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MULTIPLE-PRIORS OPTIMAL INVESTMENT IN DISCRETE TIME FOR
UNBOUNDED UTILITY FUNCTION

BY ROMAIN BLANCHARD
LMR, Université Reims Champagne-Ardenne (URCA), France.

AND
BY LAURENCE CARASSUS

Research Center, Léonard de Vinci Pôle Universitaire and LMR, URCA, France.

This paper investigates the problem of maximizing expected
terminal utility in a discrete-time financial market model with a
finite horizon under non-dominated model uncertainty. We use a
dynamic programming framework together with measurable selec-
tion arguments to prove that under mild integrability conditions,
an optimal portfolio exists for an unbounded utility function de-
fined on the half-real line.

1. Introduction. We consider investors trading in a multi-period and discrete-time
financial market. We study the problem of terminal wealth expected utility maximisa-
tion under Knightian uncertainty. It was first introduced by F. Knight (Knight, 1921) and
refers to the “unknown unknown”, or uncertainty, as opposed to the “known unknown”,
or risk. This concept is very appropriate in the context of financial mathematics as it de-
scribes accurately market behaviors which are becoming more and more surprising. The
belief of investors are modeled with a set of probability measures rather than a single
one. This can be related to model mispecification issues or model risk and has triggered
a renewed and strong interest by practitioners and academics alike.
The axiomatic theory of the classical expected utility was initiated by (von Neumann and
Morgenstern, 1947). They provided conditions on investor preferences under which the
expected utility of a contingent claim X can be expressed as EPU(X) where P is a given
probability measure and U is a so-called utility function. The problem of maximising
the von Neumann and Morgenstern expected utility has been extensively studied, we
refer to (Rásonyi and Stettner, 2005) and (Rásonyi and Stettner, 2006) for the discrete-
time case and to (Kramkov and Schachermayer, 1999) and (Schachermayer, 2001) for the
continuous-time one. In the presence of Knightian uncertainty, (Gilboa and Schmeidler,
1989) provided a pioneering contribution by extending the axiomatic of von Neumann
and Morgenstern. In this case, under suitable conditions on the investor preferences, the
utility functional is of the form infP∈QT EPU(X) where QT is the set of all possible prob-
ability measures representing the agent beliefs. Most of the literature on the so-called
multiple-priors or robust expected utility maximisation assumes that QT is dominated
by a reference measure. We refer to (Föllmer, Schied and Weber, 2009) for an extensive
survey.
However assuming the existence of a dominating reference measure does not always
provide the required degree of generality from an economic and practical perspective.
Indeed, uncertain volatility models (see (Avellaneda, Levy and Paras, 1996), (Denis and
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Martini, 2006), (Lyons, 1995)) are concrete examples where this hypothesis fails. On the
other hand, assuming a non-dominated set of probability measures significantly raises
the mathematical difficulty of the problem as some of the usual tools of probability the-
ory do not apply. In the multiple-priors non-dominated case, (Denis and Kervarec, 2013)
obtained the existence of an optimal strategy, a worst case measure as well as some “min-
max” results under some compacity assumption on the set of probability measures and
with a bounded (from above and below) utility function. This result is obtained in the
continuous-time case. In the discrete-time case, (Nutz, 2016) (where further references
to multiple-priors non-dominated problematic can be found) obtained the first existence
result without any compacity assumption on the set of probability measures but for a
bounded (from above) utility function. We also mention two articles subsequent to our
contribution. The first one (see (Bartl, 2016)) provides a dual representation in the case
of an exponential utility function with a random endowment and the second one (see
(Neufeld and Sikic, 2016)) study a market with frictions in the spirit of (Pennanen and
Perkkio, 2012) for a bounded from above utility function.
To the best of our knowledge, this paper provides the first general result for unbounded
utility functions assuming a non-dominated set of probability measures (and without
compacity assumption). This includes for example, the useful case of Constant Relative
Risk Aversion utility functions (i.e logarithm or power functions). In Theorem 1.11, we
give sufficient conditions for the existence of an optimizer to our “maxmin” problem (see
Definition 1.9). We work under the framework of (Bouchard and Nutz, 2015) and (Nutz,
2016). The market is governed by a non-dominated set of probability measures QT that
determines which events are relevant or not. Assumption 1.1, which is related to mea-
surability issues, is the only assumption made on QT and is the cornerstone of the proof.
We introduce two integrability assumptions. The first one (Assumption 3.1) is related
to measurability and continuity issues. The second one (Assumption 3.5) replaces the
boundedness assumption of (Nutz, 2016) and allows us to use auxiliary functions which
play the role of properly integrable bounds for the value functions at each step. The
no-arbitrage condition is essential as well, we use the one introduced in (Bouchard and
Nutz, 2015) and propose a “quantitative” characterisation in the spirit of (Jacod and
Shiryaev, 1998) and (Rásonyi and Stettner, 2005). Finally, we introduce an alternative
“strong” no-arbitrage condition (the sNA, see Definition 2.4) and prove in Theorem 3.6
that under the sNA condition, Theorem 1.11 applies to a large range of settings.
As in (Bouchard and Nutz, 2015) and (Nutz, 2016) our proof relies heavily on measure
theory tools, namely on analytic sets. Those sets display the nice property of being stable
by projection or countable unions and intersections. However they fail to be stable by
complementation, hence the sigma-algebra generated by analytic sets contains sets that
are not analytic which leads to significant measurability issues. Such difficulties arise for
instance in Lemma 3.26, where we are still able to prove some tricky measurability prop-
erties, as well as in Proposition 3.30 which is pivotal in solving the dynamic program-
ming. Note as well, that we have identified (and corrected) a small issue in (Bouchard
and Nutz, 2015, Lemma 4.12) which is also used in (Nutz, 2016) to prove some important
measurability properties. Indeed it is not enough in order to have joint-measurability of
a function θ(ω, x) to assume that θ(·, x) is measurable and θ(ω, ·) is lower-semicontinuous,
one has to assume for example that θ(ω, ·) is convex (see Lemma 4.5 as well as the coun-
terexample 4.4).
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To solve our optimisation problem we follow a similar approach as (Nutz, 2016). We first
consider a one-period case with strategy in Rd. To “glue” together the solutions found in
the one-period case we use dynamic programming as in (Rásonyi and Stettner, 2005),
(Rásonyi and Stettner, 2006), (Carassus and Rásonyi, 2016), (Carassus, Rásonyi and Ro-
drigues, 2015), (Nutz, 2016) and (Blanchard, Carassus and Rásonyi, 2016) together with
measurable selection arguments (Auman and Jankov-von Neumann Theorems).
In the remainder of the introduction, we recall some important properties of analytic
sets, present our framework and state our main result. In section 2 we prove our quan-
titative version of the multiple-priors no-arbitrage condition. In section 3 we solve the
expected utility maximisation problem, first in the one period case. Finally, section 4 col-
lects some technical results and proofs as well as some counter-examples to (Bouchard
and Nutz, 2015, Lemma 4.12).

1.1. Polar sets and universal sigma-algebra. For any Polish space X (i.e com-
plete and separable metric space), we denote by B(X) its Borel sigma-algebra and by
P(X) the set of all probability measures on (X,B(X)). We recall that P(X) endowed
with the weak topology is a Polish space (see (Bertsekas and Shreve, 2004, Propositions
7.20 p127, 7.23 p131)). If P in P(X), BP (X) will be the completion of B(X) with respect
to P and the universal sigma-algebra is defined by Bc(X) :=

⋂
P∈P(X) BP (X). It is clear

that B(X) ⊂ Bc(X). In the rest of the paper we will use the same notation for P in P(X)
and for its (unique) extension on Bc(X). A function f : X → Y (where Y is an other
Polish space) is universally-measurable or Bc(X)-measurable (resp. Borel-measurable or
B(X)-measurable) if for all B ∈ B(Y ), f−1(B) ∈ Bc(X) (resp. f−1(B) ∈ B(X)). Similarly
we will speak of universally-adapted or universally-predictable (resp. Borel-adapted or
Borel-predictable) processes.

For a given P ⊂ P(X), a set N ⊂ X is called a P-polar if for all P ∈ P, there exists
some AP ∈ Bc(X) such that P (AP ) = 0 and N ⊂ AP . We say that a property holds true
P-quasi-surely (q.s.), if it is true outside a P-polar set. Finally we say that a set is of
P-full measure if its complement is a P-polar set.

1.2. Analytic sets. An analytic set of X is the continuous image of a Polish space,
see (Aliprantis and Border, 2006, Theorem 12.24 p447). We denote by A(X) the set of
analytic sets of X and recall some key properties that will often be used in the rest
of the paper without further references (see also (Bertsekas and Shreve, 2004, Chap-
ter 7) for more details on analytic sets). The projection of an analytic set is an an-
alytic set (see (Bertsekas and Shreve, 2004, Proposition 7.39 p165)) and the count-
able union, intersection or cartesian product of analytic sets is an analytic set (see
(Bertsekas and Shreve, 2004, Corollary 7.35.2 p160, Proposition 7.38 p165)). However
the complement of an analytic set does not need to be an analytic set. We denote by
CA(X) := {A ∈ X, X\A ∈ A(X)} the set of all coanalytic sets of X. We have that (see
(Bertsekas and Shreve, 2004, Proposition 7.36 p161, Corollary 7.42.1 p169))

B(X) ⊂ A(X) ∩ CA(X) and A(X) ∪ CA(X) ⊂ Bc(X).(1)

Now, forD ∈ A(X), a function f : D → R∪{±∞} is lower-semianalytic or lsa (resp. upper-
semianalytic or usa) on X if {x ∈ X f(x) < c} ∈ A(X) (resp. {x ∈ X f(x) > c} ∈ A(X))
for all c ∈ R. We denote by LSA(X) (resp. USA(X)) the set of all lsa (resp. usa) functions
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on X. A function f : X → Y (where Y is another Polish space) is analytically-measurable
if for all B ∈ B(Y ), f−1(B) belongs to the sigma-algebra generated by A(X). From (1)
it is clear that if f is lsa or usa or analytically-measurable then f is Bc(X)-measurable,
again this will be used through the paper without further references.

1.3. Measurable spaces, stochastic kernels and definition of QT . We fix a time
horizon T ∈ N and introduce a sequence (Ωt)1≤t≤T of Polish spaces. We denote by Ωt :=

Ω1 × · · · × Ωt, with the convention that Ω0 is reduced to a singleton. An element of Ωt

will be denoted by ωt = (ω1, . . . , ωt) = (ωt−1, ωt) for (ω1, . . . , ωt) ∈ Ω1 × · · · × Ωt and
(ωt−1, ωt) ∈ Ωt−1 × Ωt (to avoid heavy notation we drop the dependency in ω0). It is well
know that B(Ωt) = B(Ωt−1) ⊗ B(Ωt), see (Aliprantis and Border, 2006, Theorem 4.44
p149). However we have only that Bc(Ωt−1) ⊗ Bc(Ωt) ⊂ Bc(Ωt), which makes the use of
the Projection Theorem problematic and enlighten why analytic sets are introduced. For
all 0 ≤ t ≤ T −1, we denote by SKt+1 the set of universally-measurable stochastic kernel
on Ωt+1 given Ωt (see (Bertsekas and Shreve, 2004, Definition 7.12 p134, Lemma 7.28
p174) ). Fix some 1 ≤ t ≤ T , Pt−1 ∈ P(Ωt−1) and pt ∈ SKt. Using Fubini’s Theorem, see
(Bertsekas and Shreve, 2004, Proposition 7.45 p175), we set for all A ∈ Bc(Ωt)

Pt−1 ⊗ pt(A) :=

∫
Ωt−1

∫
Ωt

1A(ωt−1, ωt)pt(dωt, ω
t−1)Pt−1(dωt−1).

For all 0 ≤ t ≤ T − 1, we consider the random sets Qt+1 : Ωt � P(Ωt+1): Qt+1(ωt) can be
seen as the set of possible models for the t+ 1-th period given the state ωt until time t.

Assumption 1.1 For all 0 ≤ t ≤ T − 1, Qt+1 is a non-empty and convex valued random
set such that Graph(Qt+1) =

{
(ωt, P ), P ∈ Qt+1(ωt)

}
∈ A

(
Ωt ×P(Ωt+1)

)
.

From the Jankov-von Neumann Theorem, see (Bertsekas and Shreve, 2004, Proposi-
tion 7.49 p182), there exists some analytically-measurable qt+1 : Ωt → P(Ωt+1) such that
for all ωt ∈ Ωt, qt+1(·, ωt) ∈ Qt+1(ωt) (recall that for all ωt ∈ Ωt, Qt+1(ωt) 6= ∅). In other
words qt+1 ∈ SKt+1 is a universally-measurable selector of Qt+1. For all 1 ≤ t ≤ T we
define Qt ⊂ P

(
Ωt
)

by

Qt := {Q1 ⊗ q2 ⊗ · · · ⊗ qt, Q1 ∈ Q1, qs+1 ∈ SKs+1, qs+1(·, ωs) ∈ Qs+1(ωs) Qs-a.s. ∀ 1 ≤ s ≤ t− 1 },(2)

where if Qt = Q1 ⊗ q2 ⊗ · · · ⊗ qt ∈ Qt we write for any 2 ≤ s ≤ t Qs := Q1 ⊗ q2 ⊗ · · · ⊗ qs
and Qs ∈ Qs. For any fixed P ∈ QT , EP denotes the expectation under P .

1.4. The traded assets and strategies. Let S := {St, 0 ≤ t ≤ T} be a universally-
adapted d-dimensional process where for 0 ≤ t ≤ T , St =

(
Sit
)

1≤i≤d represents the price
of d risky securities in the financial market in consideration. We make the following
assumptions which were already stated in (Nutz, 2016).

Assumption 1.2 The process S is Borel-adapted.

Remark 1.3 If Assumption 1.2 is not postulated, we cannot obtain some crucial measur-
ability properties (see (Bouchard and Nutz, 2015, Remark 4.4), Lemma 2.2 below as well
as (26) and (27) and (Bertsekas and Shreve, 2004, Lemma 7.30 (3) p178)). Note that this
assumption is not needed in the one period case.

Assumption 1.4 There exists some 0 ≤ s < ∞ such that −s ≤ Sit(ω
t) < +∞ for all

1 ≤ i ≤ d, ωt ∈ Ωt and 0 ≤ t ≤ T .
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Note that we can easily incorporate the case where −s ≤ Sit < +∞ only on a Borel QT -
full measure set. There exists also a riskless asset for which we assume a price constant
equal to 1, for sake of simplicity. Without this assumption, all the developments below
could be carried out using discounted prices. The notation ∆St := St − St−1 will often be
used. If x, y ∈ Rd then the concatenation xy stands for their scalar product. The symbol
| · | denotes the Euclidean norm on Rd (or on R). Trading strategies are represented
by d-dimensional universally-predictable processes φ := {φt, 1 ≤ t ≤ T} where for all
1 ≤ t ≤ T , φt =

(
φit
)

1≤i≤d represents the investor’s holdings in each of the d assets at
time t. The family of all such trading strategies is denoted by Φ. We assume that trading
is self-financing. As the riskless asset’s price is constant equal to 1, the value at time t of
a portfolio φ starting from initial capital x ∈ R is given by V x,φ

t = x+
∑t

s=1 φs∆Ss.
From now on the positive (resp. negative) part of some number or random variable

Y is denoted by Y + (resp. Y −). We will also write f±(Y ) for (f(Y ))± for any random
variable Y and (possibly random) function f

1.5. No arbitrage condition, risk preferences and main result.

Definition 1.5 The NA(QT ) condition holds true if for φ ∈ Φ, V 0,φ
T ≥ 0 QT -q.s. implies

that V 0,φ
T = 0 QT -q.s. (see also (Bouchard and Nutz, 2015, Definition 1.1)).

Definition 1.6 A random utility U is a function defined on ΩT × (0,∞) taking values
in R ∪ {−∞} such that for every x ∈ R, U (·, x) is B(ΩT )-measurable and for every ωT ∈
ΩT , U(ωT , ·) is proper 1, non-decreasing and concave on (0,+∞). We extend U by (right)
continuity in 0 and set U(·, x) = −∞ if x < 0.

Remark 1.7 Fix some ωT ∈ ΩT and let DomU(ωT , ·) := {x ∈ R, U(ωT , x) > −∞} be the do-
main of U(ωT , ·). Then U(ωT , ·) is continuous on Ri(DomU(ωT , ·)), the relative interior of
the domain of U(ωT , ·) (see (Rockafellar, 1970, Theorem 10.1 p82)). Note that if U(ωT , ·) is
improper then U(ωT , ·) = +∞ on Ri(DomU(ωT , ·)) and if U(ωT , ·) is assumed to be upper
semicontinuous (usc from now) then it is infinite on all R (see (Rockafellar, 1970, The-
orem 7.2 and Corollary 7.2.1, p53)) which is a rather uninteresting case. Nevertheless
our results hold true for an improper usc function. Here U(ωT , ·) will not be assumed to
be usc since Assumption 3.1 is postulated. Indeed it implies that DomU(ωT , ·) = (0,∞)
if ωT ∈ ΩT

Dom which is a Borel QT -full measure set (see Lemma 3.2). Then U can be
modified so that it remains Borel-measurable, that DomU(ωT , ·) = (0,∞) and thus ex-
tending U(ωT , ·) by continuity in 0 is enough to get an usc function for all ωT ∈ ΩT . If
DomU(ωT , ·) = (0,∞) is not true on a Borel QT -full measure set then one cannot avoid
the usc assumption : U(ωT , ·) is continuous on Ri(DomU(ωT , ·)) = (m(ωT ),∞) and one
need to extend U(ωT , ·) by (right)-continuity in m(ωT ) which might be strictly positive.
This is the reason why in the dynamic programming part we force the value function to
be usc on all Ωt by taking their closure (see Lemma 3.18, (19) and (24)). Note that we
can easily include the case where U(ωT , ·) is non-decreasing and concave only for ωT in
a Borel QT -full measure set. We introduce the following notations.

Definition 1.8 Fix some x ≥ 0. For P ∈ P(ΩT ) fixed, we denote by Φ(x, P ) the set of all
strategies φ ∈ Φ such that V x,φ

T (·) ≥ 0 P -a.s. and by Φ(x, U, P ) the set of all strategies

1There exists x ∈ (0,+∞) such that U(ωT , x) > −∞ and U(ωT , x) < +∞ for all x ∈ (0,+∞).
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φ ∈ Φ(x, P ) such that either EPU+(·, V x,φ
T (·)) <∞ or EPU−(·, V x,φ

T (·)) <∞. Then

Φ(x,QT ) :=
⋂

P∈QT
Φ(x, P ) and Φ(x, U,QT ) :=

⋂
P∈QT

Φ(x, U, P ).(3)

Under NA(QT ), if φ ∈ Φ(x,QT ) then Pt(V
x,φ
t (·) ≥ 0) = 1 for all P ∈ Qt and 1 ≤ t ≤ T , see

Lemma 4.3. Note that in (Nutz, 2016, Definition of Hx, top of p10), this intertemporal
budget constraint was postulated. We now state our main concern.

Definition 1.9 Let x ≥ 0, the multiple-priors portfolio problem with initial wealth x is

u(x) := sup
φ∈Φ(x,U,QT )

inf
P∈QT

EPU(·, V x,φ
T (·)).(4)

Remark 1.10 We will use the convention +∞ − ∞ = +∞ throughout the paper. This
choice is rather unnatural when studying maximisation problem. The reason for this
is that we will use (Bertsekas and Shreve, 2004, Proposition 7.48 p180) (which relies
on (Bertsekas and Shreve, 2004, Lemma 7.30 (4) p177)) for lower-semianalytic function
where this convention is required.

We now present our main result under conditions which will be detailed in section 3.

Theorem 1.11 Assume that the NA(QT ) condition and Assumptions 1.1, 1.2, 1.4, 3.1
and 3.5 hold true. Let x ≥ 0. Then, there exists some optimal strategy φ∗ ∈ Φ(x, U,QT )
such that

u(x) = inf
P∈QT

EPU(·, V x,φ∗

T (·)) <∞.

In Theorem 3.6, we will propose a fairly general set-up where Assumption 3.5 is satisfied.

2. No-arbitrage condition characterisation. We will often use the following one-
period version of the no-arbitrage condition. For ωt ∈ Ωt fixed we say that NA(Qt+1(ωt))
condition holds true if for all h ∈ Rd

h∆St+1(ωt, ·) ≥ 0 Qt+1(ωt)-q.s.⇒ h∆St+1(ωt, ·) = 0 Qt+1(ωt)-q.s.(5)

We introduce the affine hull (denoted by Aff) of the (robust) conditional support of ∆St+1.

Definition 2.1 Let 0 ≤ t ≤ T − 1 be fixed, the random set Dt+1 : Ωt � Rd is defined as

Dt+1(ωt) := Aff
(⋂{

A ⊂ Rd, closed, Pt+1

(
∆St+1(ωt, .) ∈ A

)
= 1, ∀Pt+1 ∈ Qt+1(ωt)

})
.

A strategy φ ∈ Φ such that φt+1(ωt) ∈ Dt+1(ωt) have nice properties, see (6) and Lemma
3.11. If Dt+1(ωt) = Rd then, intuitively, there are no redundant assets for all model spec-
ifications. Otherwise, for any Bc(Ωt)-measurable strategy φt+1, one may always replace
φt+1(ωt, ·) by its orthogonal projection φ⊥t+1(ωt, ·) on Dt+1(ωt) without changing the port-
folio value (see Remark 3.10 below and (Nutz, 2016, Lemma 2.6)). The following lemma
establishes some important properties of Dt+1.

Lemma 2.2 Let Assumptions 1.1 and 1.2 hold true and 0 ≤ t ≤ T − 1 be fixed. Then
Dt+1 is a non-empty, closed valued random set and Graph(Dt+1) ∈ Bc(Ωt)⊗ B(Rd).
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Proof. The proof uses similar arguments as in (Rockafellar and Wets, 1998, Theorem 14.8
p648, Ex. 14.2 p652) together with (Bouchard and Nutz, 2015, Lemma 4.3) and is thus
omitted. 2

Similarly as in (Rásonyi and Stettner, 2005) and (Jacod and Shiryaev, 1998) (see also
(Blanchard, Carassus and Rásonyi, 2016)), we prove a “quantitative” characterisation of
the NA(QT ) condition.

Proposition 2.3 Assume that the NA(QT ) condition and Assumptions 1.1, 1.2 hold
true. Then for all 0 ≤ t ≤ T − 1, there exists some Qt-full measure set Ωt

NA ∈ Bc(Ωt)
such that for all ωt ∈ Ωt

NA, NA(Qt+1(ωt)) holds true, Dt+1(ωt) is a vector space and there
exists αt(ωt) > 0 such that for all h ∈ Dt+1(ωt) there exists Ph ∈ Qt+1(ωt) satisfying

Ph

(
h

|h|
∆St+1(ωt, .) < −αt(ωt)

)
> αt(ω

t).(6)

We prove in (Blanchard and Carassus, 2017) that there is in fact an equivalence between
the NA(QT ) condition and (6). We also prove that ωt → αt(ω

t) is Bc(Ωt)-measurable.

Proof. Using (Bouchard and Nutz, 2015, Theorem 4.5),Nt := {ωt ∈ Ωt, NA(Qt+1(ωt)) fails} ∈

Bc(Ωt) and P (Nt) = 1 for all P ∈ Qt. So setting Ωt
NA := Ωt\Nt, we get that (5) holds true

for all ωt ∈ Ωt
NA. We fix some ωt ∈ Ωt

NA. If h ∈ Dt+1(ωt), we have that

h∆St+1(ωt, ·) ≥ 0 Qt+1(ωt)-q.s.⇒ h = 0.(7)

Indeed as ωt ∈ Ωt
NA, (5) together with (Nutz, 2016, Lemma 2.6) imply that h ∈

(
Dt+1(ωt)

)⊥
the orthogonal space of Dt+1(ωt) and h = 0. Therefore, for all h ∈ Dt+1(ωt), h 6= 0, there
exists Ph ∈ Qt+1(ωt) such that Ph(h∆St+1(ωt, ·) ≥ 0) < 1. Using a slight modification
of (Blanchard, Carassus and Rásonyi, 2016, Lemma 3.5) we get that 0 ∈ Dt+1(ωt) (i.e
Dt+1(ωt) is a vector space). We introduce for n ≥ 1

An(ωt) :=

{
h ∈ Dt+1(ωt), |h| = 1, Pt+1

(
h∆St+1(ωt, ·) ≤ − 1

n

)
≤ 1

n
, ∀Pt+1 ∈ Qt+1(ωt)

}
and we define n0(ωt) := inf{n ≥ 1, An(ωt) = ∅} with the convention that inf ∅ = +∞.

If Dt+1(ωt) = {0}, then n0(ωt) = 1 < ∞. We assume now that Dt+1(ωt) 6= {0} and
prove by contradiction that n0(ωt) < ∞. Suppose that n0(ωt) = ∞. For all n ≥ 1, we
get some hn(ωt) ∈ Dt+1(ωt) with |hn(ωt)| = 1 and such that for all Pt+1 ∈ Qt+1(ωt)
Pt+1

(
hn(ωt)∆St+1(ωt, ·) ≤ − 1

n

)
≤ 1

n . By passing to a sub-sequence we can assume that
hn(ωt) tends to some h∗(ωt) ∈ Dt+1(ωt) with |h∗(ωt)| = 1. Then {h∗(ωt)∆St+1(ωt, ·) < 0} ⊂
lim infnBn(ωt), where Bn(ωt) := {hn(ωt)∆St+1(ωt, ·) ≤ −1/n}. Fatou’s Lemma implies
that for any Pt+1 ∈ Qt+1(ωt)

Pt+1

(
h∗(ωt)∆St+1(ωt, ·) < 0

)
≤ lim inf

n

∫
Ωt+1

1Bn(ωt)(ωt+1)Pt+1(dωt+1) = 0.

This implies that Pt+1

(
h∗(ωt)∆St+1(ωt, ·) ≥ 0

)
= 1 for all Pt+1 ∈ Qt+1(ωt) and h∗(ωt) = 0

(see (7)), which contradicts |h∗(ωt)| = 1. Thus n0(ωt) <∞. We set for ωt ∈ Ωt
NA, αt(ωt) :=

1
n0(ωt) , αt ∈ (0, 1] and by definition of An0(ωt)(ω

t), (6) holds true. 2

Finally, we introduce an alternative notion of no arbitrage, called strong no arbitrage.
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Definition 2.4 We say that the sNA(QT ) condition holds true if for all P ∈ QT and
φ ∈ Φ, V 0,φ

T ≥ 0 P -a.s. implies that V 0,φ
T = 0 P -a.s.

The sNA(QT ) condition holds true if the “classical” no-arbitrage condition in model P ,
NA(P ), holds true for all P ∈ QT . Note that if QT = {P} then sNA(QT ) = NA(QT ) =
NA(P ). Clearly the sNA(QT ) condition is stronger than the NA(QT ) condition.

As in (Blanchard, Carassus and Rásonyi, 2016, Definition 3.3), we introduce for all
P = P1 ⊗ q2 ⊗ · · · ⊗ qT ∈ QT and for all 1 ≤ t ≤ T − 1,

Dt+1
P (ωt) := Aff

(⋂{
A ⊂ Rd, closed, qt+1

(
∆St+1(ωt, .) ∈ A,ωt

)
= 1
})

.

The case t = 0 is obtained by replacing qt+1(·, ωt) by P1(·).

Proposition 2.5 Assume that the sNA(QT ) condition and Assumptions 1.1 and 1.2 hold
true and let 0 ≤ t ≤ T − 1. Fix some P = P1 ⊗ q2 ⊗ · · · ⊗ qT ∈ QT . Then there exists
Ωt
P ∈ B(Ωt) with Pt(Ω

t
P ) = 1 such that for all ωt ∈ Ωt

P , there exists αPt (ωt) ∈ (0, 1] such
that for all h ∈ Dt+1

P (ωt), qt+1

(
h∆St+1(ωt, ·) ≤ −αPt (ωt)|h|, ωt

)
≥ αPt (ωt). Furthermore

ωt → αPt (ωt) is B(Ωt)-measurable.

Proof. This is a careful adaptation of (Blanchard, Carassus and Rásonyi, 2016, Proposi-
tion 3.7) since Bc(Ωt) is not a product sigma-algebra. 2

3. Utility maximisation problem.

Assumption 3.1 For all r ∈ Q, r > 0 supP∈QT EPU
−(·, r) < +∞.

The proof of the following lemma follows directly from (Rockafellar, 1970, Theorem 10.1
p82).

Lemma 3.2 Assume that Assumption 3.1 holds true. Then ΩT
Dom := {U(·, r) > −∞, ∀r ∈

Q, r > 0} ∈ B(ΩT ) is aQT -full measure set. For all ωT ∈ ΩT
Dom, Ri(DomU(ωT , ·)) = (0,∞)

and U(ωT , ·) is continuous on (0,∞), right-continuous in 0 and thus usc on R.

Remark 3.3 Assumption 3.1, which does not appear in the mono-prior case (see (Blan-
chard, Carassus and Rásonyi, 2016)), allows to work with countable supremum (see (18))
and to have value functions with “good” measurability properties (see also Remark 3.14).
We will prove (see Proposition 3.27) that Assumption 3.1 is preserved through the dy-
namic programming procedure. Assumption 3.1 is superfluous in the case of non-random
utility function. Indeed let m := inf{x ∈ R, U(x) > −∞} ≥ 0 and U(x) = U(x+m). Then
Ri(DomU(·)) = (0,∞), U satisfies Definition 1.6 and if φ∗ is a solution of (4) for U with
an initial wealth x, then it will be a solution of (4) for U starting from x+m. Assumption
3.1 is also useless in the one-period case.

Example 3.4 We propose the following example where Assumption 3.1 holds true. As-
sume that there exists some x0 > 0 such that supP∈QT EPU

−(·, x0) <∞. Assume also that
there exists some functions f1, f2 : (0, 1] → (0,∞) as well as some non-negative Bc(ΩT )-
measurable random variable D verifying supP∈QT EPD(·) <∞ such that for all ωT ∈ ΩT ,
x ≥ 0, 0 < λ ≤ 1, U(ωT , λx) ≥ f1(λ)U(ωT , x)−f2(λ)D(ωT ). This condition is a kind of elas-
ticity assumption around zero. It is satisfied for example by the logarithm function. Fix
some r ∈ Q, r > 0. If r ≥ x0, it is clear from Definition 1.6 that supP∈QT EPU

−(·, r) < ∞.
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If r < x0, we have for all ωT ∈ ΩT , U(ωT , r) ≥ f1( r
x0

)U(ωT , x0) − f2( r
x0

)D(ωT ) and
supP∈QT EPU

−(·, r) <∞ follows immediately.

The following condition (together with Assumption 3.1) implies that if φ ∈ Φ(x,QT ) then
EPU(·, V x,φ

T (·)) is well defined for all P ∈ QT (see Proposition 3.25). It also allows us to
work with auxiliary functions which play the role of properly integrable bounds for the
value functions at each step (see (20), (27), (28) and (29)).

Assumption 3.5 We assume that supP∈QT supφ∈Φ(1,P )EPU
+(·, V 1,φ

T (·)) <∞.

Assumption 3.5 is not easy to verify : we propose an application of Theorem 1.11 in
the following fairly general set-up where Assumption 3.5 is automatically satisfied. We
introduce for all 1 ≤ t ≤ T , r > 0,

Wr
t :=

{
X : Ωt → R ∪ {±∞}, B(Ωt)-measurable, sup

P∈Qt
EP |X|r <∞

}
andWt :=

⋂
r>0

Wr
t .

In (Denis, Hu and Peng, 2011, Proposition 14) it is proved that Wr
t is a Banach space

(up to the usual quotient identifying two random variables that are Qt-q.s. equal) for
the norm ||X|| :=

(
supP∈Qt EP |X|r

) 1
r . Hence, the space Wt is the “natural” extension of

the one introduced in the mono-prior classical case (see (Carassus and Rásonyi, 2016) or
(Blanchard, Carassus and Rásonyi, 2016, (16))).

Theorem 3.6 Assume that the sNA(QT ) condition and Assumptions 1.1, 1.2, 1.4 and
3.1 hold true. Assume furthermore that U+(·, 1), U−(·, 1

4) ∈ WT and that for all 1 ≤ t ≤ T ,
P ∈ Qt, ∆St,

1
αPt
∈ Wt (recall Proposition 2.5 for the definition of αPt ). Let x ≥ 0. Then,

there exists some optimal strategy φ∗ ∈ Φ(x, U,QT ) such that

u(x) = inf
P∈QT

EPU(·, V x,φ∗

T (·)) <∞.

3.1. One period case. Let (Ω,G) be a measurable space, P(Ω) the set of all prob-
ability measures on Ω defined on G and Q a non-empty convex subset of P(Ω). Let
Y (·) := (Y1(·), · · · , Yd(·)) be a G-measurable Rd-valued random variable (which could rep-
resent the change of value of the price process).

Assumption 3.7 There exists some constant 0 < b < ∞ such that Yi(·) ≥ −b for all
i = 1, · · · , d.

Finally, as in Definition 2.1, D ⊂ Rd is the smallest affine subspace of Rd containing the
support of the distribution of Y (·) under P for all P ∈ Q.

Assumption 3.8 The set D contains 0 (D is a non-empty vector subspace of Rd).

The pendant of the NA(QT ) condition in the one-period model is given by

Assumption 3.9 There exists some constant 0 < α ≤ 1 such that for all h ∈ D there
exists Ph ∈ Q satisfying Ph(hY (·) ≤ −α|h|) ≥ α.

Remark 3.10 Let h ∈ Rd and h′ ∈ Rd be the orthogonal projection of h on D. Then h−h′ ⊥
D hence

{Y (·) ∈ D} ⊂ {(h− h′)Y (·) = 0} = {hY (·) = h′Y (·)}.
By definition of D we have P (Y (·) ∈ D) = 1 for all P ∈ Q and therefore hY = h′Y Q-q.s.
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For x ≥ 0 and a ≥ 0 we define

Hax :=
{
h ∈ Rd, x+ hY ≥ a Q-q.s.

}
and Dx := Hx ∩D, where Hx := H0

x.(8)

Lemma 3.11 Assume that Assumption 3.9 holds true. Then for all x ≥ 0, Dx ⊂ B(0, xα)
where B(0, xα) = {h ∈ Rd, |h| ≤ x

α} and Dx is a convex and compact subspace of Rd .

Proof. For x ≥ 0, the convexity and the closedness of Dx are clear. Let h ∈ Dx be fixed.
Assume that |h| > x

α , then from Assumption 3.9, there exists Ph ∈ Q such that Ph(x +
hY (·) < 0) ≥ Ph(hY (·) ≤ −α|h|) ≥ α > 0, a contradiction. The compactness of Dx follows
immediately. 2

Assumption 3.12 We consider a function V : Ω × R → R ∪ {±∞} such that for every
x ∈ R, V (·, x) : Ω→ R ∪ {±∞} is G-measurable, for every ω ∈ Ω, V (ω, ·) : R→ R ∪ {±∞}
is non-decreasing, concave and usc, and V (·, x) = −∞, for all x < 0.

The reason for not excluding at this stage improper concave function is related to the
multi-period case. Indeed if Assumption 3.9 is not verified, then v (or vQ, Cl(vQ)) might
be equal to +∞. So in the multi-period part, finding a version of the value function that
is proper for all ωt while preserving its measurability is challenging since Ωt

NA (the set
where Assumption 3.9 holds true, see Proposition 2.3) is only universally-measurable.
So here we do not assume that V (ω, ·) is proper but we will prove in Theorem 3.23 that
the associated value function is finite. We also assume that V (ω, ·) is usc for all ω, see
Remark 1.7.

Assumption 3.13 For all r ∈ Q, r > 0, supP∈QEPV
− (·, r) <∞.

Remark 3.14 This assumption is essential to prove in Theorem 3.23 that (14) holds true
as it allows to prove that Qd is dense in Ri ({h ∈ Hx, infP∈QEV (·, x+ hY (·)) > −∞}).
Note that the one-period optimisation problem in (9) could be solved without Assumption
3.13 (see Remark 3.3).

The following lemma is similar to Lemma 3.2 (recall also (see (Blanchard, Carassus and
Rásonyi, 2016, Lemma 7.12)).

Lemma 3.15 Assume that Assumptions 3.12 and 3.13 hold true. Then ΩDom := {V (·, r) >
−∞, ∀r ∈ Q, r > 0} ∈ G and ΩDom is Q-full measure set on which Ri(DomV (ω, ·)) =
(0,∞) and thus V (ω, ·) is continuous on (0,∞). Moreover V (ω, ·) is right-continuous in 0
for all ω ∈ Ω.

Our main concern in the one period case is the following optimisation problem

v(x) :=

{
suph∈Hx infP∈QEPV (·, x+ hY (·)) , if x ≥ 0

−∞, otherwise.
(9)

We use the convention∞−∞ =∞ (recall Remark 1.10), but we will see in Lemma 3.21
that under appropriate assumptions, EPV (·, x+hY (·)) is well-defined. Note also that for
x ≥ 0 (see Remark 3.10)

v(x) = sup
h∈Dx

inf
P∈Q

EPV (·, x+ hY (·)).(10)
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We present now some integrability assumptions on V + which allow to assert that there
exists some optimal solution for (9).

Assumption 3.16 For every P ∈ Q, h ∈ H1, EPV +(·, 1 + hY (·)) <∞.

Remark 3.17 If Assumption 3.16 is not true, (Nutz, 2016, Example 2.3) shows that one
can find a counterexample where v(x) < ∞ but the supremum is not attained in (9). So
one cannot use the “natural” extension of the mono-prior approach, which should be that
there exists some P ∈ Q such that EPV +(·, 1+hY (·)) <∞ for all h ∈ H1 (see (Blanchard,
Carassus and Rásonyi, 2016, Assumption 5.9)).

We define now

vQ(x) :=

{
suph∈Hx∩Qd infP∈QEPV (·, x+ hY (·)) , if x ≥ 0

−∞, otherwise.

Finally, we introduce the closure of vQ denoted by Cl(vQ) which is the smallest usc
function w : R → R ∪ {±∞} such that w ≥ vQ. We will show in Theorem 3.23 that
v(x) = vQ(x) = Cl(vQ)(x), which allows in the multiperiod case (see (18)) to work with a
countable supremum (for measurability issues) and an usc value function (see Remark
1.7). But first we provide two lemmata which are stated under Assumption 3.12 only.
They will be used in the multi-period part to prove that the value function is usc, concave
(see (24) and (25)) and dominated (see (28)) for all ωt. This avoid difficult measurability
issues when proving (26) and (27) coming from full-measure sets which are not Borel and
on which Assumptions 3.8, 3.9, 3.13 and 3.16 hold true. This can be seen for example in
the beginning of the proof of Proposition 3.30 where we need to apply Lemma 3.18 using
only Assumption 3.12.

Lemma 3.18 Assume that Assumption 3.12 holds true. Then v, vQ and Cl(vQ) are con-
cave and non-decreasing on R and Cl(vQ)(x) = limδ→0

δ>0
vQ(x+ δ).

Proof. As V is non-decreasing (see Assumption 3.12), v and vQ are clearly non-decreasing.
The proof of the concavity of v or vQ relies on a midpoint concavity argument and on Os-
trowski Theorem, see (Donoghue, 1969, p12). It is very similar to (Rásonyi and Stettner,
2006, Proposition 2) or (Nutz, 2016, Lemma 3.5) and thus omitted. Using (Rockafellar
and Wets, 1998, Proposition 2.32 p57), we obtain that Cl(vQ) is concave on R. Then,
using for example (Rockafellar and Wets, 1998, 1(7) p14), we get that for all x ∈ R,
Cl(vQ)(x) = limδ→0 sup|y−x|<δ v

Q(y) = limδ→0
δ>0

vQ(x+ δ) and the proof is completed. 2

Let x ≥ 0 and P ∈ Q be fixed. We introduce Hx(P ) :=
{
h ∈ Rd, x+ hY ≥ 0 P -a.s.

}
. Note

that Hx =
⋂
P∈QHx(P ) (see (8)).

Lemma 3.19 Assume that Assumption 3.12 holds true. Let I : Ω × R → [0,∞] be a
function such that for all x ∈ R and h ∈ Rd, I(·, x + hY (·)) is G-measurable, I(ω, ·) is
non-decreasing and non-negative for all ω ∈ Ω and V ≤ I. Set

i(x) := 1[0,∞)(x) sup
h∈Rd

sup
P∈Q

1Hx(P )(h)EP I(·, x+ hY (·)).

Then i is non-decreasing, non-negative on R and Cl(vQ)(x) ≤ i(x+ 1) for all x ∈ R.
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Proof. Since I(·, x+hY (·)) is G-measurable for all x ∈ R and I ≥ 0, the integral in the def-
inition of i is well-defined (potentially equals to +∞). It is clear that i is non-decreasing
and non-negative on R. As V ≤ I and Hx ⊂ Hx(P ) if P ∈ Q, it is clear that vQ(x) ≤ i(x)
for x ≥ 0. And since vQ(x) = −∞ < i(x) = 0 for x < 0, vQ ≤ i on R (note that v ≤ i on R for
the same reasons). Applying Lemma 3.18, Cl(vQ)(x) ≤ vQ(x+1) ≤ i(x+1) for all x ∈ R. 2

Proposition 3.20 Assume that Assumptions 3.12 and 3.13 hold true. Then there exists
some non negative G-measurable random variable C such that supP∈QEP (C) < ∞ and
for all ω ∈ ΩDom (see Lemma 3.15), λ ≥ 1, x ∈ R we have

V (ω, λx) ≤ 2λ

(
V

(
ω, x+

1

2

)
+ C(ω)

)
.(11)

Proof. We use similar arguments as (Rásonyi and Stettner, 2006, Lemma 2). It is clear
that (11) is true if x < 0. We fix ω ∈ ΩDom, x ≥ 1

2 and λ ≥ 1. Then Ri(DomV (ω, ·)) =
(0,∞) (recall Lemma 3.15). We assume first that there exists some x0 ∈ DomV (ω, ·)
such that V (ω, x0) < ∞. Since V (ω, ·) is usc and concave, using similar arguments as in
(Rockafellar, 1970, Corollary 7.2.1 p53), we get that V (ω, ·) < ∞ on R. Using the fact
that V (ω, ·) is concave and non-decreasing we get that (recall that x ≥ 1

2 )

V (ω, λx) ≤ V (ω, x) +
V (ω, x)− V

(
ω, 1

4

)
x− 1

4

(λ− 1)x ≤ V (ω, x) + 2 (λ− 1)

(
V (ω, x) + V −

(
ω,

1

4

))
≤ V (ω, x) + 2

(
λ− 1

2

)(
V (ω, x) + V −

(
ω,

1

4

))
+ V −

(
ω,

1

4

)
≤ 2λ

(
V (ω, x) + V −

(
ω,

1

4

))
≤ 2λ

(
V

(
ω, x+

1

2

)
+ V −

(
ω,

1

4

))
.(12)

Fix now 0 ≤ x ≤ 1
2 and λ ≥ 1. Using again that V (ω, ·) is non-decreasing and the first

inequality of (12), V (ω, λx) ≤ V
(
ω, λ

(
x+ 1

2

))
≤ 2λ

(
V
(
ω, x+ 1

2

)
+ V −

(
ω, 1

4

))
, and Propo-

sition 3.20 is proved setting C(ω) = V −
(
ω, 1

4

)
(recall Assumption 3.13) when there exists

some x0 ∈ DomV (ω, ·) such that V (ω, x0) < ∞. Now, if this is not the case, V (ω, x) = ∞
for all x ∈ DomV (ω, ·), C(ω) = V −

(
ω, 1

4

)
= 0 and (11) also holds true for all x ≥ 0. 2

Lemma 3.21 Assume that Assumptions 3.8, 3.9, 3.12, 3.13 and 3.16 hold true. Then
there exists a non negative G-measurable L such that for all P ∈ Q, EP (L) < ∞ and for
all x ≥ 0 and h ∈ Hx, V +(·, x+ hY (·)) ≤ (4x+ 1)L(·) Q-q.s.

Proof. The proof is a slight adaptation of the one of (Blanchard, Carassus and Rásonyi,
2016, Lemma 5.11) (see also (Nutz, 2016, Lemma 2.8)) and is thus omitted. Note that the
function L is the one defined in (Blanchard, Carassus and Rásonyi, 2016, Lemma 5.11). 2

Lemma 3.22 Assume that Assumptions 3.8, 3.9, 3.12, 3.13 and 3.16 hold true. Let H be
the set valued function that assigns to each x ≥ 0 the set Hx. Then Graph(H) = {(x, h) ∈
[0,+∞)×Rd, h ∈ Hx} is a closed and convex subset of R×Rd. Let ψ : R×Rd → R∪{±∞}
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be defined by

ψ(x, h) :=

{
infP∈QEPV (·, x+ hY (·)) if (x, h) ∈ Graph(H),

−∞ otherwise.

Then ψ is usc and concave on R × Rd, ψ < +∞ on Graph(H) and ψ(x, 0) > −∞ for all
x > 0.

Proof. For all P ∈ Q, we define ψP : R× Rd → R ∪ {±∞} by ψP (x, h) = EPV (·, x+ hY (·))
if (x, h) ∈ Graph(H) and −∞ otherwise. As in (Blanchard, Carassus and Rásonyi, 2016,
Lemma 5.12), Graph(H) is a closed convex subset of R × Rd, ψP is usc on R × Rd and
ψP <∞ on Graph(H) for all P ∈ Q. Furthermore the concavity of ψP follows immediately
from the one of V . The function ψ = infP∈Q ψP is then usc and concave. As ψP < ∞ on
Graph(H) for all P ∈ Q, it is clear that ψ < +∞ on Graph(H). Finally let x > 0 be fixed
and r ∈ Q be such that r < x, then we have −∞ < ψ(r, 0) ≤ ψ(x, 0) (see Assumptions
3.12 and 3.13). 2

We are now able to state the main result of this section.

Theorem 3.23 Assume that Assumptions 3.7, 3.8, 3.9, 3.12, 3.13 and 3.16 hold true.
Then for all x ≥ 0, v(x) <∞ and there exists some optimal strategy ĥ ∈ Dx such that

v(x) = inf
P∈Q

EP (V (·, x+ ĥY (·))).(13)

Moreover v is usc, concave, non-decreasing and Dom v = (0,∞). For all x ∈ R

v(x) = vQ(x) = Cl(vQ)(x).(14)

Proof. Let x ≥ 0 be fixed. Fix some P ∈ Q. Using Lemma 3.21 we have that EPV (·, x +
hY (·)) ≤ EPV

+(·, x + hY (·)) ≤ (4x+ 1)EPL(·) < ∞, for all h ∈ Hx. Thus v(x) < ∞. Now
if x > 0, v(x) ≥ ψ(x, 0) > −∞ (see Lemma 3.22). Using Lemma 3.18, v is concave and
non-decreasing. Thus v is continuous on (0,∞).
From Lemma 3.22, h→ ψ(x, h) is usc on Rd and thus on Dx (recall that Dx is closed and
use (Blanchard, Carassus and Rásonyi, 2016, Lemma 7.11)). Since Dx is compact (see
Lemma 3.11), recalling (10) and applying (Aliprantis and Border, 2006, Theorem 2.43
p44), we find that there exists some ĥ ∈ Dx such that (13) holds true.
We prove now that v is usc in 0 (the proof works as well for all x∗ ≥ 0). Let (xn)n≥0 be a
sequence of non-negative numbers converging to 0. Let ĥn ∈ Dxn be the optimal strate-
gies associated to xn in (13). Let (nk)k≥1 be a subsequence such that lim supn v(xn) =

limk v(xnk). Using Lemma 3.11, |ĥnk | ≤ xnk/α ≤ 1/α for k big enough. So we can ex-
tract a subsequence (that we still denote by (nk)k≥1) such that there exists some h∗ with
ĥnk → h∗. As (xnk , ĥnk)k≥1 ∈ Graph(H) which is a closed subset of R × Rd (see Lemma
3.22), h∗ ∈ H0. Thus using that ψ is usc, we get that

lim sup
n

v(xn) = lim
k

inf
P∈Q

EPV (·, xnk + ĥnkY (·)) = lim
k
ψ(xnk , hnk)

≤ ψ(0, h∗) = inf
P∈Q

EPV (·, h∗Y (·)) ≤ v(0).
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For x < 0 all the equalities in (14) are trivial. We prove the first equality in (14) for x ≥ 0
fixed. We start with the case x = 0. If Y = 0 Q-q.s. then the first equality is trivial. If
Y 6= 0 Q-q.s., then it is clear that D0 = {0} (recall Assumption 3.8) and the first equality
in (14) is true again. We assume now that x > 0. From Lemma 3.22, ψx : h → ψ(x, h) is
concave, 0 ∈ Domψx. Thus Ri(Domψx) 6= ∅ (see (Rockafellar, 1970, Theorem 6.2 p45))
and we can apply Lemma 4.2. Assume for a moment that we have proved that Qd is
dense in Ri(Domψx). As ψx is continuous on Ri(Domψx) (recall that ψx is concave), we
obtain that

v(x) = sup
h∈Hx

ψx(h) = sup
h∈Domψx

ψx(h) = sup
h∈Ri(Domψx)

ψx(h)

= sup
h∈Ri(Domψx)∩Qd

ψx(h) ≤ sup
h∈Hx∩Qd

ψx(h) = vQ(x),

since Ri(Domψx) ⊂ Hx and the first equality in (14) is proved. It remains to prove that
Qd is dense in Ri(Domψx). Fix some h ∈ Ri(Hx). From Lemma 4.1, there is some r ∈ Q,
r > 0 such that h ∈ Hrx. Using Lemma 3.22 we obtain that ψx(h) ≥ ψ(r, 0) > −∞ thus
h ∈ Domψx and Ri(Hx) ⊂ Domψx. Recalling that 0 ∈ Domψx and that Ri(Hx) is an open
set in Rd (see Lemma 4.1) we obtain that Aff(Domψx) = Rd. Then Ri(Domψx) is an open
set in Rd and the fact that Qd is dense in Ri(Domψx) follows easily.
The second equality in (14) follows immediately : vQ(x) = v(x) for all x ≥ 0 and v is usc
on [0,∞) thus Cl(vQ)(x) = vQ(x) for all x ≥ 0. 2

3.2. Multiperiod case.
Proposition 3.24 Assume that Assumption 3.1 holds true. Then there exists a non neg-
ative, B(ΩT )-measurable random variable CT such that supP∈QT EP (CT ) <∞ and for all
ωT ∈ ΩT

Dom (recall Lemma 3.2), λ ≥ 1 and x ∈ R, we have

U(ωT , λx) ≤ 2λ

(
U

(
ωT , x+

1

2

)
+ CT (ωT )

)
and U+(ωT , λx) ≤ 2λ

(
U+

(
ωT , x+

1

2

)
+ CT (ωT )

)
.

Proof. This is just Proposition 3.20 for V = U and G = B(ΩT ) (recall Lemma 3.2), setting
CT (·) = U−

(
·, 1

4

)
. The second inequality follows immediately since CT is non-negative. 2

Proposition 3.25 Let Assumptions 3.1 and 3.5 hold true and fix some x ≥ 0. Then

Mx := sup
P∈QT

sup
φ∈φ(x,P )

EPU
+(·, V x,φ

T (·)) <∞.

Moreover, Φ(x, U, P ) = Φ(x, P ) for all P ∈ QT and thus Φ(x, U,QT ) = Φ(x,QT ).

Proof. Fix some P ∈ QT . From Assumption 3.5 we know that Φ(1, P ) = Φ(1, U, P ) and
M1 <∞. Let x ≥ 0 and φ ∈ Φ(x, P ) be fixed. If x ≤ 1 then V x,φ

T ≤ V 1,φ
T , so from Definition

1.6 we get that Mx ≤ M1 < ∞ and Φ(x, P ) = Φ(x, U, P ). If x ≥ 1, from Proposition 3.24
we get that for all ωT ∈ ΩT

Dom

U+(ωT , V x,φT (ωT )) = U+

(
ωT , 2x

(
1

2
+

T∑
t=1

φt(ω
t−1)

2x
∆St(ω

t)

))
≤ 4x

(
U+(ωT , V

1, φ2x
T (ωT )) + CT (ωT )

)
.
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As φ
2x ∈ Φ(1

2 , P ) ⊂ Φ(1, P ) = Φ(1, U, P ), we get that Mx ≤ 4x
(
M1 + supP∈QT EPCT

)
<∞

(see Proposition 3.24). Thus Φ(x, P ) = Φ(x, U, P ) and the last assertion follows from (3). 2

We introduce now the dynamic programming procedure. First we set for all t ∈ {0, . . . , T − 1},
ωt ∈ Ωt, P ∈ P(Ωt+1) and x ≥ 0

Ht+1
x (ωt, P ) :=

{
h ∈ Rd, x+ h∆St+1(ωt, ·) ≥ 0 P -a.s.

}
,(15)

Ht+1
x (ωt) :=

{
h ∈ Rd, x+ h∆St+1(ωt, ·) ≥ 0 Qt+1(ωt)-q.s.

}
,(16)

Dt+1
x (ωt) := Ht+1

x (ωt) ∩Dt+1(ωt),(17)

where Dt+1 was introduced in Definition 2.1. For all t ∈ {0, . . . , T − 1}, ωt ∈ Ωt, P ∈
P(Ωt+1) and x < 0, we set Ht+1

x (ωt, P ) = Ht+1
x (ωt) = ∅. We introduce now the value

functions Ut from Ωt×R→ R∪{±∞} for all t ∈ {0, . . . , T}. To do that we define the closure
of a random function F : Ωt×R→ R∪{±∞}. Fix ωt ∈ Ωt, then x→ Fωt(x) := F (ωt, x) is a
real-valued function and its closure is denoted by Cl (Fωt). Now Cl(F ) : Ωt×R→ R∪{±∞}
is defined by Cl(F )(ωt, x) := Cl (Fωt) (x). For 0 ≤ t ≤ T , we set for all x ∈ R and ωt ∈ Ωt

UT (ωT , x) := U(ωT , x)1ΩTDom×[0,∞)∪ΩT×(−∞,0)(ω
T , x)

Ut(ωt, x) :=

{
suph∈Ht+1

x (ωt)∩Qd infP∈Qt+1(ωt)

∫
Ωt+1

Ut+1(ωt, ωt+1, x+ h∆St+1(ωt, ωt+1))P (dωt+1),

if x ≥ 0 and −∞, if x < 0

(18)

Ut(ω
t, x) := Cl(Ut)(ωt, x).

(19)

Since UT is usc (recall Lemma 3.2), it is clear that UT = UT . As already mentioned for
t = 0 we drop the dependency in ω0 and note U0(x) = U0(ω0, x). The convention∞−∞ =
∞ is used in the integral in (18) (recall Remark 1.10), where the intersection with Qd is
taken since measurability issues are better handled in this way, see the discussion before
(Nutz, 2016, Lemma 3.6). We introduce the function It : Ωt × R → [0,∞] which allow us
to remove the boundedness assumption of Nutz (2016) and will be used for integrability
issues. We set IT := U+

T , then for all 0 ≤ t ≤ T − 1 , x ∈ R and ωt ∈ Ωt

It(ω
t, x) := 1[0,∞)(x) sup

h∈Rd
sup

P∈Qt+1(ωt)

1Ht+1
x (ωt,P )(h)

∫
Ωt+1

It+1(ωt, ωt+1, x+ 1 + h∆St+1(ωt, ωt+1))P (dωt+1).

(20)

Lemma 3.26 Assume that Assumptions 1.1 and 1.2 hold true. Let 0 ≤ t ≤ T −1 be fixed,
G be a fixed non-negative, real-valued, Bc(Ωt)-measurable random variable and consider
the following random sets Ht+1 : (ωt, x) � Ht+1

x (ωt) and Dt+1
G : ωt � Dt+1

G(ωt)(ω
t). They

are closed valued, Graph(Ht+1) ∈ CA(Ωt × R × Rd) and Graph(Dt+1
G ) ∈ Bc(Ωt) ⊗ B(Rd).

Moreover (ωt, P, h, x)→ 1Ht+1
x (ωt,P )(h) is B(Ωt)⊗ B(P(Ωt+1))⊗ B(Rd)⊗ B(R)-measurable.

Proof. It is clear that Ht+1 and Dt+1
G are closed valued. Lemma 4.7 will be in force. First

it allows to prove the last assertion since
{

(ωt, P, h, x), P (x+ h∆St+1(ωt, ·) ≥ 0) = 1
}
∈

B(Ωt)⊗ B(P(Ωt+1))⊗ B(Rd)⊗ B(R). Then it shows that

Graph(Ht+1) =

{
(ωt, x, h), inf

P∈Qt+1(ωt)
P
(
x+ h∆St+1(ωt, ·) ≥ 0

)
= 1

}
∈ CA(Ωt × R× Rd).
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Fix some x ∈ R. For any integer k ≥ 1, r ∈ Q, r > 0 we introduce the following Rd-valued
random variable and random set ∆Sk,t+1(·) := ∆St+1(·)1{|∆St+1(·)|≤k}(·) and Hr,t+1

k,x (ωt) :={
h ∈ Rd, x+ ∆Sk,t+1(ωt, ·) ≥ r Qt+1(ωt)-q.s.

}
for all ωt ∈ Ωt. In the sequel, we will write

Ht+1
k,x (ωt) instead of H0,t+1

k,x (ωt). We first prove that Graph
(
Ht+1
x

)
∈ Bc(Ωt)⊗ B(Rd) (recall

(16)). Since Ht+1
x (·) =

⋂
k∈N, k≥1H

t+1
k,x (·), it is enough to prove that Graph

(
Ri(Ht+1

k,x )
)
∈

Bc(Ωt)⊗B(Rd) for any fixed k ≥ 1. Indeed from Lemma 4.1, for all ωt ∈ Ωt, Ri(Ht+1
k,x )(ωt) =

Ht+1
k,x (ωt) and Lemma 4.8 i) applies. Since ∆Sk,t+1 is bounded, we also get for all ωt ∈ Ωt

that Ri(Ht+1
k,x )(ωt) =

⋃
r∈Q, r>0H

r,t+1
k,x (ωt). Using Lemmata 4.7 and 4.6 we obtain that for

all r ∈ Q, r > 0, Graph
(
Hr,t+1
k,x

)
and also Graph

(
Ri(Ht+1

k,x )
)

are coanalytic sets. Lemma

4.8 ii) implies that Graph
(

Ri(Ht+1
k,x )

)
∈ Bc(Ωt)⊗ B(Rd).

Now let Ht+1
G : ωt � Ht+1

G(ωt)(ω
t) then it is easy to see that

Graph(Ht+1
G ) =

⋂
n∈N, n≥1

⋃
q∈Q, q≥0

{
(ωt, h) ∈ Ωt × R× Rd, q ≤ G(ωt) ≤ q +

1

n
, h ∈ Graph

(
Ht+1
q+ 1

n

)}
∈ Bc(Ωt)⊗ B(Rd),

sinceG is Bc(Ωt)-measurable. So using Lemma 2.2 and that Graph(Dt+1
G ) = Graph(Ht+1

G )∩
Graph(Dt+1), we obtain that Graph(Dt+1

G ) ∈ Bc(Ωt) ⊗ B(Rd), which concludes the proof.
2

We introduce for all r ∈ Q, r > 0

JrT (ωT ) := U−T (ωT , r), for ωT ∈ ΩT ,(21)

Jrt (ωt) := sup
P∈Qt+1(ωt)

∫
Ωt+1

Jrt+1(ωt, ωt+1)P (dωt+1) for t ∈ {0, . . . , T − 1}, ωt ∈ Ωt.(22)

As usual we will write Jr0 = J t0(ω0).

Proposition 3.27 Assume that Assumptions 1.1 and 3.1 hold true. Then for any t ∈
{0, . . . , T}, r ∈ Q, r > 0, the function ωt → Jrt (ωt) is well defined, non-negative, usa
and verifies supP∈Qt EPJ

r
t < ∞. Furthermore, there exists some Qt-full measure set

Ω̂t ∈ CA(Ωt) on which Jrt (·) <∞.

Proof. We proceed by induction on t. Fix some r ∈ Q, r > 0. For t = T , JrT (·) = U−T (·, r) is
non negative and usa (see Definition 1.6, Lemma 3.2 and (1)). We have that
supP∈QT EP (JrT ) < ∞ by Assumption 3.1. Using Lemma 3.2, Ω̂T := ΩT

Dom ∈ B(ΩT ) ⊂
CA(ΩT ) (see (1)), P

(
Ω̂T
)

= 1 for all P ∈ QT and JrT < ∞ on Ω̂T . Assume now that
for some t ≤ T − 1, Jrt+1 is non negative, usa and that supP∈Qt+1 EP (Jrt+1) < ∞. As
Jrt+1(·) ≥ 0, it is clear that Jrt (·) ≥ 0. We apply (Bertsekas and Shreve, 2004, Proposi-
tion 7.48 p180) 2 with X = Ωt × P(Ωt+1), Y = Ωt+1, f(ωt, P, ωt+1) = Jrt+1(ωt, ωt+1) and
q(dωt+1|ωt, P ) = P (dωt+1). Indeed f is usa (see (Bertsekas and Shreve, 2004, Proposi-
tion 7.38 p165)) , (ωt, P ) → P (dωt+1) ∈ P(Ωt+1) is a B(Ωt) ⊗ B(P(Ωt+1))-measurable

2As we will often use similar arguments in the rest of the paper, we provide some details at this stage.
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stochastic kernel. So we get that jrt : (ωt, P ) →
∫

Ωt+1
Jrt+1(ωt, ωt+1)P (dωt+1) is usa. As

Assumption 1.1 holds true (ProjΩt (Graph(Qt+1)) = Ωt), (Bertsekas and Shreve, 2004,
Proposition 7.47 p179) applies and ωt → supP∈Qt+1(ωt) j

r
t (ωt, P ) = Jrt (ωt) is usa. We set

Ωt
r := {ωt ∈ Ωt, Jrt (ωt) < ∞}, then Ωt

r =
⋃
n≥1{ωt ∈ Ωt, Jrt (ωt) ≤ n} ∈ CA(Ωt). Fix some

ε > 0. From (Bertsekas and Shreve, 2004, Proposition 7.50 p184) (recall Assumption
1.1), there exists some analytically-measurable pε : ωt → P(Ωt+1) (pε ∈ SKt+1), such that
pε(·, ωt) ∈ Qt+1(ωt) for all ωt ∈ Ωt and

jrt (ωt, pε) =

∫
Ωt+1

Jrt+1(ωt, ωt+1)pε(dωt+1, ω
t) ≥

{
Jrt (ωt)− ε if ωt ∈ Ωt

r
1
ε otherwise.

(23)

Assume that Ωt
r is not a Qt-full measure set. Then there exists some P ∗ ∈ Qt such that

P ∗(Ωt
r) < 1. Set P ∗ε := P ∗ ⊗ pε then P ∗ε ∈ Qt+1 (see (2)) and we have that

sup
P∈Qt+1

EPJ
r
t+1 ≥ EP ∗ε J

r
t+1 ≥

1

ε
(1− P ∗(Ωt

r))− εP ∗(Ωt
r).

As the previous inequality holds true for all ε > 0, letting ε go to 0 we obtain that
supP∈Qt+1 EP (Jrt+1) = +∞ : a contradiction and Ωt

r is a Qt-full measure set. Now, for all
P ∈ Qt, we set Pε = P ⊗ pε ∈ Qt+1 (see (2)). Then, using (23) we get that

EPJ
r
t − ε = EP 1Ωtr

J tt − ε ≤ EPεJrt+1 ≤ sup
P∈Qt+1

EP (Jrt+1).

Again, as this is true for all ε > 0 and all P ∈ Qt we obtain that supP∈Qt EP (Jrt ) ≤
supP∈Qt+1 EP (Jrt+1) < ∞. Finally we set Ω̂t =

⋂
r∈Q, r>0 Ωt

r. It is clear that Ω̂t ∈ CA(Ωt) is
a Qt-full measure set and that Jrt (·) <∞ on Ω̂t for all r ∈ Q, r > 0. 2

Let 1 ≤ t ≤ T be fixed. We introduce the following notation: for any Bc(Ωt−1)-measurable
random variable G and any P ∈ Qt, φt(G,P ) is the set of all Bc(Ωt−1)-measurable ran-
dom variable ξ (one-step strategy), such that G(·) + ξ∆St(·) ≥ 0 P -a.s. Propositions 3.28
to 3.30 solve the dynamic programming procedure and hold true under the following set
of conditions.

∀ωt ∈ Ωt, Ut
(
ωt, ·

)
: R→ R ∪ {±∞} is non-decreasing, usc and concave on R,(24)

∀ωt ∈ Ωt, It
(
ωt, ·

)
: R→ R ∪ {+∞} is non-decreasing and non-negative on R,(25)

Ut ∈ LSA(Ωt × R),(26)
It ∈ USA(Ωt × R),(27)
Ut
(
ωt, x

)
≤ It(ωt, x+ 1) for all (ωt, x) ∈ Ωt × R,(28)

sup
P∈Qt

sup
ξ∈φt(G,P )

∫
Ωt
It(ω

t, G(ωt−1) + ξ(ωt−1)∆St(ω
t))P (dωt) <∞,(29)

for any G := x+
∑t−1

s=1 φs∆Ss, where x ≥ 0, (φs)1≤s≤t−1 is universally-predictible,

Ut(ω
t, r) ≥ −Jrt (ωt) for all ωt ∈ Ωt, all r ∈ Q, r > 0.(30)

Proposition 3.28 Let 0 ≤ t ≤ T − 1 be fixed. Assume that the NA(QT ) condition, that
Assumptions 1.1, 1.2, 1.4 hold true and that (24), (25), (26), (27), (28), (29) and (30)
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hold true at stage t + 1. Then there exists some Qt-full measure set Ω̃t ∈ Bc(Ωt) such
that for all ωt ∈ Ω̃t the function (ωt+1, x) → Ut+1(ωt, ωt+1, x) satisfies the assumptions of
Theorem 3.23 (or Lemmata 3.21 and 3.22) with Ω = Ωt+1, G = Bc(Ωt+1), Q = Qt+1(ωt),
Y (·) = ∆St+1(ωt, ·), V (·, ·) = Ut+1(ωt, ·, ·) where V is defined on Ωt+1 × R (shortly called
context t+ 1 from now).
Note that under the assumptions of Proposition 3.28, for all ωt ∈ Ω̃t and x ≥ 0 we have
that (see (14), (18) and (19))

Ut(ω
t, x) = Ut(ωt, x)

= sup
h∈Ht+1

x (ωt)

inf
P∈Qt+1(ωt)

∫
Ωt+1

Ut+1(ωt, ωt+1, x+ h∆St+1(ωt, ωt+1))P (dωt+1).(31)

Proof. To prove the proposition we will review one by one the assumptions needed to

apply Theorem 3.23 in the context t + 1. First from Assumption 1.4 for ωt ∈ Ωt fixed
we have that Yi(·) = ∆Sit+1(ωt, ·) ≥ −b := −max(1 + s + Sit(ω

t), i ∈ {1, . . . , d}) and
0 < b <∞: Assumption 3.7 holds true. From (24) at t+ 1 for all ωt ∈ Ωt and ωt+1 ∈ Ωt+1,
Ut+1(ωt, ωt+1, ·) is non-decreasing, usc and concave on R. From (26) at t + 1, Ut+1 is
Bc(Ωt+1 × R)-measurable. Fix some x ∈ R and ωt ∈ Ωt, then ωt+1 → Ut+1(ωt, ωt+1, x)
is Bc(Ωt+1)-measurable, see (Bertsekas and Shreve, 2004, Lemma 7.29 p174). Thus As-
sumption 3.12 is satisfied in the context t+ 1.
We now prove the assumptions that are verified for ωt in some well chosen Qt-full mea-
sure set. First from Proposition 2.3, for all ωt ∈ Ωt

NA, Assumptions 3.8 and 3.9 hold true
in the context t+ 1. Fix ωt ∈ Ω̂t and some r ∈ Q, r > 0. Using (30) at t+ 1 and Proposition
3.27, we get that

sup
P∈Qt+1(ωt)

∫
Ωt+1

U−t+1(ωt, ωt+1, r)P (dωt) ≤ sup
P∈Qt+1(ωt)

∫
Ωt+1

Jrt+1(ωt, ωt+1)P (dωt) = Jrt (ωt) <∞,

and Assumption 3.13 in context t+1 is verified for all ωt ∈ Ω̂t. We finish with Assumption
3.16 in context t + 1 whose proof is more involved. We want to show that for ωt in some
Qt-full measure set to be determined, for all h ∈ Ht+1

1 (ωt) and P ∈ Qt+1(ωt) we have that∫
Ωt+1

U+
t+1(ωt, ωt+1, 1 + h∆St+1(ωt, ωt+1))P (dωt+1) <∞.(32)

Let it(ωt, h, P ) =
∫

Ωt+1
It+1(ωt, ωt+1, 2 + h∆St+1(ωt, ωt+1))P (dωt+1) and

It(ωt) :=
{

(h, P ) ∈ Rd ×Qt+1(ωt), P
(
1 + h∆St+1(ωt, ·) ≥ 0

)
= 1, it(ω

t, h, P ) =∞
}

. Fix some
ωt ∈ Ωt, then using (25) and (28) at t + 1 we have that if h ∈ Ht+1

1 (ωt) and P ∈ Qt+1(ωt)
are such that (32) does not hold true then (h, P ) ∈ It(ωt). Thus (32) holds true for all h ∈
Ht+1

1 (ωt) and P ∈ Qt+1(ωt) if ωt ∈ {It = ∅} and if this set is of Qt-full measure, Assump-
tion 3.16 in context t+ 1 is proved. We first prove that Graph(It) ∈ A(Ωt×Rd×P(Ωt+1)).
From (27) at t + 1, Assumption 1.2 and (Bertsekas and Shreve, 2004, Lemma 7.30 (3)
p178), (ωt, h, ωt+1) → It+1(ωt, ωt+1, 2 + h∆St+1(ωt, ωt+1)) is usa. Then using (Bertsekas
and Shreve, 2004, Proposition 7.48 p180) (which can be used with similar arguments as
in the proof of Proposition 3.27), we get that it is usa. It follows that

i−1
t ({∞}) =

⋂
n≥1

{
(ωt, h, P ), it(ω

t, h, P ) > n
}
∈ A(Ωt × Rd ×P(Ωt+1)).
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Now using Assumption 1.1 together with Lemma 4.7 we get that{
(ωt, h, P ), P ∈ Qt+1(ωt), P

(
1 + h∆St+1(ωt, ·) ≥ 0

)
= 1
}
∈ A(Ωt × Rd ×P(Ωt+1))

and the fact that Graph(It) and ProjΩt
(
Graph(It)

)
= {It 6= ∅} are analytic sets (re-

call (Bertsekas and Shreve, 2004, Proposition 7.39 p165)) follows immediately. Applying
the Jankov-von Neumann Projection Theorem (Bertsekas and Shreve, 2004, Proposi-
tion 7.49 p182), we obtain that there exists some analytically-measurable and therefore
Bc(Ωt)-measurable function ωt ∈ {It 6= ∅} → (h∗(ωt), p∗(·, ωt)) ∈ Rd × P(Ωt+1) such that
for all ωt ∈ {It 6= ∅}, (h∗(ωt), p∗(·, ωt)) ∈ It(ωt). We may and will extend h∗ and p∗ on all
Ωt so that h∗ and p∗ remain Bc(Ωt)-measurable.
We prove now by contradiction that {It = ∅} is a Qt-full measure set. Assume that
there exists some P̃ ∈ Qt such that P̃ ({It 6= ∅}) > 0 and set P̃ ∗ = P̃ ⊗ p∗. Since
p∗ ∈ SKt+1 and p∗(·, ωt) ∈ Qt+1(ωt) for all ωt ∈ Ωt, P̃ ∗ ∈ Qt+1 (see (2)). It is also
clear that P̃ ∗ (2 + h∗(·)∆St+1(·) ≥ 0) = 1. Now for all ωt ∈ {It 6= ∅}, we have that
it(ω

t, h∗(ωt), p∗(·, ωt)) =∞ and thus∫
Ωt+1

It+1

(
ωt+1, 2 + h∗(ωt)∆St+1(ωt+1)

)
P̃ ∗(dωt+1) ≥

∫
{It 6=∅}

(+∞)P̃ (dωt) = +∞

a contradiction with (29) at t+ 1.
We can now define Ω̃t := {It = ∅}∩ Ω̂t∩Ωt

NA ⊂ Ω̂t. It is clear, recalling Propositions 2.3
and 3.27, that Ω̃t ∈ Bc(Ωt) is a Qt-full measure set and the proof is complete. 2

The next proposition enables us to initialize the induction procedure that will be carried
on in the proof of the main theorem.

Proposition 3.29 Assume that the NA(QT ) condition, Assumptions 3.1 and 3.5 hold
true. Then (24), (25), (26), (27), (28), (29) and (30) hold true for t = T .

Proof. As UT = U1ΩTDom×[0,∞)∪ΩT×(−∞,0) and IT = U+
T , using Definition 1.6, (25), (28) and

(30) (recall (21)) for t = T are true. For all ωT ∈ ΩT , UT (ωT , ·) is also right-continuous and
usc (see Lemma 3.2), thus (24) also holds true. Moreover UT (·, x) is B(ΩT )-measurable for
all x ∈ R, thus UT is B(ΩT ) ⊗ B(R)-measurable (see (Blanchard, Carassus and Rásonyi,
2016, Lemma 7.16)) and (26) and (27) hold true for t = T . It remains to prove that
(29) is true for t = T . Let G := x +

∑T−1
t=1 φt∆St where x ≥ 0 and (φs)1≤s≤T−1 is

universally-predictable. Fix some P ∈ QT and ξ ∈ φT (G,P ). Let (φξi )1≤i≤T ∈ Φ be
defined by φξT = ξ and φξs = φs for 1 ≤ s ≤ T − 1 then V x,φξ

T = G + ξ∆ST , φξ ∈
Φ(x, P ),

∫
ΩT IT

(
ωT , G(ωT−1) + ξ(ωT−1)∆ST (ωT )

)
P (dωT ) = EPU

+(·, V x,φξ

T (·)) and (29) fol-
lows from Proposition 3.25. 2

The next proposition proves the induction step.

Proposition 3.30 Let 0 ≤ t ≤ T − 1 be fixed. Assume that the NA(QT ) condition holds
true as well as Assumptions 1.1, 1.2, 1.4 and (24), (25), (26), (27), (28), (29) and (30) at
t+ 1. Then (24), (25), (26), (27), (28), (29) and (30) are true for t.
Moreover for all X = x +

∑t
s=1 φs∆Ss, where x ≥ 0, (φs)1≤s≤t is universally-predictable

and {X ≥ 0} is Qt-full measure set, there exists some Qt-full measure set Ωt
X ∈ Bc(Ωt),
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such that Ωt
X ⊂ Ω̃t (see Proposition 3.28 for the definition of Ω̃t) and some Bc(Ωt)-

measurable random variable ĥXt+1 such that for all ωt ∈ Ωt
X , ĥXt+1(ωt) ∈ Dt+1

X(ωt)(ω
t) and

Ut(ω
t, X(ωt)) = inf

P∈Qt+1(ωt)

∫
Ωt+1

Ut+1(ωt, ωt+1, X(ωt) + ĥXt+1(ωt)∆St+1(ωt, ωt+1))P (dωt+1).(33)

Proof. First we prove that (24) is true at t. We fix some ωt ∈ Ωt. From (24) at t + 1,
the function Ut+1(ωt, ωt+1, ·) is usc, concave and non-decreasing on R for all ωt+1 ∈ Ωt+1.
From (18) and (19), Ut+1(ωt, ωt+1, x) = −∞ for all x < 0 and ωt+1 ∈ Ωt+1. Then using
(26) at t + 1 and Lemma 4.6, we find that Ut+1(ωt, ·, x) is Bc(Ωt+1)-measurable for all
x ∈ R. Hence, Assumption 3.12 of Lemma 3.18 holds true in the context t + 1 and we
obtain that x → Ut(ω

t, x) = Cl(Ut)(ωt, x) (see (18) and (19)) is usc, concave and non-
decreasing. As this is true for all ωt ∈ Ωt, (24) at t is proved. Note that we also obtain
that x→ Ut(ωt, x) is non decreasing for all ωt ∈ Ωt. Now we prove (26) at t. Since integrals
might not always be well defined we need to be a bit cautious. We introduce first ut and
ût : Ωt × Rd × [0,∞)×P(Ωt+1)→ R ∪ {±∞}

ut(ω
t, h, x, P ) =

∫
Ωt+1

Ut+1(ωt, ωt+1, x+ h∆St+1(ωt, ωt+1))P (dωt+1)

ût(ω
t, h, x, P ) = 1Ht+1

x (ωt)(h)ut(ω
t, h, x, P ) + (−∞)1Rd\Ht+1

x (ωt)(h).

As Ut+1 is lsa (see (26) at t + 1) and Assumption 1.2 holds true, (Bertsekas and Shreve,
2004, Lemma 7.30 (3) p177) implies that (ωt, ωt+1, h, x)→ Ut+1(ωt, ωt+1, x+h∆St+1(ωt, ωt+1))
is lsa. So (Bertsekas and Shreve, 2004, Proposition 7.48 p180) (recall the convention
∞ − ∞ = ∞, see Remark 1.10) shows that ut is lsa. Fix some c ∈ R and set Ĉ :=
û−1
t ((−∞, c)), C := u−1

t ((−∞, c)), A :=
{

(ωt, h, x), h ∈ Ht+1
x (ωt)

}
× P(Ωt+1) and Ac :={

(ωt, h, x), h /∈ Ht+1
x (ωt)

}
× P(Ωt+1), then Ĉ = (C ∩A) ∪ Ac = C ∪ Ac. As ut is lsa, C is

an analytic set. Lemma 3.26 implies that Ac = {(ωt, h, x), (ωt, x, h) /∈ Graph(Ht+1)} ×
P(Ωt+1), and thus Ĉ, are analytic sets and ût is lsa. Using Assumption 1.1 and (Bert-
sekas and Shreve, 2004, Proposition 7.47 p179), we get that

ũt : (ωt, h, x)→ inf
P∈Qt+1(ωt)

ût(ω
t, h, x, P ) ∈ LSA(Ωt × Rd × R).(34)

Then (Bertsekas and Shreve, 2004, Lemma 7.30 (2) p178) implies that Ũt : (ωt, x) →
suph∈Qd ũt(ω

t, h, x) is lsa and since Ũt = Ut on Ωt× [0,∞), it follows that Ut is lsa. We have
already seen that ωt ∈ Ωt, Ut(ωt, ·) is non-decreasing, thus, for all ωt ∈ Ωt and x ∈ R we
get that (recall (19))

Ut(ω
t, x) = Cl(Ut)(ωt, x) = lim sup

y→x
Ut(ωt, y) = lim

n→∞
Ut
(
ωt, x+

1

n

)
.

As (ωt, x) → Ut(ωt, x + 1
n) is lsa, (Bertsekas and Shreve, 2004, Lemma 7.30 (2) p178)

implies that Ut is also lsa. We prove now that (27) holds true for t. We introduce ı̂t :
Ωt × Rd × [0,∞)×P(Ωt+1)→ R ∪ {+∞} (recall (15))

ı̂t(ω
t, h, x, P ) = 1Ht+1

x (ωt,P )(h)

∫
Ωt+1

It+1(ωt, ωt+1, x+ 1 + h∆St+1(ωt, ωt+1))P (dωt+1).(35)



MULTIPLE-PRIORS OPTIMAL INVESTMENT FOR UNBOUNDED UTILITY 21

Note that, using (25) at t + 1, the integral in (35) is well defined (potentially infinite
valued). Using Assumption 1.2, (27) at t + 1 and (Bertsekas and Shreve, 2004, Lemma
7.30 (3) p177) we find that (ωt+1, h, x, P )→ It+1(ωt, ωt+1, x+ 1 + h∆St+1(ωt, ωt+1)) is usa.
Thus (Bertsekas and Shreve, 2004, Proposition 7.48 p180) applies3 and

(ωt, h, x, P )→
∫

Ωt+1

It+1(ωt, ωt+1, x+1+h∆St+1(ωt, ωt+1))P (dωt+1) ∈ USA(Ωt×Rd×R×P(Ωt+1)).

Lemma 3.26 together with (Bertsekas and Shreve, 2004, Lemma 7.30 (4) p177) imply
that ı̂t is usa. Finally as {(ωt, h, x, P ), P ∈ Qt+1(ωt)} is analytic (see Assumption 1.1),
(Bertsekas and Shreve, 2004, Proposition 7.47 p179, Lemma 7.30 (4) p178) applies and
recalling (20) and (35), we get that
It(ω

t, x) = 1[0,∞)(x) suph∈Rd supP∈Qt+1(ωt) ı̂t(ω
t, h, x, P ) is usa and (27) for t is proved.

For later purpose, we set ıt : Ωt × Rd × [0,∞)×P(Ωt+1)→ R ∪ {±∞}

ıt(ω
t, h, x, P ) := ı̂t(ω

t, h, x, P ) + (−∞)1Rd\Ht+1
x (ωt,P )(h).(36)

Using Lemma 3.26, ıt is usa and It(ω
t, x) := 1[0,∞)(x) suph∈Rd supP∈Qt+1(ωt) ıt(ω

t, h, x, P )

is usa as before. Furthermore as ı̂t ≥ 0 we have that It = It. To prove (25) and (28) at
t, we apply Lemma 3.19 to V (ωt+1, x) = Ut+1(ωt, ωt+1, x), I(ωt+1, x) = It+1(ωt, ωt+1, x+ 1)
(recall (20)) and G = Bc(Ωt+1) for any fixed ωt ∈ Ωt. Indeed we have already proved (see
the proof of (24) at t) that Assumption 3.12 holds true for V . From (25) and (28) at t+ 1,
I(ωt+1, ·) is non-decreasing and non-negative on R for all ωt+1 and V ≤ I. Finally using
Assumption 1.2 and (27) at t+1 together with (Bertsekas and Shreve, 2004, Lemma 7.30
p177), we get that ωt+1 → It+1(ωt, ωt+1, x+ 1 + h∆St+1(ωt, ωt+1)) is Bc(Ωt+1)-measurable.
We prove now (30) at t. Fix some r ∈ Q, r > 0. We have from the definition of Ut (see (18),
and (19)), (30) at t+ 1 and the definition of Jrt (see (22)) that for all ωt ∈ Ωt

Ut
(
ωt, r

)
≥ Ut

(
ωt, r

)
≥ inf

P∈Qt+1(ωt)

∫
Ωt+1

Ut+1

(
ωt, ωt+1, r

)
P (dωt+1)

≥ inf
P∈Qt+1(ωt)

∫
Ωt+1

−Jrt+1(ωt, ωt+1)P (dωt+1) = −Jrt (ωt).

We prove now (29) at t. Choose x ≥ 0, (φs)1≤s≤t−1 universally-predictable random vari-
ables and set G := x +

∑t−1
s=1 φs∆Ss. Furthermore, fix some P ∈ Qt, ξ ∈ φt(G,P ), ε > 0

and set G(·) := G(·)+ ξ(·)∆St(·). We apply (Bertsekas and Shreve, 2004, Proposition 7.50
p184) to ıt (see (36)) in order to obtain Sε : (ωt, x)→ (hε(ωt, x), pε(·, ωt, x)) ∈ Rd ×P(Ωt+1)
that is analytically-measurable such that pε(·, ωt, x) ∈ Qt+1(ωt) for all ωt ∈ Ωt, x ≥ 0 and
(recall that It = It)

ıt(ω
t, hε(ωt, x), x, pε(·, ωt, x)) ≥

{
1
ε , if It(ωt, x) =∞
It(ω

t, x)− ε, otherwise.
(37)

Let hεG(ωt) := hε(ωt, 1{G≥0}(ω
t)G(ωt)) and pεG(·, ωt) := pε(·, ωt, 1{G≥0}(ω

t)G(ωt)). Using
(Bertsekas and Shreve, 2004, Proposition 7.44 p172), both hεG and pεG are Bc(Ωt)-measurable.

3As already mentioned, (Bertsekas and Shreve, 2004, Proposition 7.48 p180) relies on (Bertsekas and
Shreve, 2004, Lemma 7.30 (4) p177) applied for upper-semianalytic functions where the convention −∞ +
∞ = −∞ needs to be used. But here, as we deal with a non-negative function the convention is useless.
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For some ωt ∈ Ωt, y ≥ 0 fixed, if hε(ωt, y) /∈ Ht+1
y (ωt, pε(·, ωt, y)), using (36), we have

ıt(ω
t, hε(ωt, y), y, pε(·, ωt, y)) = −∞ < min

(
1
ε , It(ω

t, y)− ε
)

(indeed from (25) at t, It ≥ 0).
This contradicts (37) and therefore hε(ωt, y) ∈ Ht+1

y (ωt, pε(·, ωt, y)) and also hεG(ωt) ∈
Ht+1
G(ωt)(ω

t, pεG(·, ωt)) for ωt ∈ {G ≥ 0}. We set P εG := P ⊗ pεG ∈ Qt+1 (see (2)) and get that

P εG(G(·) + hεG(·)∆St+1(·) ≥ 0) =

∫
{G≥0}

∫
Ωt+1

pεG(G(ωt) + hεG(ωt)∆St+1(ωt, ωt+1) ≥ 0, ωt)P (dωt) = 1,

since {G ≥ 0} is a Qt-full measure set, hεG ∈ φt+1(G,P εG) follows. Using (35) and (36),
∫

Ωt
ıt(ω

t, hεG(ωt), pεG(ωt), G(ωt))P (dωt) =

∫
Ωt+1

It+1(ωt+1, G(ωt) + 1 + hεG(ωt)∆St+1(ωt+1))P εG(dωt+1) ≤ A,

whereA := supP∈Qt+1 supξ∈φt+1(G+1,P )

∫
Ωt+1 It+1

(
ωt+1, G(ωt) + 1 + ξ(ωt)∆St+1(ωt+1)

)
P (dωt+1)

and A <∞ using (29) at t+ 1 (φt+1(G,P ) ⊂ φt+1(G+ 1, P )). Combining with (37) we find
that

1

ε

∫
{It(·,G(·))=∞}

P (dωt) +

∫
{It(·,G(·))<∞}

(
It(ω

t, G(ωt))− ε
)
P (dωt)

≤
∫

Ωt
ıt(ω

t, hεG(ωt), G(ωt), pεG(·, ωt))P (dωt) ≤ A <∞.(38)

As this is true for all ε > 0, P ({It(·, G(·)) =∞}) = 0 follows. Using again (38), we get
that

∫
Ωt It(ω

t, G(ωt−1) + ξ(ωt−1)∆St(ω
t))P (dωt) ≤ A and as this is true for all P ∈ Qt and

ξ ∈ φt(G,P ), (29) is true for t.
We are left with the proof of (33) for Ut. Let X = x +

∑t−1
s=1 φs∆Ss+1, with x ≥ 0 and

(φs)1≤s≤t−1 some universally-predictable random variables, be fixed such that X ≥ 0 Qt-
q.s. Let Ωt

X := Ω̃t ∩ {X(·) ≥ 0}. Then Ωt
X ∈ Bc(Ωt) is a Qt-full measure set. We introduce

the following random set ψX : Ωt � Rd

ψX(ωt) :=

{
h ∈ Dt+1

X(ωt)
(ωt), Ut(ω

t, X(ωt)) = inf
P∈Qt+1(ωt)

∫
Ωt+1

Ut+1

(
ωt, ωt+1, X(ωt) + h∆St+1(ωt, ωt+1)

)
P (dωt+1)

}
,

for ωt ∈ Ωt
X and ψX(ωt) = ∅ otherwise (Dt+1

X(ωt)(ω
t) is defined in (17)). To prove (33), it is

enough to find some Bc(Ωt)-measurable selector for ψX and to show that Ωt
X ⊂ {ψX 6= ∅}.

The last point follows from Proposition 3.28 and Theorem 3.23 (see (13), (14), (18), (19)
and recall that Ωt

X ⊂ Ω̃t). Let uX : Ωt × Rd → R ∪ {± ∞} be defined by (recall (34))
uX(ωt, h) = 1ΩtX

(ωt)ũt(ω
t, h,X(ωt)).Using (Rockafellar and Wets, 1998, Proposition 14.39

p666, Corollary 14.34 p664) we first prove that −uX is a Bc(Ωt)-normal integrand (see
(Rockafellar and Wets, 1998, Definition 14.27 p661)) and that uX is Bc(Ωt) ⊗ B(Rd)-
measurable. Indeed we show that for all h ∈ Rd, uX(·, h) is Bc(Ωt)-measurable and for
all ωt ∈ Ωt, uX(ωt, ·) is usc and concave. The first point follows from the fact that ũt
is lsa, X is Bc(Ωt)-measurable, Ωt

X ∈ Bc(Ωt) and (Bertsekas and Shreve, 2004, Propo-
sition 7.44 p172). Now we fix ωt ∈ Ωt. If ωt /∈ Ωt

X , it is clear that uX(ωt, ·) is usc and
concave. If ωt ∈ Ωt

X ⊂ Ω̃t, we know from Proposition 3.28 that Lemma 3.22 applies
and that φωt(·, ·) is usc and concave where φωt(x, h) = infP∈Qt+1(ωt)

∫
Ωt+1

Ut+1(ωt, ωt+1, x+

h∆St+1(ωt, ωt+1))P (dωt+1) if x ≥ 0 and h ∈ Ht+1
x (ωt) and −∞ otherwise. In particular for
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ωt ∈ Ωt
X and x = X(ωt) we get that φωt(X(ωt), ·) = uX(ωt, ·) is usc and concave. Now,

from the definitions of ψX and uX for ωt ∈ Ωt
X , we have that

ψX(ωt) =
{
h ∈ Dt+1

X(ωt)(ω
t), Ut(ω

t, X(ωt)) = uX(ωt, h)
}
.

Lemma 3.26 implies that Graph
(
Dt+1
X

)
∈ Bc(Ωt)⊗B(Rd). Since Ut is lsa, Ut is Bc(Ωt×R)-

measurable and (Bertsekas and Shreve, 2004, Lemma 7.29 p174) implies that Ut(·, x) is
Bc(Ωt)-measurable for x ∈ R fixed. From (24) Ut(ωt, ·) is usc and nondecreasing for any
fixed ωt ∈ Ωt, so (Blanchard, Carassus and Rásonyi, 2016, Lemmata 7.12, 7.16) implies
that Ut is Bc(Ωt)⊗B(R)-measurable. AsX is Bc(Ωt)-measurable, we obtain that Ut(·, X(·))
is Bc(Ωt)-measurable (see (Bertsekas and Shreve, 2004, Proposition 7.44 p172)). It fol-
lows that Graph(ψX) ∈ Bc(Ωt) ⊗ B(Rd), we can apply the Projection Theorem (see (Cas-
taing and Valadier, 1977, Theorem 3.23 p75)) and we get that {ψX 6= ∅} ∈ Bc(Ωt). Us-
ing Auman Theorem (see (Sainte-Beuve, 1974, Corollary 1)) there exists some Bc(Ωt)-
measurable ĥXt+1 : {ψX 6= ∅} → Rd such that for all ωt ∈ {ψX 6= ∅}, ĥXt+1(ωt) ∈ ψX(ωt).
This concludes the proof of (33) extending ĥXt+1 on all Ωt (ĥXt+1 = 0 on Ωt \ {ψX 6= ∅}).

2

Proof. of Theorem 1.11. We proceed in three steps. First, we handle some integrability
issues that are essential to the proof and where not required in (Nutz, 2016). In partic-
ular we show that it is possible to apply Fubini Theorem. Then, we build by induction
a candidate for the optimal strategy and finally we establish its optimality. The proof of
the two last steps is very similar to the one of (Nutz, 2016).
Integrability Issues
First from Proposition 3.25 and (4), u(x) ≤ Mx < ∞. We fix some x ≥ 0 and φ ∈
Φ(x,QT ) = Φ(x, U,QT ) (see again Proposition 3.25). From Proposition 3.29, we can apply
by backward induction Proposition 3.30 for t = T − 1, T − 2, . . . , 0. In particular, we get
that (28) and (29) hold true for all 0 ≤ t ≤ T and choosing G = V x+1,φ

t−1 and ξ = φt (use
Lemma 4.3 since φ ∈ Φ(x,QT )), we get for all P ∈ Qt,∫

Ωt
U+
t

(
ωt, V x,φ

t (ωt)
)
P (dωt) <∞.(39)

So for all P = Pt−1⊗p ∈ Qt (see (2)) (Bertsekas and Shreve, 2004, Proposition 7.45 p175)
implies that∫

Ωt
Ut

(
ωt, V x,φt (ωt)

)
P (dωt) =

∫
Ωt−1

∫
Ωt

Ut

(
ωt−1, ωt, V

x,φ
t (ωt−1, ωt)

)
p(dωt, ω

t−1)Pt−1(dωt−1).(40)

Construction of φ∗
We fix some x ≥ 0 and build by induction our candidate φ∗ for the optimal strategy which
will verify that

Ut
(
ωt, V x,φ

∗

t (ωt)
)

= inf
P∈Qt+1(ωt)

∫
Ωt+1

Ut+1

(
ωt, ωt+1, V

x,φ∗

t (ωt) + φ∗t+1(ωt)∆St+1(ωt, ωt+1)
)
P (dωt+1).(41)

We start at t = 0 and use (33) in Proposition 3.30 with X = x ≥ 0. We set φ∗1 := ĥx1 ∈ D1
x

and we obtain that P1(x + φ∗1∆S1(.) ≥ 0) = 1 for all P ∈ Q1 and that (41) holds true
for t = 0. Assume that until some t ≥ 1 we have found some universally-predictable
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random variables (φ∗s)1≤s≤t and some sets
(
Ω
s)

1≤s≤t−1
such that Ω

s ∈ Bc(Ωs) is a Qs-full

measure set, φ∗s+1(ωs) ∈ Ds+1(ωs) for all ωs ∈ Ω
s, {V x,φ∗

s+1 (·) ≥ 0} is a Qs+1-full measure
set and (41) holds true at s for all ωs ∈ Ω

s where s = 0, . . . , t − 1. We apply Proposition
3.30 with X = V x,φ∗

t and there exists Qt-full measure set Ω
t

:= Ωt

V x,φ
∗

t

∈ Bc(Ωt) and some

Bc(Ωt)-measurable random variable φ∗t+1 := ĥ
V x,φ

∗
t
t+1 such that φ∗t+1(ωt) ∈ Dt+1

V x,φ
∗

t (ωt)
(ωt)

for all ωt ∈ Ω
t and (41) holds true at t. Let P t+1 = P ⊗ p ∈ Qt+1 where P ∈ Qt and

p ∈ SKt+1 with p(·, ωt) ∈ Qt+1(ωt) for all ωt ∈ Ω
t (see (2)). From (Bertsekas and Shreve,

2004, Proposition 7.45 p175) we get

Pt+1(V x,φ∗

t+1 ≥ 0) =

∫
Ωt
p(V x,φ∗

t (ωt) + φ∗t+1(ωt)∆St+1(ωt, ·) ≥ 0, ωt)P (dωt) = 1,

where we have used that φ∗t+1(ωt) ∈ Ht+1

V x,φ
∗

t (ωt)
(ωt) for all ωt ∈ Ω

t and P (Ω
t
) = 1 and we

can continue the recursion. Thus, we have found that φ∗ ∈ Φ(x,QT ) and from Proposition
3.25, φ∗ ∈ Φ(x, U,QT ).
Optimality of φ∗

We fix some P = PT−1 ⊗ pT ∈ QT . Using (40), PT−1(Ω
T−1

) = 1 and (41) for t = T − 1 we
get that

EPU(·, V x,φ
∗

T (·)) =

∫
Ω
T−1

∫
ΩT

UT

(
ωT−1, ωT , V

x,φ∗

T−1 (ωT−1) + φ∗T (ωT−1)∆ST (ωT−1, ωT )
)
pT (dωT , ω

T−1)PT−1(dωT−1)

≥
∫

ΩT−1
UT−1

(
ωT−1, V x,φ

∗

T−1 (ωT−1)
)
PT−1(dωT−1).

We iterate the process by backward induction and obtain that (recall that Ω0 := {ω0})
U0(x) ≤ EPU(·, V x,φ∗

T (·)). As the preceding equality holds true for all P ∈ QT and as
φ∗ ∈ Φ(x, U,QT ), we get that U0(x) ≤ u(x) (see (4)). So φ∗ will be optimal if U0(x) ≥ u(x).
We fix some φ ∈ Φ(x, U,QT ) and show that

inf
P∈Qt+1

EPUt+1(·, V x,φ
t+1(·)) ≤ inf

Q∈Qt
EQUt(·, V x,φ

t (·)), t ∈ {0, . . . , T − 1}.(42)

Then infP∈QT EPUT (·, V x,φ
T (·)) ≤ infQ∈Q1 EQU1(·, V x,φ

1 (·)) ≤ U0(x) is obtained recursively
(recall (31)). As this is true for all φ ∈ Φ(x, U,QT ), u(x) ≤ U0(x) and the proof is complete.
We fix some t ∈ {0, . . . , T −1} and prove (42). As Ut+1 is lsa (see (26)) and Assumption 1.2
holds true, (Bertsekas and Shreve, 2004, Lemma 7.30 (3) p177, Proposition 7.48 p180)
imply that f is lsa where

f(ωt, y, h, P ) :=

∫
Ωt+1

Ut+1(ωt, ωt+1, y + h∆St+1(ωt, ωt+1))P (dωt+1).

Let f∗(ωt, y, h) = infP∈Qt+1(ωt) f(ωt, y, h, P ) and fix some ε > 0. Then since {(ωt, y, h, P ), P ∈
Qt+1(ωt)} is an analytic set (recall Assumption 1.1), (Bertsekas and Shreve, 2004, Propo-
sition 7.50 p184) implies that there exists some universally-measurable p̃εt+1 : (ωt, y, h)→
P(Ωt+1) such that p̃εt+1(·, ωt, y, h) ∈ Qt+1(ωt) for all (ωt, y, h) ∈ Ωt × R× Rd and

f(ωt, y, h, p̃εt+1(·, ωt, y, h)) ≤

{
f∗(ωt, y, h) + ε, if f∗(ωt, y, h) > −∞
−1
ε , otherwise.

(43)
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Let pεt+1(·, ωt) = p̃εt+1

(
·, ωt, V x,φ

t (ωt), φt+1(ωt)
)

: (Bertsekas and Shreve, 2004, Proposi-

tion 7.44 p172) implies that pεt+1 is Bc(Ωt)-measurable. For all ωt ∈ Ω̃t ∩ { V x,φ
t (·) ≥

0}, f∗(ωt, V x,φ
t (ωt), φt+1(ωt)) ≤ suph∈Ht+1

V
x,φ
t (ωt)

(ωt) f
∗(ωt, V x,φ

t (ωt), h) = Ut(ω
t, V x,φ

t (ωt)) (use

Lemma 4.3 since φ ∈ Φ(x,QT ) and recall (31)). Choosing y = V x,φ
t (ωt), h = φt+1(ωt) in

(43), we find that for all ωt ∈ Ω̃t ∩ {V x,φ
t (·) ≥ 0}∫

Ωt+1

Ut+1(ωt, ωt+1, V
x,φ
t+1(ωt, ωt+1))pεt+1(dωt+1, ω

t)− ε ≤ max

(
Ut(ω

t, V x,φ
t (ωt)),−1

ε
− ε
)
.

Fix some Q ∈ Qt and set P ε := Q ⊗ pεt+1 ∈ Qt+1 (see (2)). Using (40) and since Ω̃t ∩
{V x,φ

t (·) ≥ 0} is a Qt full measure set (recall again that φ ∈ Φ(x,QT ) and Lemma 4.3) ,
we get

inf
P∈Qt+1

EPUt+1(·, V x,φ
t+1(·))− ε ≤ EP εUt+1(·, V x,φ

t+1(·))− ε ≤ EQ max

(
Ut(·, V x,φ

t (·)),−1

ε
− ε
)
.

Since for all 0 < ε < 1, max
(
Ut(·, V x,φ

t (·)),−1
ε − ε

)
≤ −1+U+

t (·, V x,φ
t (·)), recalling (39), let-

ting ε go to zero and applying Fatou’s Lemma, we obtain that infP∈Qt+1 EPUt+1(·, V x,φ
t+1(·)) ≤

EQUt(·, V x,φ
t (·)). As this holds true for all Q ∈ Qt, (42) is proved. 2

Proof. of Theorem 3.6. Since the sNA(QT ) condition holds true, the NA(QT ) condition is
also verified and to apply Theorem 1.11 it remains to prove that Assumption 3.5 is sat-
isfied. We fix some P ∈ QT x ≥ 0 and some φ ∈ φ(x, P ). Since the NA(P ) condition holds
true, using similar arguments as in the proof of (Blanchard, Carassus and Rásonyi, 2016,
Theorem 4.17) we find that for Pt-almost all ωt ∈ Ωt, |V x,φ

t (ωt)| ≤
∏t
s=1

(
x+ |∆Ss(ωs)|

αPs−1(ωs−1)

)
.

Note that V x,φ is universally-adapted and that supP∈Qt EP |V
x,φ
t (·)|r < ∞ for all r > 0

(recall that ∆Ss,
1
αPs
∈ Ws for all s ≥ 1). The monotonicity of U+ and Proposition 3.24

(with λ = 2
∏T
s=1

(
1 + |∆Ss(ωs)|

αPs−1(ωs−1)

)
≥ 1) implies that for Pt-almost all ωt ∈ Ωt

U+(ωT , V 1,φ
T (ωT )) ≤ 4

(
T∏
s=1

(
1 +

|∆Ss(ωs)|
αPs−1(ωs−1)

))(
U+(ωT , 1) + CT (ωT )

)
.(44)

We setN := 4 supP∈QT EP

((∏T
s=1

(
1 + |∆Ss(ωs)|

αPs−1(ωs−1)

)) (
U+(ωT , 1) + CT (ωT )

))
. Since U+(·, 1),

U−(·, 1
4) ∈WT and ∆Ss,

1
αPs
∈ Ws for all s ≥ 1, we obtain thatN <∞ (recall the definition

of CT in Proposition 3.24). Using (44) we find that EPU+(·, V 1,φ
T (·)) ≤ N <∞ and as this

is true for all P ∈ QT and φ ∈ Φ(1, P ), Assumption 3.5 holds true. 2

4. Appendix.

4.1. Auxiliary results. The two first Lemmata were used in the proof of Theorem
3.23 and Lemma 3.26. The second one is a well-know result on concave functions which
proof is given since we did not find some reference.
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Lemma 4.1 Assume that Assumption 3.7 holds true. For all x > 0, we have Aff(Hx) =
Rd, Ri(Hx) is an open set in Rd and Qd is dense in Ri(Hx) 4 . Moreover Ri(Hx) ⊂⋃
r∈Q, r>0Hrx ⊂ Hx and therefore

⋃
r∈Q, r>0Hrx = Hx,where the closure is taken in Rd. If

furthermore, we assume that there exists some 0 ≤ c < ∞ such that Yi(ω) ≤ c for all
i = 1, · · · , d, ω ∈ Ω (recalling Assumption 3.7, |Y | is bounded) then Ri(Hx) =

⋃
r∈Q, r>0Hrx.

Proof. Fix some x > 0. Let ε > 0 be such that x− ε > 0 and R := {h ∈ Rd, 0 ≤ hi ≤ x−ε
db }.

Using Assumption 3.7, if h ∈ R for all ω ∈ Ω, x + hY (ω) ≥ x − b
∑d

i=1 hi ≥ ε and
h ∈ Hεx ⊂ Hx. Thus R ⊂ Hx and Aff(Hx) = Rd follows (recall that 0 ∈ Hx). Therefore
Ri(Hx) is the interior ofHx in Rd and thus an open set in Rd and the fact that Qd is dense
in Ri(Hx) follows immediately. Fix now some h ∈ Ri(Hx). As 0 ∈ Hx, there exists some
ε > 0 such that (1 + ε)h ∈ Hx, see (Rockafellar, 1970, Theorem 6.4 p47) which implies
that x + hY (·) ≥ ε

1+εx > 0 Q-q.s., hence h ∈ Hrx for r ∈ Q such that 0 < r ≤ ε
1+εx and

Ri(Hx) ⊂
⋃
r∈Q, r>0Hrx ⊂ Hx is proved and also

⋃
r∈Q, r>0Hrx = Hx since Ri(Hx) = Hx.

Assume now that |Y | is bounded by some constant K > 0. Let h ∈
⋃
r∈Q, r>0Hrx and

r ∈ Q, r > 0 be such that h ∈ Hrx, we set ε := r
2K . Then for any g ∈ B(0, ε), we have for

Q-almost all ω ∈ Ω that x+ (h+g)Y (ω) ≥ r+gY (ω) ≥ r−|g||Y (ω)| ≥ r
2 , hence h+g ∈ Hx,

B(h, ε) ⊂ Hx and h belongs to the interior of Hx (and also to Ri(Hx)). 2

Lemma 4.2 Let f : Rd → R ∪ {±∞} be a concave function such that Ri(Dom f) 6= ∅.
Then suph∈Dom f f(h) = suph∈Ri(Dom f) f(h).

Proof. Let C := suph∈Ri(Dom f) f(h) and h1 ∈ Dom f\Ri(Dom f) be fixed. We have to prove
that f(h1) ≤ C. If C = ∞ there is nothing to show. So assume that C < +∞. Let
h0 ∈ Ri(Dom f) and introduce φ : t ∈ R → f(th1 + (1 − t)h0) if t ∈ [0, 1] and −∞ oth-
erwise. From (Rockafellar, 1970, Theorem 6.1 p45), th1 +(1− t)h0 ∈ Ri(Dom f) if t ∈ [0, 1)
and thus [0, 1) ⊂ {t ∈ [0, 1], φ(t) ≤ C}. Clearly, φ is concave on R. Since Dom f is convex,
Domφ = [0, 1]. So, using (Föllmer and Schied, 2002, Proposition A.4 p400), φ is lsc on
[0, 1] and {t ∈ [0, 1], φ(t) ≤ C} is a closed set in R. It follows that 1 ∈ {t ∈ [0, 1], φ(t) ≤ C},
i.e f(h1) ≤ C and the proof is complete. 2

The following lemma was used several times.

Lemma 4.3 Assume that the NA(QT ) condition holds true. Let φ ∈ Φ such that V x,φ
T ≥ 0

QT -q.s. (i.e. φ ∈ Φ(x,QT )), then V x,φ
t ≥ 0 Qt-q.s. for all t ∈ {0, . . . , T}.

Proof. Let φ ∈ Φ be such that V x,φ
T ≥ 0 QT -q.s. and assume that V x,φ

t ≥ 0 Qt-q.s. for all
t does not hold true. Then n := sup{t, ∃Pt ∈ Qt, Pt(V x,φ

t < 0) > 0} < T and there exists
some P̂n ∈ Qn such that P̂n(A) > 0 where A = {V x,φ

n < 0} ∈ Bc(Ωn) and for all s ≥ n + 1,
P ∈ Qs, P (V x,φ

s ≥ 0) = 1. Let Ψs(ω
s−1) = 0 if 1 ≤ s ≤ n and Ψs(ω

s−1) = 1A(ωn)φs(ω
s−1) if

s ≥ n+ 1. Then Ψ ∈ Φ and V 0,Ψ
T =

∑T
k=n+1 Ψs∆Ss = 1A

(
V x,φ
T − V x,φ

n

)
. Thus V 0,Ψ

T ≥ 0 QT -

q.s. and V 0,Ψ
T > 0 on A. Let P̂T := P̂n⊗pn+1 · · ·⊗pT ∈ QT where for s = n+1, ·, T , ps(·, ·) is a

4For a Polish space X, we say that a set D ⊂ X is dense in B ⊂ X if for all ε > 0, b ∈ B, there exists
d ∈ D ∩B such that d(b, d) < ε where d is a metric on X consistent with its topology.
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given universally-measurable selector of Qs (see (2)). It is clear that P̂T (A) = P̂n(A) > 0,
hence we get an arbitrage opportunity. 2

4.2. Measure theoretical issues. In this section, we first provide some counterex-
amples to (Bouchard and Nutz, 2015, Lemma 4.12) and propose an alternative to this
lemma. Our counterexample 4.4 is based on a result from (Gelbaum and Olmsted, 1964)
originally due (Sierpinski, 1920). An other counterexample can be found (Rockafellar
and Wets, 1998, Proposition 14.28 p661).

Example 4.4 We denote by L(R2) the Lebesgue sigma-algebra on R2. Recall that B(R2) ⊂
L(R2). Let A /∈ L(R2) be such that every line has at most two common points with A (see
(Gelbaum and Olmsted, 1964, Example 22 p142) for the proof of the existence of A) and
define F : R2 → R by F (x, y) := 1A(x, y). We fix some x ∈ R and let A1

x := {y ∈ R, (x, y) ∈
A}. By assumption, A1

x contains at most two points: thus it is a closed subset of R. It
follows that {y ∈ R, F (x, y) ≥ c} is a closed subset of R for all c ∈ R and F (x, ·) is usc.
Similarly the function F (·, y) is usc and thus B(R)-measurable for all y ∈ R fixed. But
since A /∈ L(R2), F is not L(R2)-measurable and therefore not B(R)⊗ B(R)-measurable.

We propose now the following correction to (Bouchard and Nutz, 2015, Lemma 4.12).
Note that Lemma 4.5 can be applied in the proof of (Nutz, 2016, Lemma 3.7) since the
considered function is concave (as well as in the proof of (Bouchard and Nutz, 2015,
Lemma 4.10) where the considered function is convex).

Lemma 4.5 Let (A,A) be a measurable space and let θ : Rd × A → R ∪ {±∞} be a
function such that ω → θ(y, ω) is A-measurable for all y ∈ Rd and y → θ(y, ω) is lsc and
convex for all ω ∈ A. Then θ is B(Rd)⊗A-measurable.

Proof. It is a direct application of (Rockafellar and Wets, 1998, Proposition 14.39 p666,
Corollary 14.34 p664). 2

We finish with three lemmata related to measurability issues used throughout the
paper.

Lemma 4.6 Let X,Y be two Polish spaces and F : X ×Y → R∪{±∞} be usa (resp. lsa).
Then, for x ∈ X fixed, the function Fx : y ∈ Y → F (x, y) ∈ R ∪ {±∞} is usa (resp. lsa).

Proof. Assume that F is usa and fix some c ∈ R, then C := F−1((c,∞)) ∈ A(X × Y ).
Fix now some x ∈ X. Since Ix : y → (x, y) is B(Y )-measurable, applying (Bertsekas and
Shreve, 2004, Proposition 7.40 p165), we get that {y ∈ Y, Fx(y) > c} = {y ∈ Y, (x, y) ∈
C} = I−1

x (C) ∈ A(Y ). 2

Lemma 4.7 Assume that Assumptions 1.1 and 1.2 hold true. Let 0 ≤ t ≤ T−1,B ∈ B(R).
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Then

FB : (ωt, P, h, x)→ P
(
x+ h∆St+1(ωt, ·) ∈ B

)
is B(Ωt)⊗ B(P(Ωt+1))⊗ B(Rd)⊗ B(R)-measurable

HB : (ωt, h, x)→ inf
P∈Qt+1(ωt)

P (x+ h∆St+1(ωt, ·) ∈ B) ∈ LSA(Ωt × Rd × R)

KB : (ωt, h)→ sup
P∈Qt+1(ωt)

P (x+ h∆St+1(ωt, ·) ∈ B) ∈ USA(Ωt × Rd).

Proof. The first assertion follows from (Bertsekas and Shreve, 2004, Proposition 7.29
p144) applied to f(ωt+1, ω

t, P, h, x) = 1x+h∆St+1(ωt,·)∈B(ωt+1) (recall Assumption 1.2) and
q(dωt+1|ωt, P, h, x) = P (dωt+1). The second one is obtained applying (Bertsekas and Shreve,
2004, Proposition 7.47 p179) to FB (recall Assumption 1.1). The last assertion is using
supP∈Qt+1(ωt) P (x + h∆St+1(ωt, ·) ∈ B) = 1 − infP∈Qt+1(ωt) P (x + h∆St+1(ωt, ·) ∈ Bc) and
Lemma 4.6. 2

Lemma 4.8 Let X be a Polish space and Λ be an Rd-valued random variable.

i) Assume that Graph(Λ) ∈ Bc(X)⊗ B(Rd). Then Graph(Λ) ∈ Bc(X)⊗ B(Rd) where Λ
is defined by Λ(x) = Λ(x) for all x ∈ X (where the closure is taken in Rd).

ii) Assume now that Λ is open valued and Graph(Λ) ∈ CA(X × Rd). Then Graph(Λ) ∈
Bc(X)⊗ B(Rd).

Proof. From (Rockafellar and Wets, 1998, Theorem 14.8 p648), Λ is Bc(X)-measurable
(see (Rockafellar and Wets, 1998, Definition 14.1 p643)) and using (Aliprantis and Bor-
der, 2006, Theorem 18.6 p596) we get that Graph(Λ) ∈ Bc(X)⊗B(Rd). Now we prove ii).
Fix some open setO ⊂ Rd and let Λc(x) = Rd\Λ(x). As Graph(Λc) =

(
X × Rd

)
\Graph(Λ) ∈

A(X × Rd), from (Bertsekas and Shreve, 2004, Proposition 7.39 p165) we get that

{x ∈ X, Λc(x) ∩O 6= ∅} = ProjX ((X ×O) ∩Graph(Λc)) ∈ A(X) ⊂ Bc(X).

Thus Λc is Bc(X)-measurable and as Λc is closed valued, (Rockafellar and Wets, 1998,
Theorem 14.8 p648) applies and Graph(Λc) belongs to Bc(X) ⊗ B(Rd) and Graph(Λ) as
well. 2

Acknowledgments. L. Carassus thanks LPMA (UMR 7599) for support.

References.
ALIPRANTIS, C. D. and BORDER, K. C. (2006). Infinite Dimensional Analysis : A Hitchhiker’s Guide.

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 3rd edition.

AVELLANEDA, M., LEVY, A. and PARAS, A. (1996). Pricing and hedging derivatives securities in markets
with uncertain volatilities. Applied Mathematical Finance 2 73-88.

BARTL, D. (2016). Exponential utility maximization under model uncertainty for unbounded endowments.
ArXiv.

BERTSEKAS, D. P. and SHREVE, S. (2004). Stochastic Optimal Control: The Discrete-Time Case. Athena
Scientific.
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