▽3

▽3

On the contrary, π1 is correct according to Maieli even though it is not directly

sequentializable: this proof structure contains only two terminal links, the leftmost

4-link and the (unique) cut link; neither of these links is “splitting” (sequentializable);

as soon as you “remove” one of them, you get a sub-proof structure that is not correct.

By the way, π1 can be easily sequentialized once it has been reduced to cut-free form.

π2 is not correct according to Maieli (assume B = D = E = F = (A⊥ 4A)): actually,

4

ax

axax
ax

C

ax ax ax ax

cut cut

π3

4 4 4

▽ ▽▽ ▽

▽ 4 ▽

B
D E F

you can easily find a seaweed S(π2) ↓B,D, restricted to the premises of the B D
BOD -link,

containing a “bad” triple (B,C,D) (follow the anticlockwise intersection of the dotted

lines above); on the contrary, π2 is correct according to Abrusci-Ruet even though it

is not directly sequentializable (it can only be sequentialized after cut elimination).

Anyway, as we will see in Section 2, these two proof structures, π1 and π2, are not

recognized as correct by our new correctness criterion‡ (see Definition 9). Following the

original Danos terminology, [Danos 1990], these proof structures are not contractible (i.e.,

they do not reduce to a collapsed or elementary graph, made by a single node). The

new contraction system Σ, for cyclic (abstract) proof structures, is quite simple and

‡ Indeed π1 and π2 are neither correct according to Melliès’ criterion. Comparison with Melliès’s condition
is out of the scope of this work as it needs the introduction of some topological notions requiring more

space than the one allowed here. By the way, we briefly recall the criterion in the Appendix A.1 and

we postpone to a future work the precise correspondence between topological condition and retraction.
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natural; it mainly differs from the original one ∆, for MLL (abstract) proof structures,

by the following facts: (i) abstract proof structures are enriched with special handling

nodes, denoted by “◦”, to distinguish the conclusions of a proof structure; (ii) for each

node, the set of its incident edges is endowed with a total cyclic order (following the

anticlockwise orientation); (iii) contraction steps are performed obeying some “natural”

order constraints on the edges occurring in the redex graph. The stability of this new syntax

under cut elimination is then proved in Section 2.1 while the direct sequentialization§ of

the full class of correct proof nets is shown in Sections 2.2.

1.3. Lambek Calculus and Proof Nets as Parsing Structures

McyLL can be considered as a classical extension of Lambek Calculus (LC, see [Lambek

1958], [Abrusci 2002] and [Moot and Retoré 2012]) one of the ancestors of LL. The LC

represents the first attempt of the so called parsing as deduction, i.e., parsing of natural

language by means of a logical system. Following [Andreoli and Pareschi 1991], in LC

parsing is interpreted as type checking in the form of theorem proving of Gentzen sequents.

Types (i.e. propositional formulas) are associated to words in the lexicon; when a string

w1...wn is tested as a sentence, the types t1, ..., tn associated with the words are retrieved

from the lexicon and then parsing reduces to proving the derivability of a one-sided sequent

of the form ` t⊥n , ..., t⊥1 , s, where s is the type associated with sentences. Moreover, forcing

constraints on the Exchange rule by allowing only cyclic permutations over sequents

of formulas, gives the required computational control needed to view theorem proving

as parsing in Lambek Categorial Grammar style. Anyway, LC parsing presents some

syntactical ambiguity problems; actually, there may be:

1 non canonical proofs, i.e., more than one cut-free proof for the same sequent;

2 lexical polymorphism, i.e., more than one type associated with a single word.

Now, multiplicative proof nets are commonly considered an elegant solution to the first

problem of representing canonical proofs, since they allow to quotient classes of (cut-free)

proofs that are equivalent up to irrelevant permutation of inference rules; in this sense,

in Section 3.1, we also give an embedding of pure Lambek Calculus into McyLL proof

nets. In Section 3.2, we show how McyLL proof structures can be used to parse phrases

or sentences; some linguistic examples that can be also found in [Moot 2002].

Unfortunately, there is no an equally brilliant solution to the polymorphism problem

mentioned above. However, we think that extending parsing by means of additive proof

nets (MALL, [Girard 1996], [Hughes and van Glabbeek 2003] and [Maieli 2007]) could

be a step towards a proof-theoretical solution to the problem of lexical polymorphism;

technically speaking, the cyclic fragment of MALL proof nets allows to manage formulas

(types) superposition (polymorphism) by means of the additive connectives & and ⊕ (see

Appendix A.4).

§ In Appendix A.2 we also discuss an alternative sequentialization procedure based on the parsing of

abstract paired graphs labeled by possibly “open” sequent proofs.



V. Michele Abrusci and Roberto Maieli 8

concrete links:

A B A B

▽

A▽B

4

A 4 B

cut

A⊥A

A⊥

ax

A C

abstract links:

A▽BA 4 B

A⊥A

A⊥A

BA A B▽

↓ ↓ ↓ ↓

axiom link cut link par linktensor link

C

↓

Fig. 2. transforming concrete proof structures into abstract proof structures

2. McyLL proof nets

Definition 7 (abstract structure (AS)). An abstract structure (shortly, AS) is a

non oriented graph π = 〈V,E〉, equipped with a set C(π) of pairs of coincident edges

graphically denoted by a crossing arc (with, possibly, “O” written above) close to the

base. Edges are labeled by McyLL formulas. Nodes are displayed as bullets (•) except

the handling ones (conclusions) displayed as circles (◦); all edges incident to a node are

endowed with an total cyclic order displayed as an anticlockwise oriented dotted arrow

around a node. An abstract link is any elementary AS made by a single node together

with its incident (possibly paired) edges (premises). The size of an AS π (resp., of a PS)

is given by the triple 〈]V, ]E, C(π)〉 (resp., by the pair 〈]V, ]E〉).
We call abstract proof structure (APS) the AS πab obtained from a concrete PS π

(Definition 2) by means of the abstraction rules of Figure 2: each rule maps a concrete link

L of a PS π to an abstract link Lab (L 7→ Lab) of πab; moreover, every edge of π labeled

by a conclusion C is mapped in πab to a special handling node, denoted by a circle ◦,
with a single incident edge labeled by C, called conclusion abstract link.

Definition 8 (Retraction System Σ for ASs). Given an AS π, a retraction stepis a

replacement (also, deformation or rewriting) of a subgraph S (called, redex graph) of π

with a new graph S′ (called, reductum graph), leading to an AS π′ according to one of

the following rules (of the retraction system Σ), preserving the anticlockwise orientation:

 

a

c

b

a

b b

a

c d

▽
 

b

a

 

... ...
c1 ci cn

structural multiplicative handling conclusions
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1 R1 (structural) with the conditions that the edge c does not occur in any pair in π

and the two displayed vertexes in the redex are distinct;

2 R2 (multiplicative) with the conditions that the two vertexes in the redex are distinct

and edges c and d does not occur in any pair except that one displayed in the redex;

moreover, c must occur in this anticlockwise cyclic order, c < d < a, together with

every (if any) edge a (with a 6= c, d) incident to the vertex opposite to the base of the

pair c, d (as displayed in the figure);

3 R3 (handling conclusions) with the conditions that every incident edges to the vertex

• in the redex belongs to a handling conclusion link (at least one, i.e., n ≥ 1).

Definition 9 (Σ-correctness by retraction (ΣCC)). Assume an AS π, then π is said:

— one step contractible, if there exists an AS π′ 6= π s.t. π ; π′ by an instance of one of

the retraction rules of Σ, otherwise, π is said terminal;

— collapsed (or elementary), if it consists of a single node • (with no incident edges);

— (full) contractible, if there exists a non empty sequence of retraction steps starting

at π and terminating with a collapsed AS (i.e., π ;∗ •); we also say that π is quasi-

collapsed when it collapses only by means of finite sequences of structural or conclusions

retraction rules, R1 and R3 (in other words, no multiplicative instances).

A PS π is Σ-correct (ΣCC) so, it is a proof net, when its corresponding APS, πab, is

contractible (i.e., it collapses). Equivalently, the end result of the retraction of a proof net

(i.e., the last collapsed reductum) could be simply be one black node with any number of

white nodes, instead of a single black node; this means that the final retraction rule R3

could be considered redundant.

In the following we give below some instances, π1, π2 and π3, of Σ-correct proof structures

together with an instance π4 of an incorrect proof structure.

B1

ax

ax

cut

ax

▽ ▽
B⊥

2 B2

π1

B1▽B⊥
2 B3▽B⊥

3

B⊥
3B3B⊥

1

4
B2 4 B⊥

1

B1

cut

ax

▽ ▽

ax
ax

B2B⊥
2 B⊥

1

π2

B3B⊥
3

4
B1▽B⊥

2 B⊥
3 ▽B3B⊥

1 4 B2

B1

ax

ax

▽
B⊥

2 B2

B1▽B⊥
2

B⊥
1

4
B2 4 B⊥

1

π3

Observe that the reason why π2 is correct, but π4 is not, it is because the sub-proof π2 is

cut against contracts and disappears, so that the edges of the tensor node can be rotated

to disentangle the crossed axioms.

B1

▽

ax
ax

B2B⊥
2 B⊥

1

4
B1▽B⊥

2 B⊥
1 4 B2

π4

The retraction system Σ is a (non-commutative) refinement of the original Danos’s

retraction system ∆ [Danos 1990]; this latter contains only two retraction rules: the

structural R1 and the multiplicative R2, with the proviso that:

— abstract structures contain only standard nodes of type • (no handling nodes ◦);
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— the anticlockwise order condition on the incident edges has been relaxed (both in the

redex and in the reductum).

Theorem 1 (convergence of Σ). If π is a contractible AS then every retraction strategy

ends up with the collapsed AS (•).

Proof. The convergence (termination and confluence) of Σ is proven exactly like in in

the standard commutative case [Danos 1990]. Observe that, like in the MLL case, since π

is contractible then there are no pairs of instances of contraction rules that are critical¶.

Observe that, in general, Σ is not confluent if we consider the full class of ASs including

the non contractible ones. Consider the following AS π on the leftmost hand side: π may

retract, by an instance of structural rules, either to π′ or to π′′; none of these latter is

(one step) retractible; moreover, given the different cyclic orders of resp, their incident

edges, π′ and π′′ diverge. Remind that retraction is neither confluent in the general case

of MLL non retractible ASs as illustrated by the rightmost hand side AS π◦.

A C B
π

C B
A

π′
C B

A

π′′

A B
π◦

Next fact is immediate once: (i) every handling node ◦ is replaced by a standard node

• and (ii) any instance of conclusions contraction rule R3 is mapped in to a possibly

multiple instances of the structural rule R1.

Fact 2 (Σ-contraction (ΣCC) ⇒ ∆-contraction (∆CC)). If π collapses by Σ then

it also collapses by ∆; so we say that π is also weakly (also, ∆ or Danos) contractible.

Fact 3 (switching and seaweeds for APSs). The notions of switching and seaweed

(resp., restriction of a seaweed) of Definition 5 straightforwardly extended to the image

APS πab of any proof net π (since the incident edges of each vertex in πab are naturally

equipped with an anticlockwise strict cyclic order and each pair in πab can be switched

by mutilating one of its paired edges).

Definition 10 (cyclic order conclusions). We can derive the order on the conclusions

of a proof net from its structure. Assume π is a McyLL proof net with conclusions Γ; we

call order of conclusions of π the cyclic order σ on Γ (denoted by σ(Γ)) induced by an

arbitrary seaweed‖ S(π) restricted do Γ (i.e., S(π) ↓Γ).

2.1. Cut Reduction

Definition 11 (cut reduction). Let L be a cut link in a proof net π whose premises

A and A⊥ are, resp., conclusions of links L′, L′′. Then we define the result π′ (called

reductum) of reducing this cut in π (called redex), as follows:

¶ A pair of retraction rule instances, Ri and Rj , is called critical pair when the application of Ri prevents
the application of Rj and the application of Rj prevents the application of Ri.

‖ We will see that, by Lemma 6, in a proof net π with conclusion Γ, the order of conclusion σ(Γ) as

defined in Definition 10 is independent indeed from the choice of the seaweed S(π).
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Ax-cut: if L′ (resp., L′′) is an axiom link then π′ is obtained by removing in π both

formulas A and A⊥ (as well as L) and giving to L′′ (resp., to L′) the other conclusion

of L′ (resp., L′′) as new conclusion.

cut

ax

A  A L′
A

L′′L′′

L

(4/O)-cut: if L′ is a 4-link with premises B and C and L′′ is a O-link with premises

C⊥ and B⊥, then π′ is obtained by removing in π the formulas A and A⊥ as well as

the cut link L with L′ and L′′ and by adding two new cut links with, resp., premises

B, B⊥ and C,C⊥, as follows (this is also called logical cut):

cut

B C

cut

C⊥ B⊥

▽ cut

L L′

L′′

B

π  π′

C B⊥C⊥

4

Theorem 2 (stability of correctness under cut reduction). If π is a proof net that

reduces to π′ by one step of cut reduction, π 7→ π′, then π′ still a proof net.

Proof. The case when π reduces to π′ by an instance of axiom-cut reduction is trivial

since an axiom-cut reduction step corresponds to an instance of structural rule R1,

πab ;R1
π′ab. So assume that in π there are only logical cuts. πab is Σ-contractible and

so, by Fact 2, π is also ∆-contractible, therefore by stability of ∆ [Danos 1990], also

the reductum π′ab is ∆-contractible. Assume by absurdum that πab is Σ-contractible

while π′ab is only weakly contractible (π′ab is not Σ-contractible). By convergence of ∆,

π′ab can be contracted following a strategy s that delays all the structural instances of

R1 contracting handling conclusion nodes ◦ (trivially, in ∆ any instance of structural

rule R1 that contracts a handling conclusion node ◦ does not prevent the application of

any other contraction rule, so this latter can be performed before the former one). Now,

observe that each retraction step of this “delayed” strategy s can be mimicked (i.e., it

can be performed as well) in Σ except in the case when this step consists of an instance

of multiplicative retraction R2 whose redex does not meet the (anticlockwise) cyclic order

condition on the incident edges, as follows:

b

a

π′ab 6 Σ

This means that, if we restore in π′ab the just reduced logical cut then, by eventually

exploiting the convergence of Σ (i.e., by permuting some instances of retraction rule, if

necessary, by Theorem of 1), πab will contain one of the two sub structures; this means

that in both cases πab is not Σ-contractible, contradicting the assumption:
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cut

a

b b⊥

a⊥

πab 6 Σ or

b

a
cut

b⊥

a⊥

πab 6 Σ

Lemma 1 (stability of order conclusions under cut reduction). If π is a proof

net, with conclusions σ(Γ), that reduces in one step of cut reduction to π′, then π′ has

conclusions σ(Γ) too.

Proof. See [Maieli 2003].

Theorem 3 (convergence of cut reduction). Cut reduction is convergent (i.e., ter-

minating and confluent).

Proof. Easy, almost like in the standard MLL case [Danos 1990].

Example 1. Below, the proof net π2 reduces to a proof structure π′2 that is correct: we

use indexed formulas B1, B2 and B3 to distinguish several occurrences of B.

B1

cut

▽ ▽

ax
ax

B2B⊥
2 B⊥

1

π2

B3B⊥
3

4
B1▽B⊥

2 B⊥
3 ▽B3B⊥

1 4 B2

ax

7→

B1

cut

▽

ax
ax

B2B⊥
2 B⊥

1 B3B⊥
3

B1▽B⊥
2

ax

cut

π′
2

2.2. Sequentialization via Splitting Lemma

In this section we show a correspondence, also known in the literature as sequentialization,

between McyLL proof nets and sequential proofs. A first sequentialization result, only for

cut free non-commutative (McyLL ) proof nets, can be found in [Retoré 1996]. Similarly

to the standard (commutative) MLL case, the crucial point of the sequentialization

procedure is given by the Splitting Lemma 5. Actually, as observed in [Bagnol et al. 2015]

in the MLL case, there exists an alternative way (straightforward, indeed, that skips the

Splitting Lemma) to sequentialize McyLL proof nets, based on the following “contraction

as parsing” strategy: if an APS is contractible then, by convergence of Σ, there exists a

“contraction strategy” which starts by contracting the axioms links and whose retraction

steps can be interpreted as instances of inference rules of a (possibly open) sequential

proof; in the case of success, the retraction sequence ends up with a collapsed graph (as

usual, a •-node) labeled by a closed sequent proof (see details in the appendix A.2).

In order to simplify the syntax and when it is clear from the context, we sometimes

denote simply π (resp., L) instead of πab (resp., Lab) the APS (resp., the abstract link)

corresponding to a concrete PS π (resp., to a concrete link L). Moreover, since we are

going to reason on abstract structures that are immediate abstraction of concrete proof

structures, it will be natural to use notions like “terminal links”, “splitting links” and

“cut-reduction steps” directly defined on these APSs.
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Definition 12 (terminal and splitting link). An abstract tensor (resp., axiom or

par) link L is terminal when its conclusion edge also belongs to a handling conclusion link

◦ (see next picture). Given a contractible APS π, a terminal tensor link L is said splitting

link (resp., weakly splitting) when (i) we can delete its handling conclusion link labeled by

C (ii) disconnect the premises, A and B of L, and (iii) get still two contractible (resp.,

weakly contractible) APSs, πA and πB , as follows (similarly, we define a splitting cut link):

A⊥A

c

A B

c

a1 a2

c

L

π

πA πB

A B

πB

BA
πA

terminal axiom, tensor and par (or pair) links tensor splitting link

We say that π is splitting (resp., weakly splitting) when it contains at least a terminal

tensor link or a cut link that is splitting (resp. weakly splitting). Finally, we say that π is

in splitting condition when (i) it is not reduced to an axiom link, (ii) it does not contain

any terminal par link and (ii) it contains at least a terminal tensor link or a cut-link.

Lemma 2 (APS splitting under weakly contraction). Let πab be the abstraction

of a concrete PS π; assume πab is Σ-contractible and in splitting condition, then there

exists at least one terminal tensor link (or a cut link) Lab that is weakly splitting.

Proof. By Fact 2, πab is ∆-contractible; so, by the well known equivalence “Danos’s

MLL correctness ⇔ Girard’s MLL correctness“ (see [Danos 1990]) π is also a standard

MLL proof net by Girard, so by the MLL Splitting Lemma of [Girard 1987], we conclude

that π is weakly splitting at a terminal tensor link (or cut link) L in two components, π1

and π2 whose abstractions, πab
1 resp., πab

2 , are clearly weakly contractible.

Lemma 3 (splitting tensor link). If π is a contractible APS that is weakly splitting

at a tensor terminal link LA B
A4B , then π is also splitting at L, i.e. removing L splits π in

two Σ-contractible APSs, πA and πB .

Proof. Immediate.

Proposition 1 (terminal pair link). Let π be a Σ-contractible AS:

1 assume π contains a terminal pair link L then π′, obtained by replacing L with two

handling ◦-links, a1 and a2, like in Case 1 below, is still contractible;

2 assume π contains a terminal pair link L then π′ obtained by replacing L with an

elementary •-link a1 and a handling ◦-link a2, like in Case 2 below, is still contractible;

3 assume π contains a link L with an incident pair and assume a Σ-contractible AS π′

obtained by replacing, in π, L with an elementary •-link and a handling link C ′, like

in Case 3; then πo obtained by adding the handling link C ′ to π is still contractible.
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a1 a2

π

χ

⇒ π′

a2a1

χ

C

a1 a2

π

χ

⇒ π′

a2a1

χ

C

a1 a2

π′π

a1 a2a1
χ χ χa2

C ′

πo⇒

C ′

(Case 1) (Case 2) (Case 3)

Proof. By induction of the size of π.

Proposition 2 (handling links). Assume π is a Σ-contractible AS consisting of two

disjoint components, π1 and π2, which are only connected through an edge e; then:

1 assume π1 does not contain any conclusion and π contracts by Σ to π′∗ like in the middle

figure below, then πo
1 and π•2 (on the rightmost hand side) are both Σ-contractible:

π2

e

π

e

π∗
1π1 π′∗π2 π1

πo
1 e

π2

πo
2

2 assume π1contains at least a conclusion of π and assume π Σ-contracts to π′∗ like in the

middle figure below, then πo
1 and πo

2 (on the rightmost h. s.) are both Σ-contractible.

π2

e

π

e

π∗
1π1 π′∗π2 π1

e

π2

πo
2πo

1

Proof. By induction on the size of π1.

Proposition 3 (weakly splitting cut link). Let π be a Σ-contractible APS that is

only weakly splitting and let L be cut link A A⊥
weakly splitting, like in Figure 3, then:

1 π is Σ-contractible by a sequence of retraction steps that contracts πA⊥ (resp., πA) to

a (quasi-)collapsed APS before starting with contracting πA (resp., πA⊥); moreover,

2 either πo
A⊥ is a Σ-contractible APS not containing any conclusion of π, where πo

A⊥ is

obtained by adding to πA⊥ the handling ◦-link, labeled by A⊥, like in Figure 3, and

πo
A⊥ has A⊥ as single conclusion;

3 or πo
A is a Σ-contractible APS not containing any conclusion of π, where πo

A is obtained

by adding to πA the handling ◦-link, labeled by A, like in Figure 3, and πo
A has A as

single conclusion.

B C⊥ B⊥C

A

▽4

A⊥
cut

L

L1 L2

πA πA⊥

π

π′
A⊥π′

A

B C⊥ B⊥C

▽4

L1 L2

A A⊥

πA πA⊥

π′
A π′

A⊥

πo
A πo

A⊥

Fig. 3. (weakly) splitting cut link
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Proof. Since π is contractible and weakly splitting, it is always possible, by convergence

of Σ (Theorem 1) to commute the order of the retraction steps in such a way that those

ones involving (i.e., whose redex belongs to) πA (resp., πA⊥) are performed before (i.e.,

independently from) those ones involving πA⊥ (resp., πA); this strategy can be pursued

until the retraction has turned πA in to an AS π∗A that is (there are two cases for π∗A):

1 either in quasi-collapsed form (see Definition 9),

2 or in non retractible form (different from the quasi-collapsed one).

In case 1 we trivially proved statement 1. Moreover, observe that in this case, the quasi-

collapsed π∗A cannot contain any handling conclusion of π, otherwise by Proposition 2(2),

both πo
A and πo

A⊥ will be Σ-contractible, contradicting the assumption that π is only

weakly splitting at L. Thus, by Proposition 2(1), πo
A with A as single conclusion is

contractible (this proves statement 3). Case 2 (i.e.π∗A is non contractible but not quasi-

collapsed) implies that π is retractible by means of a retraction sequence that starts by

contracting πA⊥ to a quasi-collapsed π∗A⊥ , before starting with contracting πA, like below:

B C⊥ B⊥C

A

▽4

A⊥
cut

L

L1 L2

πA πA⊥

π

π′
A⊥π′

A

;∗

C⊥ B⊥

▽

L1 L2

πA⊥

π′
A⊥

π∗
A

;∗
L1

π∗
A π∗

A⊥

L2

;∗ •

Now observe that π∗A⊥ cannot contain any handling conclusion link of of π, otherwise,

since π∗A is in a non retractible terminal form (it is not quasi-collapsed), we will conclude

that π is not contractible, like illustrated below (a contradiction).

L1

π∗
A π∗

A⊥

C1 Cm

L2

;

L1

π∗
A

C1
Cm 6;∗ •

Thus we proved statements 1 and 2 (this latter, by Proposition 2(1)). The remaining case,

when π contracts by a sequence starting with contracting πA⊥ to a (quasi-)collapsed π∗A⊥

before contracting πA, is symmetric to the previous one and so omitted.

Lemma 4 (splitting of Σ-contractible APSs). Let π be a Σ-contractible APS in

splitting condition; assume π is only weakly splitting (i.e., π only contains terminal tensor

links or cut links that are only weakly splitting), then there exists a splitting tensor link

or a splitting cut link L.

Proof. Assume, by absurdum, there exists such an APS π that it is only weakly splitting.

By Lemma 3, π cannot contain any terminal tensor link that is only weakly splitting.

Therefore, let π be a minimal APS (w.r.t. the size) containing only weakly splitting cut

links and let L be a weakly splitting cut link like in Figure 3.
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By Proposition 3, either πo
A⊥ (case 2) or πo

A (case 3) must be Σ-contractible with a

single conclusion A⊥, resp., A. Assume πo
A⊥ is Σ contractible (case 2), therefore πo

A must

be only weakly retractible. We reason on link L1 of πA.

1 If L1 is not (weakly) splitting then, we can reduce the cut link L of π and get a proof

net π′ (by Theorem 2) with two reduced cut links, L′ and L′′: since neither of these

new cuts is weakly splitting and since all the other cut links (as well as the terminal

tensor links) of π′ remain not splitting, we found an APS π′, strictly smaller than π,

that is not splitting, contracting the assumption of minimality of π.

B C⊥ B⊥
πA⊥πA

C

L′

L′′

2 Otherwise, assume L1 is weakly splitting, like in the next left hand side picture; then,

as before, we can reduce the cut link L and get (by Theorem 2) an APS π′ with two

reduced cut links, L′ and L′′ like in the r.h.s. picture below:

B C⊥ B⊥
πA⊥

C

A

▽4

A⊥
cut

L

L1 L2

πA

π1
A π2

A

π 7→ π′

B C⊥ B⊥
πA⊥

C

πA

π1
A π2

A

L′

L′′

Now observe that, in the reductum π′ neither L′ nor L′′ is splitting; otherwise:

(a) assume that L′′ is splitting, then after splitting π′ we get two separated components

like in the leftmost hand side case below:

B C⊥ B⊥C
π1
A π2

A

L′

π′
A⊥

;

B C
π1
A π2

A

L′ B⊥C⊥

π′∗
A⊥

;

B C
π1
A π2

A

; (•, •)
now, by assumption πo

A⊥ is contractible, then by Proposition 1 (Case 2), also π′A⊥

(enclosed in the dotted line above) will be so; this means that, both π1
A and π2

A are

contractible (with abuse of notation “(•, •)” in the figure above), and so also πo
A

(Figure 3) is contractible contradicting the assumption L is only weakly splitting;

(b) assume that L′ is splitting, then splitting π′ produces two separated components

like below; so, we get a contradiction by a similar argument to the case (2a).

B C⊥ B⊥
πA⊥

C
π1
A π2

A

L′′

Now observe that, in π′:
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(i) none terminal tensor link is (weakly) splitting; otherwise, assume by absurdum

there exists a terminal tensor link Ls that is weakly splitting in π′; now, since cut-

reduction did not introduce new ones, all terminal tensor links in π′ were already

occurring in π; moreover, by Proposition 3(2), πo
A⊥ does not contain any terminal

link, except L2, thus Ls must occur in πA; this means (simply, by reasoning on MLL

APSs) that Ls was already weakly splitting in π, contradicting the assumption

that (by minimality) π was not containing weakly splitting terminal tensor links;

(ii) none cut link is splitting; in particular, by 2a and 2b, L′ and L′′ are both not

splitting; the remaining cut links in π′ are not splitting for similar reasons seen in

the previous case (i).

Therefore, we have found a non splitting π′, strictly smaller than π, contradicting the

assumption that π was a minimal non splitting APS.

In the other case, when by Proposition 3(3), πo
A is Σ contractible with A as single

conclusion, we proceed like before except for the fact that, in order to get a contradiction

in the analogous of the sub-case 2a, we reason as follows:

— since by assumption π and πo
A are both contractible, we deduce that the AS

(enclosed in a dotted line) on left hand side of next picture is Σ-contractible, where

π∗A denotes the collapsed form of πA; obviously, if πo
A is contractible then also πA

(without its its single handling node) is contractible (it contracts exactly to π∗A);

— since by assumption L′′ is splitting, then after splitting π′ we get two separated

Σ-contractible components, like those ones in the middle side below;

— this means that, by Case 3 of Proposition 1 (applied to the ASs below enclosed in

dotted rectangle frames, after a structural step), πo
A⊥ is contractible, contradicting

the assumption the L in π is not splitting.

C⊥ B⊥
π′
A⊥

L2

π∗
A

▽
πA⊥ B C⊥ B⊥C

π1
A π2

A

L′

π′
A⊥

;

B C⊥ B⊥
π1
A

L′

π′
A⊥π2∗

A

; (•, •)

Lemma 5 (McyLL proof net splitting). Let π be a McyLL PN in splitting condition

(π is not reduced to an axiom link, it contains at least a 4-link (resp., a cut-link) and it

does not contain any O-conclusion) then, there must exist a 4-link A B
A4B (resp., a cut-link

A A⊥
) that splits π in two McyLL PNs, πA and πB (resp., πA and πA⊥).

Proof. If π is a McyLL proof net in splitting condition then, by Lemma 4, its abstraction

πab is splitting. Assume πab splits at the abstract terminal tensor link Lab : A B
A4B in two

contractible πab
A and πab

B ; clearly removing L in π produces two correct proof nets πA and

πB . The case when πab is splitting at a cut link is similar.

Lemma 6 (conclusions order of a proof net). Let π be a McyLL PN with conclusions

Γ, then all seaweeds Si(π) ↓Γ, restricted to Γ, induce the same cyclic order σ on Γ (σ(Γ)).
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Proof. By induction on the size of π. If π is reduced to an axiom link, then obvious,

otherwise we reason as follows.

1 If π contains at least a conclusion AOB, then Γ = Γ′, AOB; by hypothesis of induction

the sub-proof net π′ with conclusion Γ′, A,B has cyclic order σ(Γ′, A,B), and so,

by condition 2 of Definition 6 applied to π, we know that each restricted seaweed

Si(π) ↓(Γ′,A,B) induces the same cyclic order σ(Γ′, A,B); finally, by substituting

[A/AOB] (resp., [B/AOB]) in the restriction Si(π) ↓(Γ′,A) (resp., Si(π) ↓(Γ′,B)), we

get that each seaweed Si(π) ↓(Γ′,AOB) induces the same cyclic order σ(Γ′, AOB).

2 Otherwise π must contain a terminal splitting 4-link or cut-link. Assume π contains

a splitting 4-link, A B
A4B , and assume by absurdum that π is such a minimal (w.r.t.

the size) PN with at least two seaweeds Si(π) and Sj(π) s.t. (X,Y, Z) ∈ Si(π) and

(X,Y, Z) 6∈ Sj(π). We follow two sub-cases.

(a) It cannot be the case X = B, Y = A and Z = C otherwise, by definition of

seaweeds, Si(π) and Sj(π) will appear as follows:

Si(π) ↓(Γ1,A4B,Γ2)= Si(πA) ↓(Γ1,A) 4Si(πB) ↓(B,Γ2), Sj(π) ↓(Γ1,A4B,Γ2)= Sj(πA) ↓(Γ1,A) 4Sj(πB) ↓(B,Γ2)

Γ1 Γ2

Si(πA) Sj(πB)

A = Y B = X

4

(A 4 B) = Z

Now, by hypothesis of induction, all seaweeds on πA (resp., all seaweeds on πB)

induce the same order on Γ1, A (resp., Γ2, B), then in particular,

Si(πA) ↓(Γ1,A)= Sj(πA) ↓(Γ1,A) and Si(πB) ↓(B,Γ2)= Sj(πB) ↓(B,Γ2)

but this implies Si(π) ↓(Γ1,A4B,Γ2)= Sj(π) ↓(Γ1,A4B,Γ2).

(b) Assume both X and Y belong to πA (resp., πB) and Z belongs to πB (resp., πA);

moreover, assume for some i, j, (X,Y, Z) ∈ Si(π) ↓(Γ1,A4B,Γ2) and (X,Y, Z) 6∈
Sj(π) ↓(Γ1,A4B,Γ2); by Splitting Lemma 5, each seaweeds for π, Si(π) and Sj(π),

must appear as follows:

YX
A B

Z

Si(πA) ↓Γ1,A Si(πB) ↓B,Γ2

A 4 B

4Γ ′
1 Γ ′

2

(X, Y, Z) ∈ Si(π) ↓Γ1,A4B,Γ2

YX
A B

Z

A 4 B

Sj(πB) ↓B,Γ2

4

(X, Y, Z) 6∈ Sj(π) ↓Γ1,A4B,Γ2)

Sj(πA) ↓Γ1,A

Γ ′
2Γ ′

1

so, by restriction, (X,Y,A) ∈ Si(πA) ↓Γ1,A and (X,Y,A) 6∈ Sj(πA) ↓Γ1,A, contra-

dicting the assumption (by minimality) that πA is a correct PN with a cyclic order

on its conclusions Γ′1, X, Y,A = Γ1, A.

The remaining case, when π contains a splitting cut, is similar and so omitted.

Lemma 7 (contractible pair). If π is a contractible APS, then there does not exist a

pair (A,B) (an abstract link AOB) in π and a seaweed S(π) s.t. the three paths AC,BC

and AB intersect in a •-node with the anticlockwise order, for a conclusion C, as follows:
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A B

π

D

4▽

C

A B

D

4▽

S(π)

C

Proof. By induction of the size of π.

Fact 4 (seaweed splitting). Assume π is a proof net in splitting condition with

order conclusions σ(Γ) = Γ1 < A 4 B < Γ2; assume π splits at a tensor (resp., cut)

link L : A B
A4B (resp., L : A A⊥

), then, after splitting, the proof net πA has order

conclusions σ(Γ) ↓Γ1,A= Γ1 < A and the proof net πB (resp., πA⊥) has order conclusions

σ(Γ) ↓Γ2,B= Γ2 < B (resp., σ(Γ) ↓Γ2,A
⊥

= Γ2 < A⊥).

Proof. By Definition 10 of order conclusions σ(Γ) of a proof net and by Lemma 6, each

seaweed Si(π) ↓Γ is given by the composition Si(π) ↓Γ1< A4B < Si(π) ↓Γ2 like below:

YX
A B

Z

Si(πA) ↓Γ1,A Si(πB) ↓B,Γ2

A 4 B

4Γ ′
1 Γ ′

2

(X, Y, Z) ∈ Si(π) ↓Γ1,A4B,Γ2

then, by restriction and substitution, each seaweed for πA (resp., for πB) will be given by

Si(πA) ↓Γ1,A (resp., Si(πB) ↓Γ2,B), that is, the order conclusions of πA (resp., πB) wil be

σ ↓Γ1,A= Γ1 < A (resp., σ ↓Γ2,B= Γ2 < B).

Theorem 4 ((de-)sequentialization). If π is a McyLL proof net with conclusion σ(Γ)

then it sequentializes into a sequent proof with same conclusion σ(Γ) and vice-versa.

Proof. The sequentialization part is proved by induction on the size of a PN π with

conclusions order σ(Γ). The case when π is reduced to an axiom link is immediate,

otherwise we reason as follows.

1 Assume π contains a terminal O-link L : A B
AOB , so π has conclusions σ(Γ) = Γ′ < AOB,

then we can remove L and consider the proof structure π′ with conclusions Γ′, A,B

which is correct since its abstract image π′ab is contractible by Proposition 1 (case 1)

and therefore it is sequentializable into a proof of ` σ′(Γ′, A,B). It remains to show

that σ′(Γ′, A,B) = Γ′ < A < B = σ(Γ)[AOB/A < B] = Γ′ < AOB. Assume there

exists a conclusion C in S(π′) s.t. (A < B < C) 6∈ S(π′), like in the next picture

▽ 4

C

A B

D

π

▽ 4

C

A B

D

S(π)

that is absurdum, by Lemma 7. Therefore π sequentializes as follows:
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Π′

` Γ′ < A < B = σ′(Γ′, A,B)

` Γ′ < AOB = σ(Γ′ < AOB)

2 Otherwise, π must be splitting at some link L, by Splitting Lemma 5. Assume L is a

terminal splitting 4-link L : A B
A4B and π has conclusions σ(Γ) = Γ′ < A4B; then by

hypothesis of induction on the size of π, π1
Γ1,A

and π2
Γ2,B

are correct proof nets that

sequentialize into a proof of σ′1(Γ1, A) = Γ1 < A, resp., σ′2(Γ2, B) = Γ2 < B, from

which we can conclude, by Fact 4, with the following sequentialization of π, where

σ(Γ) = Γ1 < A4B < Γ2 with Γ′ = Γ2 < Γ1:
Π1

` Γ1 < A

Π2

` Γ2 < B 4` Γ1 < A4B < Γ2

The case when π is splitting at a cut link is similar and so omitted.

Finally, the adequacy-part (the fact the proof net syntax is adequate to represent sequent

proofs) is proved by induction on the hight of the given sequent proof.

3. Lambek Calculus and McyLL Proof Nets as parsing structures

3.1. Proof nets for Lambek Calculus

In this section we characterize those McyLL PNs that correspond to Lambek proofs.

The first (sound) notion of Lambek cut-free proof net, without sequentialization, was

given in [Roorda 1992]; see also [Retoré 1996] and [Moot and Retoré 2012] for an original

discussion on the embedding of Lambek Calculus into PNs.

Definition 13 ((pure-)Lambek formulas and sequents of McyLL ). Assume A

and S are, respectively, a formula and a sequent of McyLL .

1 A is a (pure) Lambek formula (pLF) if it is a McyLL formula recursively built according

to this grammar: A := positive atoms | A4A | A⊥OA | AOA⊥.

2 S is a Lambek sequent of McyLL iff S = (Γ)⊥, A where A is a non void pLF and

(Γ)⊥ is a possibly empty finite sequence of negations of pLFs (i.e., (Γ)⊥ is obtained

by taking the negation of each pLF in Γ).

3 A (pure) Lambek proof is any derivation built by means of the McyLL inference rules

in which premise(s) and the conclusions are Lambek sequents.

Definition 14 (Lambek McyLL proof net). We call Lambek McyLL proof net any

McyLL PN whose edges are labeled by pure LFs or negation of pure LFs and whose

conclusions form a Lambek sequent.

Corollary 1. Any Lambek McyLL PN π is stable under cut reduction, i.e., if π reduces

in one step to π′, then π′ is a Lambek McyLL PN too.

Proof. Consequence of Theorem 2. Any reduction step preserves the property that

each edge (resp., the conclusion) of the reductum is labeled by a Lambek formula or by a

negation of a Lambek formula (resp., by a Lambek sequent).

Theorem 5 (adequacy of Lambek PNs). Any Lambek proof of a sequent ` σ(Γ⊥, A)

can be de-sequentialized in to a Lambek PN with same order conclusions σ(Γ⊥, A).
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Proof. By induction on the height of the given sequent proof.

Theorem 6 (sequentialization of Lambek PNs). Any Lambek McyLL proof net of

σ(Γ⊥, A) sequentializes into a Lambek McyLL proof of the sequent ` σ(Γ⊥, A).

Proof. Assume by absurdum there exists a pure Lambek McyLL proof net π that

does not sequentialize into a Lambek McyLL proof. We can chose π minimal w.r.t.

the size. Clearly, π cannot be reduced to an axiom link; moreover π contains neither

a negative conclusion of type A⊥OB⊥ nor a positive conclusion of type A⊥OB (resp.,

AOB⊥), otherwise, we could remove this terminal O-link and get a strictly smaller (than

π) proof net π′ that is sequentializable, by minimality of π; this implies that also π

is sequentializable (last inference rule of the sequent proof will be an instance of O-

rule) contradicting the assumption. For same reasons (minimality), the unique positive

conclusion (e.g. A4B) of π cannot be splitting. Therefore, since π is not an axiom link

A⊥ A
, by Lemmas 5 and 6, there must exist either a (negative) splitting 4-link (Case 1)

or a splitting cut-link (Case 2).

Case 1. Assume a negative splitting conclusion A⊥4B (resp., A4B⊥). By minimality, π

must split like in the next left hand side picture (we use A+, resp. A−, to denote positive,

resp., negative, LF and Γ− for sequence of negative LFs):

π1

B

π2

Γ−
1 A⊥ P+Γ−

2

4
A⊥ 4 B

π2π′
1

4
A⊥ 4 B

4

π′′
1

C 4 D⊥

Γ
′′−
1 C D⊥ Γ

′−
1 A⊥ Γ−

2B P+

π′

Now, let us reason on π1 (reasoning on π2 is symmetric): by minimality of π, π1 cannot be

reduced to an axiom link (otherwise Γ−1 would not be negative); moreover, none of Γ−1 is a

(negative) splitting link, like e..g., C 4D⊥, otherwise we could easily restrict to consider

the sub-proof-net π′, obtained by erasing from π the sub-proof-net π′′1 (with conclusions

Γ
′′−
1 , C) together with the C⊥ 4D-link, like the graph enclosed in the dashed line above.

Clearly, π′ would be a non sequentializable Lambek proof net strictly smaller than π.

In addition, π1 must be cut-free, otherwise by minimality, after a cut-step reduction we

could easily build a non sequentializable reductum PN π′, strictly smaller than π, (π′ will

have same conclusions of π). Therefore, there are only two sub-cases:

1 either A⊥ = C⊥OD⊥, then from the PN π on the l.h.s. of the next figure, we can

easily get the non sequentializable PN π′ (on the r.h.s.); π′ is strictly smaller than π,

contradicting the minimality assumption:

Γ−
1 C⊥

π1

D⊥

B

π2

Γ−
2 P+

▽

C⊥▽D⊥π :

4
A⊥ 4 B

Γ−
1 C⊥ D⊥

B

π2

Γ−
2 P+

π′
1

π′ :

4
D⊥ 4 B

2 or A⊥ = C⊥4D, then this C⊥4D-link must split by Lemma 5, since π1 is a cut-free
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PN in splitting condition without other 4-splitting conclusion in Γ−1 ; so from π on the

l.h.s., we can easily get the non sequentializable PN π′ on r.h.s.; π′ is strictly smaller

of π, contradicting the minimality assumption:

B

π2

Γ−
2 P+π :

π′
1

π′′
1

Γ
′−
1

Γ
′′−
1

C⊥ D

4

4
A⊥ 4 B

C⊥ 4 D B

π2

Γ−
2 P+

π′
1

Γ
′−
1 C⊥

π′ :

4
C⊥ 4 B

Case 2. Assume π contains a splitting cut link, like the leftmost hand side picture below,

then we proceed like in Case 1. We reason on π1 with two sub-cases:

1 either A⊥ = C⊥OD⊥, then we can easily get, starting from the PN π on the middle

side below, a non sequentializable PN π′, like the rightmost hand side picture; π′is

strictly smaller than π, contradicting the minimality assumption:

π1 π2

Γ−
1 P+

cut

(A⊥)− A+ Γ−
2

Γ−
1 C⊥

π1

D⊥

π2

Γ−
2 P+

▽

C⊥▽D⊥π :

cut

A

Γ−
1 C⊥ D⊥

π2

Γ−
2 P+

π′
1

π′ : A

4
D⊥ 4 A

2 or A⊥ = C⊥ 4 D, then this A⊥-link must be splitting by Lemma 5, since π1 is a

cut-free PN in splitting condition without any other 4-splitting conclusion in Γ−1 ; so,

we can easily get, starting from the PN π on the l.h.s., a non sequentializable PN π′

that is strictly smaller than π (on the r.h.s.), contradicting the minimality assumption.

π2

Γ−
2 P+π :

π′
1

π′′
1

Γ
′−
1

Γ
′′−
1

C⊥ D

cut

A

4
C⊥ 4 D

π2

Γ−
2 P+

π′
1

Γ
′−
1 C⊥

π′ : A

4
C⊥ 4 A

3.2. McyLL Proof Nets as parsing structures

In this section we reformulate, in our syntax, some examples of linguistic parsing (some of

them suggested by Richard Moot in his PhD thesis [Moot 2002]). We use s, np and n as the

types expressing, respectively, a sentence, a noun phrase and a common noun. According

to the “parsing as deduction style”, when a string w1...wn is tested for grammaticality,

the types t1, ..., tn associated with the words are retrieved from the lexicon and then

parsing reduces to proving the derivability of a two-sided sequent of the form t1, ..., tn ` s.
Remind that proving a two sided Lambek derivation t1, ..., tn ` s is equivalent to prove
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the one-sided sequent ` t⊥n , ...t⊥1 , s where t⊥i is the dual (i.e., linear negation) of type ti.

Any phrase or sentence should be read like in a mirror (with opposite direction).

Assume the following lexicon, where linear implication −◦ (resp., ◦−) is traditionally

used for expressing types in two-sided sequent parsing:

1 Sollozzo, Vito = np;

2 trusts = np−◦(s◦−np) ≡ np⊥O(sOnp⊥)

= (np−◦s)◦−np ≡ (np⊥Os)Onp⊥;

3 him = (s◦−np)−◦s ≡ (sOnp⊥)⊥Os ≡ (np4 s⊥)Os;
Cases of lexical ambiguity follow to words with several possible formulas A and B

assigned it. For example, a verb like ”to believe” can express a relation between two

persons, np’s in our interpretation, or between a person and a statement, interpreted as

s, as in the following examples:

(1) Sollozzo believes Vito. (2) Sollozzo believes Vito trusts him.

We can express this verb ambiguity by two lexical assignments as follows:

4 believes = (np−◦s)◦−np ≡ (np⊥Os)Onp⊥;

5 believes = (np−◦s)◦−s (np⊥Os)Os⊥.

In order to parse sentence (1), “Sollozzo believes Vito”, we may proceed in two ways:

— via the sequent calculus, building (bottom-up) a derivation tree in the sequent calculus:

— or via proof structure, by matching pairs of dual literals (i.e. linking) occurring in the

top border of the syntactical trees of the types assigned to the lexical items, including

the extra type for sentence s. Actually, there are two ways of linking dual pairs of

literals (np, np⊥), both of them leading to correct proof nets:

– the one in the middle side, with cyclic order conclusions “s < V ito < believes <

Sollozzo”, which sequentializes into the l.h.s. sequent proof, parsing of sentence 3.2;

– the one in the rightmost hand side, with cyclic order conclusions s < Sollozzo <

believes < V ito, corresponding to the parsing of sentence “Vito believes Sollozzo”.

id1
np⊥, np

id2
s⊥, s

id3
np, np⊥ 4

s⊥ 4 np, np⊥, s 4
np⊥, np4 (s⊥ 4 np), np⊥, s

s⊥ np

4

np

np⊥

believesVito

(1)

np⊥

Sollozzo

(3)

s

(2)

4

s⊥ np

4

np

believes

np⊥ s

4

np⊥

Vito Sollozzo

Remind that, since we only consider one-side Lambek sequent proofs (proof nets), phrases

or sentences should be read “like in a mirror“ (following the dashed arrow below the con-

clusions), i.e., by inverting the ”anticlockwise orientation“ of the cyclic order conclusions.

Similarly, the parsing of sentence (2), ”Sollozzo believes Vito trusts him”, can be

interpreted either by deriving (bottom up) a Lambek proof or by constructing, like below,

a (bottom up) a Lambek PN (given together with its corresponding contractible APS):
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believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

(6)

(5)

Vitotrusts

4

nps⊥

(4)

np

4

him

▽

np⊥

(2)

s

s⊥

(3)

(1)

4
np⊥

7→

▽

Sollozzo s him

Vito trusts

believes

 ∗

Further examples can be found in Appendix A.3.

4. Conclusions and further works

In this paper we presented a correctness criterion for cyclic pure multiplicative (McyLL )

proof nets satisfying a sequentialization for the full class of proof nets, including those

ones with cut links. As shown in [Abrusci and Maieli 2015b]), the contraction criterion

can be extended to consider the multiplicative and additive cyclic fragment of linear logic

(MAcyLL), thereby allowing to parse superposition of phrases with lexical ambiguity

(finite polymorphism). Intuitively it is enough to add an additive “box-like” contraction

rule to the Σ system, with the proviso that the syntax of (abstract) proof structure has

been enriched with links for the additive connectives & (with) and ⊕ (plus) together with

extra (possibly n-ary) links for contraction (see Appendix A.4).

Retraction Systems represent a useful computational tool for:

— proof search, since we can chose special retraction strategies, like e.g. parsing, that are

“optimal” w.r.t. e.g. complexity of search space, backtracking, ecc., (see [Maieli 2014]);
— classifying the the complexity class of correctness criteria; concerning the pure multi-

plicative fragment of linear logic, at this moment we know that deciding:

– the correctness of a MLL proof structure is linear in the size of the input proof

structure [Guerrini 2011] and NL-complete [de Naurois and Mogbil 2007];

– correctness of McyLL proof structures, restricted to those ones that only allow a

cut-free sequentialization (like e.g., [Maieli 2003]), is quadratic in the size of the

input proof structure [Mogbil 2001].

As future work we aim at classifying the complexity class of the proposed new

correctness criterion.
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Appendix A.

A.1. Melliès’ topological criterion

Definitions and examples of this section can be founded in [Melliès 2004].

Definition 15 (Melliès’ correctness criterion). An McyLL (concrete) proof-structure

π (Definition 2) is a proof-net iff:

1 its commutative translation π∗ is an MLL proof-net;

2 its surface ribbon(π) is planar with a unique external border σ;

3 σ contains all the conclusions of π.

The commutative translation π∗ of an McyLL proof-structure π is the MLL proof-

structure obtained as the result of replacing every � and O link by ⊗ and O, respectively,

where according to Melliès’ syntax “�” denotes the non commutative tensor (denoted in

the rest of the paper by the usual “4”).

The second part of the criterion requires “planarity” of π, or more precisely planarity

of the (orientable) surface ribbon(π) obtained by replacing every {�,O, axiom, cut}-link

and conclusion C in π by the associated ribbon diagram as follows:

The criterion rejects the proof structure π of conclusion conclusion ` (B �A)−◦(A�B)

because ribbon(π) in leftmost hand side of Figure 4 it is not planar. The crucial

point is that planarity of ribbon(π) is not sufficient to characterize McyLL proofs

among McyLL proof-structures. Typically, the McyLL proof-structure π of conclusion

` (A⊥OB⊥), (A � B), in the middle side ribbon of Figure 4 is not sequentializable in

McyLL, but its surface ribbon(π) is planar. One possible solution is to require that

all conclusions of π lie on the same border of ribbon(π). Unfortunately, this criterion

would be too weak to characterize proofs with cuts, as witnessed by the example of a

non-sequentializable McyLL proof-structure, with a unique conclusion in the rightmost

hand side of Figure 4. These (counter-)examples suggest to reinforce conditions 1 and 2 of

Definition 15 by adding extra information (condition 3) concerning the O-link occurring

in the border of ribbon(π). More precisely, given an McyLL proof structure π and a

border σ of ribbon(π), we shall count the number of O-links visited by the border σ on

their “thick side” displayed below:

We call this number the index of σ. A border of index 0 is called external and a border

of index more than 1 is called internal. So, the criterion of Definition 15 rejects the two

proof-structures on the right hand side of Figure 4 because one of their conclusions lies
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Fig. 4. examples of surface ribbons of proof structures

on an internal border. For similar reasons, proof structures π1 and π2 of Section 1.2.3 are

non correct according to Definition 15.

A.2. Sequentialization as parsing

In spite of other syntaxes based on correction graphs (set of tests) like “switchings” or

“trips”, retraction gives a direct (simpler, indeed) sequentialization procedure of correct

proof nets without passing through a Splitting Lemma. The genuine idea [Bagnol et

al. 2015] is that each retraction step represents itself an inference of a possibly open

sequent proof. For this purpose we adopt the intermediate syntax of labeled abstract proof

structures (a “medium” between abstract proof structures and sequent proofs):

— nodes of abstract paired graphs are labeled with open proofs containing context

variables Γ?;

— open proofs correspond to partial sequentializations, which become larger and larger

as contraction progresses, until reaching a full (complete, closed) McyLL proof;

— open proofs are constructed on (i) cyclic ordered sequents S (i.e., S is endowed with a

total cyclic order σ) with context variables, generated by the following syntax, where

F is a McyLL formula and Γ? is a context variable:

S := ∅ | S, F | S,Γ?

(ii) by the following inference rules:

id` A < A⊥ ` S ` S1 < A A⊥ < S2
cut` S1 < S2

` S1 < A ` B < S2 4` S1 < A4B < S2

` S < A < B O` S < AOB

Given a concrete proof structure π, the labeled paired graph πlab is a paired graph

whose vertexes are labeled by open proofs (displayed inside rectangles) whose edges are

labeled by formulas and obtained by applying the following transformation rules, from

concrete proof structures (CPSs) to labeled paired graphs, also called labeled abstract

proof structures (LAPSs):



V. Michele Abrusci and Roberto Maieli 28

ax

A A⊥
→

A⊥
` A < A⊥

A

A

A

` Γ?
A < A ` A⊥ < Γ?

A⊥

` Γ?
A < Γ?

A⊥
→cut

A⊥A⊥

A⊥

AOB

A B

O

AOB

` Γ?
AOB < A < B

` Γ?
AOB < AOB

A B

→ 4

A B

→
` Γ?

A < A ` B < Γ?
B

` Γ?
A < A4B < Γ?

B

BA

A4B

A4B

(transformation rules: CPSs→ LAPSs)

Definition 16 (labelled retraction system Σl). The following rewriting or contraction

rules are applied with (partial) substitution of context variables; where Π,Φ,Θ stay for

possibly open sub-proofs and Φ[Γ/Γ?
F ] denotes the substitution of a context variable Γ?

F

by a (closed) sequent Γ along an open proof Φ:

A

Π
` Γ < A < B

` Γ?
AOB < A < B

Φ

Π
` Γ < A < B
Φ[Γ/Γ?

AOB]
;R1B Θ

Π
` A < Γ

Φ[Γ/Γ?
A]

Π
` A < Γ

Θ ` A < Γ?
A

Φ

;R2A

Definition 17 (Σl-correctness criterion (ΣlCC)). A concrete proof structure π is

Σl-correct when the corresponding LAPS πlab collapses by Σl in to a single node labeled

by a closed sequent proof Π (derived from only logical axioms, id).

Theorem 7 (ΣCC ≡ ΣlCC). A concrete proof structure π is Σ-correct (ΣCC, Defini-

tion 9) iff it is Σl-correct (ΣlCC); moreover, π and the (closed) sequent proof Π, labeling

the collapsed graph (resulting from the Σl-contraction of πlab), have the same conclusions

Γ endowed by the same cyclic order σ(Γ).

Proof. By induction on π.

Example 2. Assume the following concrete proof structure π1:
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4
A

cut

ax

O O

ax
ax

AA⊥ A⊥

A⊥ 4 AAOA⊥

π1

AA⊥

A⊥OA

In order to check Σl-correctness of π, we first transform it into the LAPS πlab below:

` Γ?
A⊥4A < A⊥ 4 A ` A⊥OA < Γ?

A⊥OA

` Γ?
A⊥4A < Γ?

A⊥OA

` A⊥ < A

` Γ?
A⊥ < A⊥ ` A < Γ?

A

` Γ?
A⊥ < A⊥ 4 A < Γ?

A

` A⊥ < A

A A⊥ A

` Γ?
AOA⊥ < A < A⊥

` Γ?
AOA⊥ < AOA⊥

A⊥ 4 A A⊥OA

A⊥
AA⊥

` A⊥ < A

` Γ?
A⊥OA < A⊥ < A

` Γ?
A⊥OA < A⊥OA

then, after a couple instances of R1 (with substitution [A/Γ?
A⊥ ] resp., [A⊥/Γ?

A]) and one

instance of R2 (with substitution [∅/Γ?
A⊥OA]) we get the following LAPS:

` Γ?
A⊥4A < A⊥ 4 A ` A⊥OA < Γ?

A⊥OA

` Γ?
A⊥4A < Γ?

A⊥OA

` A < A⊥ ` A < A⊥

` A < A⊥ 4 A < A⊥

A

` Γ?
AOA⊥ < A < A⊥

` Γ?
AOA⊥ < AOA⊥

A⊥ 4 A A⊥OA

A⊥

` A⊥ < A
` A⊥OA

from which, after an instance of R1 (with substitution [∅/Γ?
A⊥OA]) we get next structure:
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` Γ?
A⊥4A < A⊥ 4 A

` A⊥ < A
` A⊥OA

` Γ?
A⊥4A

` A < A⊥ ` A < A⊥

` A < A⊥ 4 A < A⊥

A

` Γ?
AOA⊥ < A < A⊥

` Γ?
AOA⊥ < AOA⊥

A⊥ 4 A

A⊥

then, by an other instance of R1 (with substitution [(A⊥ < A)/Γ?
A⊥4A] we get:

` A < A⊥ ` A < A⊥

` A < A⊥ 4 A < A⊥
` A⊥ < A
` A⊥OA

` A < A⊥

A

` Γ?
AOA⊥ < A < A⊥

` Γ?
AOA⊥ < AOA⊥

A⊥

from which, finally, after an instance of R2 (with substitution [∅/Γ?
A⊥OA] we get a collapsed

LAPS (a single node) labeled by the following closed proof Π (a sequentialization of π):

` A < A⊥ ` A < A⊥

` A < A⊥ 4 A < A⊥
` A⊥ < A
` A⊥OA

` A < A⊥

` A⊥OA

Example 3. Assume we want to test for correctness the following (incorrect indeed)

proof structure π2:

(A⊥ 4 A) 4 (A⊥OA)

A

ax

O O

ax
ax

AA⊥ A⊥

π2

AA⊥

A⊥OAA⊥ 4 A

4

4
AOA⊥

first, let us transform π2 into the labeled proof structure below:
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` Γ?
A⊥4A < A⊥ 4 A ` A⊥OA < Γ?

A⊥OA

` Γ?
A⊥4A < (A⊥ 4 A) 4 (A⊥OA) < Γ?

A⊥OA

` A⊥ < A

` Γ?
A⊥ < A⊥ ` A < Γ?

A

` Γ?
A⊥ < A⊥ 4 A < Γ?

A

` A⊥ < A

A A⊥ A

` Γ?
AOA⊥ < A < A⊥

` Γ?
AOA⊥ < AOA⊥

A⊥ 4 A A⊥OA

A⊥
AA⊥

` A⊥ < A

` Γ?
A⊥OA < A⊥ < A

` Γ?
A⊥OA < A⊥OA

then, after a couple instances of R1, one instance of R2 and one more instance of R1

(with the same substitutions seen before for π1) we get the structure below which is not

contractible anymore:

` A < A⊥ ` A < A⊥

` A < A⊥ 4 A < A⊥
` A⊥ < A
` A⊥OA

` A < (A⊥ 4 A) 4 (A⊥OA) < A⊥

A

` Γ?
AOA⊥ < A < A⊥

` Γ?
AOA⊥ < AOA⊥

A⊥

observe that, the only possible substitution [(A⊥ 4A) 4 (A⊥OA)/Γ?
AOA⊥ ] does not led

to a cut-free derivable proof of the sequent ` (A⊥ 4A) 4 (A⊥OA) < AOA⊥, as below.

` A < A⊥ ` A < A⊥

` A < A⊥ 4A < A⊥
` A⊥ < A

` A⊥OA
` (A⊥ 4A) 4 (A⊥OA) < A⊥ < A

non (cut-free) derivable!

` (A⊥ 4A) 4 (A⊥OA) < AOA⊥

A.3. Examples of Parsing via Lambek McyLL proof nets

In order to better understand how the contraction criterion checks the incorrectness

of wrong parsing of Lambek proof structure, we consider in the following a couple of

incorrect parsing structures of sentence (2): the first one results from a wrong choice of

linking (by axioms) some pairs of literal s, s⊥
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believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

Vitotrusts

4

nps⊥

np

4

him

O

np⊥s

s⊥ 4
np⊥

7→ him

s

Sollozzo believes

Vito

trusts

O

6;∗

while the second one results from a incorrect linkings of some pairs of literals np, np⊥

believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

Vitotrusts

4

nps⊥

np

4

him

O

np⊥s

s⊥ 4
np⊥

7→

O

trustsVito

believes

Sollozzo
s
him

6;∗

Proof nets are modular objects, that is, you can always replace in a proof-net a portion

(also called ”module”) with an other graph with same ”behavior” (in term of local

correction) and get still a correct proof net. For instance, consider the two alternative

parsing structures for sentence (2): they only differ for the module enclosed within dashed

lines: two different syntactical types (even though logically equivalent!) for the same

lexical item “trusts”= np−◦(s◦−np) = np⊥O(sOnp⊥).

believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

(6)

(5)

Vitotrusts

4

nps⊥

(4)

np

4

him

O

np⊥

(2)

s

s⊥

(3)

(1)

4
np⊥

believes

s

s⊥ np

np⊥

Sollozzo

s

4

4

Vitotrusts

4

np

4

him

O

np⊥s

s⊥

np⊥

4

np s⊥

A.4. Further work: parsing via Lambek MAcyLL proof nets

Additive connectives, & and ⊕, allow superpositions of types (lexical ambiguity); in

particular we may collapse the previous assignment items 4 and 5 of Section 3.2 for the

lexical entry “believes” into a single additive assignment as follows:

6 believes = ((np−◦s)◦−np)&((np−◦s)◦−s) = ((np⊥Os)Onp⊥)&((np⊥Os)Os⊥).

Then, as parsing structure of the superposition of sentences (1) and (2) we may build:

1 either a MAcyLL proof net with “minimal superposition of links”; this proof net is

very close to the “sequent style“ parsing since it makes use of ”additive-boxes“:
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s⊥

4

4

O

np

trustshim Vito

s

s⊥

4

O

np

4

C

believes

s⊥ np

np

np⊥ np⊥

C

Sollozzo s

s s

C&p

np⊥

(Vito) & (him trusts Vito)

4

4

⊕2⊕1

(1, p)

(2, p)

(3, p)

4

npO

s

s⊥
np

(5, p̄)

(6, p̄)

(4, p̄)

(1, p̄)
(3, p̄)

np⊥

np⊥

(2, p̄)

7→

CC
C

;

Vito & (him trusts Vito)

Sollozzo believess

&p

2 or a more abstract proof net (with ”maximal superposition of links“), which exploits

a more compact lexical entry (due to the distributivity law of negative connectives)

believes = ((np−◦s)◦−np)&((np−◦s)◦−s) ≡ ((np⊥Os)Onp⊥)&((np⊥Os)Os⊥)

= ((np−◦s)◦−(s⊕ nps)) = ((np⊥Os)O(np⊥&s⊥)).

s⊥

4

4

np

O

np⊥

np

np⊥

trustshim

O

s

C 4

&p

np⊥ nps

believes(Vito) & (him trusts Vito)

⊕1 ⊕2

4

Vito

sSollozzo

nps⊥

np⊥

7→

&p C

SollozzoVito & (him trusts Vito)
s

believes


