
HAL Id: hal-01883763
https://hal.science/hal-01883763v1

Submitted on 28 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical upper bounds on growth of automata groups
Jérémie Brieussel, Thibault Godin, Bijan Mohammadi

To cite this version:
Jérémie Brieussel, Thibault Godin, Bijan Mohammadi. Numerical upper bounds on growth of
automata groups. International Journal of Algebra and Computation, 2021, 32 (01), pp.159-191.
�10.1142/S0218196722500072�. �hal-01883763�

https://hal.science/hal-01883763v1
https://hal.archives-ouvertes.fr


Numerical upper bounds on growth of automata groups

Jérémie Brieussel1, Thibault Godin1,2,3, and Bijan Mohammadi1

1Université de Montpellier – Institut Montpelliérain Alexander Grothendieck
2Université de Lorraine – Institut Elie Cartan de Lorraine

3University of Turku – Department of Mathematics

Abstract

The growth of a finitely generated group is an important geometric invariant which has
been studied for decades. It can be either polynomial, for a well-understood class of groups, or
exponential, for most groups studied by geometers, or intermediate, that is between polynomial
and exponential. Despite recent spectacular progresses, the class of groups with intermediate
growth remains largely mysterious. Many examples of such groups are constructed using Mealy
automata. The aim of this paper is to give an algorithmic procedure to study the growth of such
automata groups, and more precisely to provide numerical upper bounds on their exponents.

Our functions retrieve known optimal bounds on the famous first Grigorchuk group. They
also improve known upper bounds on other automata groups and permitted us to discover
several new examples of automata groups of intermediate growth. All the algorithms described
are implemented in GAP, a language dedicated to computational group theory.

1 Introduction

The aim of this paper is to develop tools to analyse the growth of automata groups, and more
precisely to provide numerical upper bounds when the growth is intermediate.

Groups are fundamental objects in mathematics, which can be seen as an abstract encoding
of the notion of symmetry. They are used in various domains of discrete mathematics and com-
binatorics, e.g. graph isomorphism [33]), cryptography [12], physics [51], chemistry [18] and even
biology [20]. The ideal goal of group theory is to describe and classify all the possible behaviours
that a group can exhibit. A landmark result in this direction is the classification of finite simple
groups [17]. For infinite groups, various interesting phenomena can appear. For instance a group
can be infinite and yet have all its elements of finite order. Such groups are called Burnside groups
in homage to Burnside who asked whether they exist in 1902. First examples were given in 1964 by
Golod and Shafarevich [25, 26]. Subsequent examples were given in 1968 by Novikov and Adyan [46]
and in 1972 by Aleshin [2], the later using automata groups.

An geometric way to classify groups is through their growth: let G be a finitely generated group
and S a generating set of G. The Cayley graph of (G,S) is the graph ΓG,S whose vertices are the
elements of G and such that there is an oriented edge from g to h if there exists s ∈ S such that
g.s = h. Such an edge is naturally labelled by s. Examples of such graphs are depicted in Fig. 1.
The growth function of a group G with respect to S is the function γG,S(ℓ) that counts the number
of elements in a ball of given radius ℓ in ΓG,S. This notion was introduced by Svarc [52] and
Milnor [38] in relation with Riemannian geometry. They observed that the growth of a group is
essentially independent of the generating set (see Lemma 3.3). Obviously the growth is bounded

1



if and only if the group is finite. Moreover abelian (i.e. commutative) groups have polynomial
growth. For instance, integer lattices Z

d have polynomial growth of degree d. This is still the case
for the (slightly bigger) class of nilpotent groups [57], and a celebrated result of Gromov asserts
that there are essentially no other such groups, since polynomial growth implies nilpotency up to
taking a finite index subgroup [32].

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2)

(−1, 0)(−2, 0)

(0,−1)

(0,−2)

(1, 1)

(1,−1)

(−1, 1)

(−1,−1)

a aa−1a−1

aa−1

aa−1

b

b−1

b

b−1

bb−1

b−1b

γ(1)

γ(2)

Figure 1: On the left: the Cayley graph of Z
2 with generators a±1 = (0,±1) and b±1 = (±1, 0)

together with the balls of radii 1 et 2. On the right: the ball of radius 5 in the (unlabelled) Cayley
graph of the free group on 2 generators.

On the other hand, free groups, whose Cayley graphs are essentially infinite regular trees, and
non-elementary hyperbolic groups have exponential growth. Among several classes of groups, the
growth is either polynomial or exponential. This dichotomy holds for instance among solvable
groups by Milnor and Wolf [37, 57], or among linear groups, i.e. groups of invertible matrices,
by the Tits alternative [53]. We refer the reader to more complete introduction to this topic
in [19, 31, 36, 30].

Motivated by such observations, Milnor asked in 1968 if this picture was complete or if there
exists groups having growth functions between polynomial and exponential, henceforth called groups
of intermediate growth [39]. This question was positively answered by Grigorchuk in the eighties:

Theorem 1.1 ([27, 28],[3, 22]). The group generated by the Mealy automaton of Fig. 2 has inter-
mediate growth. Its growth function is essentially equivalent to exp(ℓ0.7674...).

The computation of the growth function of this group is challenging. Grigorchuk proved that
it is between e

√
n and eℓ

0.993

in [28]. Bartholdi gave an accurate upper bound [3]. Only recently
Erschler and Zheng provided a matching (up to logarithmic factor) lower bound [22].

The group generated by the Mealy automaton depicted in Fig. 2 is now called the first Grig-
orchuk group. Mealy automata are a special class of transducers (automata with input and output)
whose functions induced by states on words generate groups. These have been ubiquitous in
growth related questions since the eighties: most constructions of groups of intermediate growth
use them [28, 29, 23, 11, 4, 14, 8, 16] they are a basic tool to construct groups of given intermediate
growth [9, 15] and they were also used by Wilson [56] to exhibit groups having non-uniform expo-
nential growth (answering a question of Gromov). Only recently Nekrashevych gave a construction
of groups of intermediate growth not based on the use of Mealy automata [45].

2



This new construction is very different since Nekrashevych’s groups are simple (i.e. have no
non-trivial normal subgroups) whereas automata groups are residually finite (in particular, they
have infinitely many normal subgroups of finite index).

In spite of this list of examples, few things are actually known about the growth of general
automata groups: some restricted classes of automata generate only groups with bounded or expo-
nential growth [34, 47]. It contrasts with the usual amenability of automata groups to algorithmic
questions [6, 1, 35, 10, 24, 5, 43].

Definition 1.2. A number α ∈ [0, 1] is called an upper bound exponent of the group G if for any
generating set S there exists c > 0 such that γG,S(ℓ) ≤ exp(cℓα) for all ℓ.

It is an open question whether there exists groups with growth exponent smaller than 0.7674....
Grigorchuk’s gap conjecture asserts that there are no groups with growth below exp(

√
ℓ). So far,

only the groups in [28, 29, 11, 16] (and related constructions) are known to have an exponent
< 1. It is likely that the groups in [23, 4, 14] have intermediate growth but exponent 1 as their
growth rate could be essentially exp( ℓ

log(ℓ)). Such a behavior is known to hold for the group G(01)∞

also introduced by Grigorchuk [28] and studied by Erschler [21]. Nekrashevych conjectures that
some groups in [45] have growth exponent below 0.7674..., but it is not yet proved that they have
exponent < 1. Regarding automata groups, the only accurate computations of exponents concern
Grigorchuk groups acting on the binary tree. They appeared in a recent work of Erschler and
Zheng [22].

The present work aims at giving explicit numerical upper bounds on the growth of automata
groups and to yield new examples of such groups.

Proposed approach: All known examples of automata groups of intermediate growth belong
to the class of (strongly) contracting automata. More precisely, the contraction method described
in Section 5 and originaly due to Grigorchuk [27, 28, 29] is the only strategy known so far to obtain
non-trivial upper bounds for growth exponents.

An element g of an automaton group 〈A〉 acting on Σ∗ can be recursively described as g =〈
g|x1

, . . . , g|xd

〉
π(g) where π(g) is a permutation of Σ and the g|x are elements of the group called

the sections of g. We say that g is (strongly) contracting if the length of g is strictly smaller than
the sum of the length of its section, and we set η(g) to be their ratio.

The contraction method ensures that if we find a suitable finite set ∆ containing only contract-
ing elements, the group has subexponential growth bounded above by exp(ℓα), where α depends
explicitly on the ratio η and the size of the alphabet. Suitable sets have to be essentially geodesic
generating, in short eggs. This property is defined in Section 4.

In practice, given a target η, we try to find such an egg ∆. For this, we focus on an over-
approximation of 〈A〉 in the sense that we perform our computations in a group G̃ with the same
generators as 〈A〉 but only a finite number of relations, so that 〈A〉 is a quotient of G̃, and explore
the Cayley graph of the latter group. The basic idea is to implement a graph traversal from the
identity, stopping the exploration of a branch when we have found an element which is contracting
enough or which has already been visited. Using a tight over-approximation allows to accelerate
computations but in balance we have to keep a good understanding of the Cayley graph structure
in order to guarantee that the computed bound is still relevant in the original automaton group
– see Section 4.2. This first (semi-)algorithm already presents an interesting combinatorics as the
results may vary substantially according to the target.

In a second time, we introduce weights in computations, as it was successfully done by Bartholdi
for the first Grigorchuk group [3]. Weights are positive functions π on the generating set S, and

3



we declare the length of an edge to equal the weight of the generator that labels it. This gives a
new, non-uniform and possibly non-symmetric, metric on the Cayley graph. It is well-known that
the growth rate is not modified by the introduction of weights, nor by change of generating set –
see Lemma 3.3. The upper bound α obtained by the contraction method depends drastically on
the weight π as can be seen on Tables 1 and 3, but by invariance the result applies to all growth
functions γG,S,π(ℓ).

A crucial issue is to find the best possible weights for a given generating set. For this, we fix an
essentially geodesic generating set ∆ and optimize the returned contraction parameter η(π) under
the condition that ∆ remains an egg for π, which is the case under mild triangular conditions
described in Section 4.3. In practice, we are lead to minimize a function of the form maxw∈∆(fw),
where the functions fw are rational (homogeneous) functions on R

d, on a subdomain of [0, 1]d

bounded by linear inequalities. For this, we use a numerical algorithm wmo based on a generalized
gradient method described in [40, 41] – see Section 6.2.

Finally, using the weight-metric-optimization algorithm wmo, we develop a dynamical proce-
dure trying to optimize the contraction through both the graph-search of an egg ∆ and the choice of
the weights π. Notice that these two possible directions of optimization, by graph exploration and
weights choice, strongly interact. Hence, a careful tuning of the parameters might be needed for
some groups. On the other hand, pre-set routines often give rather good results– see Tables 2 and 3.

Previous works: As mentionned above, the underlying automaton allows the class of automata
groups to be efficiently studied from an algorithmic point of view. For instance the word problem
can be efficiently solved as well as the order problem [13] or the Engel problem [6] in some specific
classes. Two main packages have been developed to this end: AutomGrp [43] by Muntyan and
Savchuk and FR [5] by Bartholdi. Both are implemented in the GAP language [24], specialized in
computational algebra.

The situation is more contrasted for growth related question: a first experimental approach
was attempt by Reznykov and Sushchanskii [49], where the growth function up to a certain length
is computed, which allows the author to deduce conjectures from the observed values. Using
this approach, they exhibit the smallest automaton semigroup with intermediate growth. Yet,
no exact result can be inferred from this work and, as mentionned in [48], the first terms of the
growth function can be misleading. For instance, it follows from [9, 15] that the growth may look
exponential on large balls and still be intermediate at even larger scales. Notice that an efficient
algorithm to compute the growth of automata groups, based on minimization, is provided by [35].

In FR, no function trying to determine the growth behaviour of an automaton group is provided
(the functions computing the polynomial or exponential growth degree are dealing with a different
notion, that of activity introduced by Sidki [50]).

In the package AutomGrp, a function testing if the automaton generates a group of subexpo-
nential growth is proposed. The tactic used is also based on the contraction method and can be
seen as the simplest version of our algorithm: it looks if there exists a length ℓ such as every words
of length ℓ are contracting. Our present approach refines this in several ways.

First we no longer look for elements of the same length, but rather use the concept of essentially
geodesic generating sets, introduced in Section 4. It permits to reduce drastically the number
of elements whose contraction is required in order to assure subexponentiality. This allows our
algorithm to detect groups of intermediate growth that are missed by AutomGrp, such as the
group generated by the automaton Fig. 8.

Secondly, we use weights in the computation of contraction and actually implement an algorithm
to numerically optimize them. Note that our dynamical procedures also provide an explicit bound
when the procedure stops (but the bound is possibly trivial). We stress that our code relies on

4



level weights chosen target η obtained η obtained α

1
[.25, .25, .25, .25] .99 does not end does not end

[.25, .375, .25, .125] .99 .875 .8385
[.305061, .34747, .223839, .123631]∗ .99 .8106∗ .7675∗

2

[.25, .25, .25, .25] .99 does not end does not end
[.25, .375, .25, .125] .99 .9231 .9455

[.305061, .34747, .223839, .123631]∗ .99 .9152 .9400
[.305061, .34747, .223839, .123631]∗ .75 .7497 .8280
[.305061, .34747, .223839, .123631]∗ .68 .6800 .7824

3
[.25, .25, .25, .25] .99 .8889 .9437

[.305061, .34747, .223839, .123631]∗ .99 .8954 .9496
[.305061, .34747, .223839, .123631]∗ .75 .7418 .8745
[.305061, .34747, .223839, .123631]∗ .58 .5800 .7924

Table 1: The first Grigorchuk group: upper bounds computed by function IsSubExp_rec without
optimization. The stars ∗ mark optimal and almost optimal data. The optimal weights are taken
from Bartholdi [3] and have been normalized to sum up to 1. Levels are defined at the end
of Section 2.1.

level update target η obtained η obtained weights obtained α
1 4 .90 .8107∗ [.3052, .3475, .2243, .1236]∗ .7676∗

2
4 .90 .8121 [.3072, .3465, .1229, .2236] .8063
4 .72 .7166 [.3069, .3466, .2068, .1399] .9464

3
4 or 10 .90 .8889 [.25, .25, .25, .25] .9464

4 .65 .6477 [.4789, .2606, .2059, .0548] .8273
10 .63 .6287 [.4004, .2999, .2345, .0654] .8176

Table 2: The first Grigorchuk group: upper bounds computed by function IsSubExp_opt with
optimization of weights every update rounds, starting with uniform weights. The stars ∗ mark
optimal and almost optimal data.

Automaton obtained η obtained α obtained weights comments

Fig. 7 .6450 .8034 [.3352, .1899, .1899, .2849]
New automaton group

weights obt. by optimization

Fig. 8, from [16]
.8188 .9123 [1., 0., 0.] prev. bound from [16]
.8300 .9178 [.25, .25, .25, .25] was .9396

Fig. 9 .8398 .9177 [.3785, .2655, .3561]
New automaton group

weights obt. by optimization

Table 3: Some new upper bounds computed.

5



some functions developed in AutomGrp, the most important being the rewriting system for groups.

Results obtained: Our approach produces several positive results:

• On the first Grigorchuk group: our algorithm allows to retrieve numerically the optimal bound
and weight system, see Tables 1 and 2. Optimality of α = 0.7674... is known from [22].
Throughout the paper, the numerical values we obtain are rounded up to the fourth digit.

• Improvement of upper bounds: for the automata in [16], depicted in Fig. 8, we improve the best
known upper bound from 0.9396 to 0.9123, see Table 3.

• New groups of intermediate growth: we discovered several new automata generating group of in-
termediate growth (see Figs. 7 and 9 and Table 3.). It should be noticed that these are not
just twists of known automata but rather seem to belong to new families.

Perspectives: Our approach can be naturally extended to (homogeneous) spinal groups [11]
which generalize Grigorchuk groups and are known to be of intermediate growth. Moreover, the
new groups of intermediate growth described in Figs. 7 to 9 seem to belong to large families of
groups with intermediate growth. A systematic study of these families is in order. One aim of the
present paper was to provide tools for this study.

From a computational point of view, we can aim for two main improvements: firstly, the
procedures could be implemented in an other, more efficient, language. Secondly, the procedure
of exploration is tractable to parallelization, which would greatly improve the performances of our
methods.

Finally, we stress that many algorithmic problems are undecidable for automata groups, and
that it is unknown if there exists an algorithm proving that an automaton is contracting. On
the other hand, some decidable classes of automata, e.g. the subclass of bounded automata [44,
Theorem 6.5] which contains most known automata groups of intermediate growth, force the gen-
erated group to be contracting in a sense. It would be interesting to explore these classes with
our algorithms. Moreover, one can wonder if the growth rate is decidable in the class of bounded
automata, which contains groups of all types of growths.

Organization of the paper. Basic facts about Mealy automata and their associated groups
are briefly presented in Section 2, together with the examples under focus in the paper. Word metric
and growth rates are defined in Section 3. The crucial notion of eggs (essentially geodesic gener-
ating sets) is defined and studied in Section 4. The strong contraction method for subexponential
growth is described in Section 5. Section 6 is devoted to the description of (semi)-algorithms that
provide upper bounds. Experimental data obtained with them and comments appear in Section 7.
The last Section 8 gives a criterion ensuring that the groups we consider do not have polynomial
growth. Appendix A gathers the pictures of diagrams and Schreier graphs of all automata groups
studied here. The GAP code is available at https://www.irif.fr/~godin/automatongrowth.html.

Acknowledgements. We wish to thank Laurent Bartholdi and Dyma Savchuk for useful
comments about GAP implementation.

J.B. and Th.G. were partially supported by ANR-16-CE40-0022-01 AGIRA. Th.G. was partially
supported by the Academy of Finland grant 296018.

6



2 Automata groups

We briefly review definitions and elementary facts about Mealy automata and self-similar group.
The reader is refered to [44, 58] for comprehensive description.

2.1 Mealy automata

A Mealy automaton is a complete deterministic letter-to-letter transducer A = (Q,Σ, δ, ρ), where Q
and Σ are finite sets respectively called the the stateset and the alphabet, and δ = (δi : Q→ Q)i∈Σ,
ρ = (ρq : Σ → Σ)q∈Q are respectively called the transition and production functions. Examples
of such Mealy automata are depicted Figure 2. The transition and production functions can be
extended to words as follows: see A as an automaton with input and output tapes, thus defining
mappings from input words over Σ to output words over Σ. Formally, for q ∈ Q, the map ρq : Σ∗ →
Σ∗, extending ρq : Σ→ Σ, is defined recursively by:

∀i ∈ Σ, ∀s ∈ Σ∗, ρq(is) = ρq(i)ρδi(q)(s) . (1)

Observe that ρq preserves the length of words in Σ∗. We can also extend the map ρ to words
of states u ∈ Q∗ by composing the production functions associated with the letters of u:

∀q ∈ Q, ∀u ∈ Q∗, ρqu = ρu ◦ ρq . (2)

Therefore the production functions ρq : Σ∗ → Σ∗ of an automaton A generate a semigroup 〈A〉+ :=
{ρu : Σ∗ → Σ∗|u ∈ Q∗}, all of which elements preserve the length of words in Σ∗.

A Mealy automaton is said to be invertible whenever ρq is a permutation of the alphabet for
every q ∈ Q. In this case, all functions ρq : Σ∗ → Σ∗ are invertible and the automaton actually
generates a group:

〈A〉 := 〈ρ±1
q : Σ∗ → Σ∗|q ∈ Q〉 =

{
ρu : Σ∗ → Σ∗|u ∈

(
Q ∪Q−1

)∗}
.

It is not difficult to find another (symmetrized) Mealy automaton generating this group as a semi-
group. Its stateset can be taken as Q∪Q−1 such that ρ−1

q = ρq−1 . A group of the form 〈A〉 for an
invertible automaton is called an automaton group. Such a group acts naturally on the set Σ∗.

Observe that given an integer k and a Mealy automaton A = (Q,Σ, δ, ρ) with alphabet Σ, one
can associate to it a Mealy automaton (Q,Σk, δ, ρ) where we identify the function ρq acting on Σ
with the same function acting on Σk via (1). This just amounts to replacing the alphabet by the
set of syllables of length k. With a slight abuse of language, we call the latter automaton the level k
of A. Notice that this level k automaton generates the same group as the original automaton.

2.2 Self-similar groups

One can describe the automaton group through this action via wreath recursion and obtain a so-
called self-similar group. First let us recall a few definitions. Let us write Γ y X the action of a
group Γ on a set X and γ.x ∈ X the transformation of x ∈ X induced by γ ∈ Γ. The permutational
wreath product G ≀Σ Sym(Σ) of a group G over a set Σ is the set GΣ × Sym(Σ) together with the
operation

〈
g|x1

, . . . , g|xd

〉
π(g).

〈
h|x1

, . . . , h|xd

〉
π(h) =

〈
g|x1

h|π(g)−1.x1
, . . . , g|xd

h|π(g)−1.xd

〉
π(g)π(h)

for the obvious action of Sym(Σ) on Σ = {x1, x2, . . . , xd}.

7



Assume we are given a group G together with an injective homomorphism ψ : G →֒ G≀ΣSym(Σ).
Then one can describe the group elements with a recursive formula, where we canonically identify
g and ψ(g)

g = ψ(g) =
〈
g|x1

, . . . , g|xd

〉
π(g) . (3)

The group element g|xi
is called the section of g in xi and π(g) is the action of g. One can extend

the section to words : ∀ux ∈ Σ∗, g|ux = g|u|x.

One can also extend the action of G to Σ∗ by ∀xu ∈ Σ∗, g.xu = (π(g).x)g|x.u. The action of G
on Σ∗, is called self-similar if

∀g ∈ G,∀u ∈ Σ∗,∀x ∈ Σ,∃h ∈ G,∃y ∈ Σ, g.xu = yh.u .

If, for every element g of G the set {g|u,u ∈ Σ∗} is finite, the action is said to be finite state.
It is easy to see that such a finite state self-similar action corresponds to exactly one automaton
group, possibly with infinite stateset. A quick way to describe an automaton group is to give the
section decomposition (3) of all elements of the stateset.

The correspondence between Mealy automata and self-similar groups can be summarized as:

ρq(x) = y and δx(q) = p ⇐⇒ q|x = p and π(q).x = y ,

which we represent by the arrow notation q
x|y−−→ p ∈ A. The stateset of the automaton corresponds

to a generating set of the self-similar group.

2.3 Diagram, dual automaton and Schreier graph

The arrow representation permits to describe a Mealy automata by its diagram, which is a labelled
oriented graph. The vertices of the diagram are labelled by the states. From each vertex q and
letter x, there is an oriented edge from q to p = δx(q) which we label by x | y where y = ρq(x).
The diagrams of most groups studied in this paper are pictured in Appendix A.

The roles of the stateset and the alphabet in an automaton are symmetric in the definition.
The dual automaton of A = (Q,Σ, δ, ρ) is the automata Â = (Σ, Q, ρ, δ) obtained by exchanging
them. This amounts to

q
x|y−−→ p ∈ A ⇐⇒ x

q|p−−→ y ∈ Â for all p, q, x, y.

When we draw the diagram of the dual automaton Â, we obtain the Schreier graph of the action
of 〈A〉 on the alphabet Σ, i.e. the graph with vertex set Σ and edges from x to y = q.x = ρq(x)
labelled by q.

2.4 Examples

In this paper we will focus on a few iconic examples.

• The first Grigorchuk group is the most famous group of intermediate growth. A stateset is
given by

a = 〈e, e〉(0, 1), b = 〈a, c〉, c = 〈a, d〉, d = 〈e, b〉.
Its diagram and Schreier graphs are depicted in Fig. 2. We also apply our algorithm to
disguised versions of the first Grigorchuk, where we look at it as generated by the automata
acting on the second or third levels of the tree. They provide interesting situations where

8



c

a

b d

e

0|1
1|0

0|0
1|1

0|0

1|1

0|0

1|1

0|0
1|1

Figure 2: The automata generating the first Grigorchuk group.

0 1

b

a c

a d

Figure 3: The Schreier graph on level 1 of the automata generating the first Grigorchuk group.

we know the actual optimal bound but face a more challenging computation challenge. The
diagram and Schreier graph of the automaton acting on the third level are drawn in Fig. 6.
These Schreier graphs have been extensively studied by Vorobets [54].

• We introduce a close relative of the Grigorchuk groups. It acts on an alphabet with 6 letters.
Its stateset is given by

a = 〈e, e, e, e, e, e〉(1, 2)(3, 4)(5, 6)

b = 〈e, e, e, e, e, b〉(4, 5)

c = 〈a, e, e, e, e, c〉(2, 3)

d = 〈a, e, e, e, e, d〉(2, 3)(4, 5)

and its diagram and Schreier graph depicted in Fig. 7. Its introduction is motivated by
the similarities with the Schreier graph descriptions the Grigorchuk group in [54] (compare
Fig. 6) and the fragmentations of dihedral actions as introduced by Nekrashevych in [45].
Note that the elementary relations a2 = b2 = c2 = d2 = bcd = e of the Grigorchuk groups are
satisfied, however this group does not belong to the class of Grigorchuk groups introduced in
[28] because it contains elements of order 6.

• The group introduced by the first author in [16] and whose diagram and Schreier graphs are
depicted in Fig. 8 was a motivation for the present work. It is related to Wilson’s groups of
non-uniform growth [56, 55, 14]. It is generated by an involution and an element of order 3.

• Similarly to the previous example, we introduce a new automaton group which is a close
relative of a group of intermediate growth constructed by Bartholdi in relationship with non-
uniform growth [4]. Its diagram and Schreier graphs are depicted in Fig. 9. It is generated
by three involutions and has exponential activity in the sense of Sidki.

9



• Finally, we provide an example of an automaton group with 9 states acting on an alphabet
with 17 letters. Its Schreier graph has the shape of an X but the labellings are inspired by
the Schreier graph of the first Grigorchuk group. Its stateset is:

a = 〈e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, e〉(1, 2)(6, 7)(12, 13)(15, 16)

b = 〈e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, b〉(4, 5)(7, 8)(1, 10)(14, 15)

c = 〈e, e, e, e, e, e, e, e, a, e, e, e, e, e, e, e, c〉(4, 5)(14, 15)

d = 〈e, e, e, e, e, e, e, e, a, e, e, e, e, e, e, e, d〉(7, 8)(1, 10)

a′ = 〈e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, e, b〉(3, 4)(8, 9)(10, 11)(1, 14)

b′ = 〈e, e, e, e, b′, e, e, e, e, e, e, e, e, e, e, e, e〉(2, 3)(1, 6)(11, 12)(16, 17)

c′ = 〈e, e, e, e, c′ , e, e, e, e, e, e, e, a′ , e, e, e, e〉(2, 3)(16, 17)

d′ = 〈e, e, e, e, d′, e, e, e, e, e, e, e, a′ , e, e, e, e〉(1, 6)(11, 12).

It satisfies the relations a2 = b2 = c2 = d2 = bcd = a′2 = b′2 = c′2 = d′2 = b′c′d′ = e.

3 Word norms and growth

3.1 Word lengths and word norms

Let G be a group. A subset S is generating (in the sense of semigroups) if for any g ∈ G there
exists s1, . . . , sn ∈ S such that g = s1 . . . sn. In other terms, there is a word in the free semi-group
S∗ generated by S that equals g once evaluated in G. By convention, we assume that the neutral
element e is not in S. A weight function on S is a positive function π : S → R>0. A subset S of G
is symmetric if S = S−1 and in this case π is symmetric if π(s−1) = π(s) for all s in S. Throughout
the paper, we consider triples (G,S, π), where G is a group together with a finite generating set S
and a weight π on it.

For any w = s1 . . . sn in S∗, we call length of w with respect to π the number

|w|π :=
n∑

i=1

π(si).

In particular |s|π = π(s) for all s ∈ S. By convention the empty sum is zero. For any g in G, we
call norm of G with respect to (S, π) the number

‖g‖S,π := inf {|w|π : w ∈ S,w =G g} .

When π is constant equal to one, we recover the usual word norm with respect to S. In this case,
we simply write ‖ · ‖S . The terminology is justified by the

Proposition 3.1. The function ‖ · ‖S,π : G→ R≥0 satisfies

(a) ∀g, h ∈ G, ‖gh‖S,π ≤ ‖g‖S,π + ‖h‖S,π,

(b) ‖g‖S,π = 0 if and only if g = e is the neutral element.

Moreover, the infimum is in fact a minimum.

10



A word w is a minimal representative of a group element g if |w|π = ‖g‖S,π. It always exists but
may not be unique. Observe that a subword of a minimal word is also minimal by (a). Regarding
generators, we always have |s|π ≥ ‖s‖S,π, but the converse inequality may not be true. However
when we have such a strict inequality, the generator s never appears in minimal representative
words, so the generating set is in fact redundant.

Proof. Let g 6= e. By assumption there is a word w in S representing g, so ‖g‖S,π is finite. Since
π0 = min{π(s)|s ∈ S} > 0, there are only finitely many words in S∗ of π-length less than |w|π , so
the infimum is a minimum. Moreover only the empty word (representing the neutral element) has
zero π-length. This prove (b). Finally let wg and wh be minimal representative words of g and h,
then wgwh represents gh, assertion (a) follows.

This word norm induces a metric dS,π(x, y) := ‖x−1y‖S,π on G. Recall that a metric is a
function d : G×G→ R≥0 such that for all x, y, z ∈ G, we have d(x, z) ≤ d(x, y) + d(y, z) and that
d(x, y) = 0 if and only if x = y. This metric is left-invariant under the group action in the sense
that dS,π(gx, gy) = dS,π(x, y) for all g, x, y in G. Observe that this metric is symmetric, which
means dS,π(x, y) = ds,π(y, x) for all x, y, if and only if both S and π are symmetric.

When we identify the group G with the vertices of its Cayley graph ΓG,S , the metric dS,π
coincides with the metric inherited by the vertex set when we declare that each oriented edge
labelled by s has length π(s). It implies that the path in ΓG,S defined by following edges labelled
by the letters of a minimal word w is a geodesic (i.e. shortest) path from the starting point x to
the end point y = xw.

3.2 Growth functions and growth rate

Definition 3.2. The ball of radius ℓ and center x in (G, dS,π) is the set

BG,S,π(x, ℓ) := {y ∈ G : dS,π(x, y) ≤ ℓ}.

The growth function of G with respect to (S, π) counts the sizes of the balls

γG,S,π(ℓ) = #BG,S,π(x, ℓ) .

By left-invariance, the size of a ball in a group depends only on the radius ℓ and not on the center x.
To fix ideas, one may choose x = e.

Let us say that two functions f, g are equivalent when there exists c > 0 such that g(1
c
ℓ) ≤

f(ℓ) ≤ g(cℓ) for all ℓ ≥ 0. The next lemma ensures that the equivalence class of γG,S,π(ℓ) does
not depend on S nor on π. This class is called the growth rate of G, and denoted by abuse of
notation γG(ℓ).

Lemma 3.3. Let (S, π) and (T, ρ) be two finite weighted generating sets of the group G, then there
exists c > 0 such that γG,S,π(ℓ) ≤ γG,T,ρ(cℓ) for all ℓ.

Proof. Let c := max { ‖s‖T,ρ

‖s‖S,π
|s ∈ S} ∈ (0,∞). If g ∈ BG,S,π(ℓ) then there exists a minimal repre-

sentative word w = s1 . . . sn in S∗ so that

ℓ ≥ ‖g‖S,π = |w|π =
n∑

i=1

π(si) =
n∑

i=1

|si|π =
n∑

i=1

‖si‖S,π.

11



A fortiori

‖g‖T,ρ ≤
n∑

i=1

‖si‖T,ρ ≤ c
n∑

i=1

‖si‖S,π ≤ cℓ.

Definition 3.4. A group G has

• polynomial growth if γG(ℓ) is bounded above by a polynomial function,

• exponential growth if there is c > 0 such that γG(ℓ) ≥ exp(cℓ) for all ℓ,

• intermediate growth if γG(ℓ) is greater than any polynomial function and lesser than any
exponential function:

∀d ∈ Z, α ∈ R>0,∃N,∀ℓ ≥ N, ℓd ≤ γG(ℓ) ≤ exp (αℓ).

4 Essentially geodesic generating sets (eggs)

This section is devoted to the key notion of essentially geodesic generating sets, in short eggs, of a
triple (G,S, π).

4.1 Definition and examples

Definition 4.1. A finite subset ∆ of S∗ is an essentially geodesic generating set (in short, an egg)
for (G,S, π) if there is a finite subset F of S∗ such that for any g ∈ G, there exist δ1, . . . , δn ∈ ∆
and h ∈ F such that the word δ1 . . . δnh is a minimal representative of g with respect to (S, π).

Clearly, the words δi of the definition have to be minimal themselves. For example, S itself is
an egg, with F the empty set. Let us give more examples.

Let Ω ⊂ G. Define its boundary as ∂Ω := {g ∈ Ω : ∃s ∈ S, gs /∈ Ω}. Denote Int(Ω) := Ω \ ∂Ω
the interior of Ω. In the Cayley graph, vertices in the boundary of Ω are precisely those with at
least one neighbor outside Ω.

Lemma 4.2. Assume Ω ⊂ G is finite and e ∈ Int(Ω). Then a set ∆ of minimal representative
words of the boundary ∂Ω is an egg of G.

Proof. Given g ∈ G, let w = s1 . . . sn be a minimal representative word for (S, π). Starting from
e and following the edges labelled by the letters of w provides a geodesic path to g in the Cayley
graph. If g /∈ Int(Ω), this path must cross ∂Ω. This means there is a non-trivial prefix (necessarily
minimal) w1 of w representing an element in ∂Ω. By assumption, there is δ1 ∈ ∆ of the same length
as w1 such that δ1 =G w1. Then δ−1

1 g is an element in G at distance from e less than dS,π(e, g)−π0,
where π0 := min{π(s)|s ∈ S} > 0. Arguing by induction, we can write g = δ1 . . . δkh with δi ∈ ∆
and h ∈ Int(Ω) =: F which is finite.

Of course not all eggs are of this form, because any set of words containing an egg is still an
egg. But there are also eggs containing no such ∂Ω as seen by the following.

Example 4.3. Let S = {a±1, b±1} be the usual generating set of Z
2 where a = (1, 0), b = (0, 1).

Then for integers p, q > 0, the set ∆ = {a±p, b±q} is an egg, because any g ∈ Z
2 can be written

minimally g = aλpbµqarbs with λ, µ, r, s integers and |r| < p, |s| < q. However the minimal word
(ab)k has no prefix in ∆.

12



4.2 Stability under quotients

Let G̃ be a group together with a quotient group G. Denote by q : G̃ → G the quotient map. We
assume that S̃ is a finite generating set of G̃ and that q|

S̃
is injective, inducing a bijection between

S̃ and S := q(S̃). Given a word w̃ = s̃1 . . . s̃n in S̃, we systematically write w = s1 . . . sn instead of
q(w̃) = q(s̃1) . . . q(s̃n) the corresponding word in S. Clearly, S is a generating set of G.

Let π : S̃ → R>0 be a weight function, it naturally induces a weight function on S still denoted
π. For any g̃ in G̃ we observe that ‖q(g̃)‖S,π ≤ ‖g̃‖S̃,π. Indeed, any word in S̃ representing g̃

corresponds to a word in S of the same π-length representing q(g̃), so the infimum defining the
left-hand side is taken over a bigger set of words.

Lemma 4.4. In the setting above, assume that ∆̃ is an egg for (G̃, S̃, π). Then ∆ := q(∆̃) is an
egg for (G,S, π).

Proof. Let g belong to G and w be a minimal representative word of g in S. Then w̃ is a minimal
word in S̃ (by the observation before the lemma). As ∆̃ is an egg, we have w̃ =G δ̃1 . . . δ̃nh̃ =: w̃1,
a minimal word with δ̃i in ∆̃ and h̃ in some finite set F̃ of words in S̃. A fortiori, w1 = δ1 . . . δnh
is the required representative word of g.

Example 4.5. For G the first Grigorchuk group as depicted in Fig. 2, it is natural to consider
G̃ = 〈a, b, c, d|a2 = b2 = c2 = d2 = bcd = e〉, which is isomorphic to the free product Z/2Z ∗
(Z/2Z ⊕ Z/2Z).

4.3 Stability of eggs under change of weights

Consider an egg ∆ for (G,S, π). We want to know under what condition the set ∆ is still an egg
for (G,S, π′). Clearly this is the case if among words in S, minimality for ‖ · ‖S,π is equivalent to
minimality for ‖ · ‖S,π′ .

Lemma 4.6. Let G := F(X) be the free group with finite free generating set X. Let S = X ∪X−1

and π : S → R>0 be a weight. A word representative is minimal for ‖ · ‖S,π if and only if it is
minimal for the uniform word norm ‖ · ‖S.

In particular, a set ∆ is an egg for ‖ · ‖S,π if and only if it is an egg for the uniform word
norm ‖ · ‖S.

Proof. As the Cayley graph is a tree, minimal representatives are unique and correspond to non-
backtracking paths. Therefore they coincide for both norms.

We can obtain a similar stability result in the context of free products of finite groups, but the
weights need to satisfy some condition.

Lemma 4.7. Let G = ∗i∈IGi be a free product of finitely many finite groups. Let S = ∪i∈IGi \ {e}
and π : S → R>0 be a weight function such that

∀i ∈ I,∀s, s′ ∈ Gi \ {e}, π(ss′) < π(s) + π(s′). (4)

Then the following are equivalent:

(i) a word w = s1 . . . sn is minimal for ‖ · ‖S,π,

(ii) the word w is freely reduced, i.e. for all 1 ≤ k ≤ n− 1, the generators sk and sk+1 belong to
different factor groups Gi.

13



A weight function satisfying condition (4) is called triangular. This condition is essentially
necessary because if there are s, s′ ∈ Gi with s0 = ss′ and π(s0) > π(s) + π(s′) then s0 would be a
freely reduced word not minimal for ‖ · ‖S,π.

As the usual word norm satisfies condition (4), minimality for ‖·‖S and for ‖·‖π,S are equivalent.
We deduce the:

Corollary 4.8. Let G = ∗i∈IGi and S, π be as in Lemma 4.7. A set ∆ is an egg for ‖ · ‖S,π if and
only if it is an egg for the usual word norm.

Proof of Lemma 4.7. If a word is minimal, then successive letters must belong to different factors,
otherwise using (4) we would replace the successive letters sk and sk+1 by their product, thus
obtaining the same group element but with a representative of shorter π-length.

Conversely assume that w is freely reduced, but not minimal. Then there exists w′ = s′
1 . . . s

′
m =G

w a minimal representative word for ‖ · ‖S,π. By the first part of the proof, we can assume w′ is
freely reduced. Now let k0 := min{k : s′

k 6= sk}, then sk0
. . . sn =G s′

k0
. . . s′

m which implies
s′−1
m . . . s′−1

k0
sk0

. . . sn =G e. We obtain a freely reduced representative word of the identity. As G is
a free product, this is a contradiction unless w and w′ are the same word.

The context of free products of finite groups is restrictive. However, it seems delicate to obtain
more general results about stability of eggs, as shown by the following:

Example 4.9. Consider the group Z
2 with S = {(±1, 0), (0,±1),±(1, 1)} and two different weigths

π1(±1, 0) = π1(0,±1) = 1, π1(±(1, 1)) = 2 and π2(±1, 0) = π2(0,±1) = 1, π2(±(1, 1)) = λ ∈
(0, 2). Then the norm ‖ · ‖S,π1

coincides with the usual word metric on the grid so that ∆ :=
{(±1, 0), (0,±1)} is an egg. However ∆ is no longer an egg for ‖ · ‖S,π2

because ‖(n, n)‖S,π2
= λn is

much smaller than the distance between e and any fixed neighborhood of (n, n) in the usual word
norm which is at least 2n− c.

5 The strong contraction method for subexponential growth

The following theorem will be our key tool to obtain upper bounds on growth exponents. The
general strategy is due to Grigorchuk [27, 28], the use of weights appeared in [3] and the following
precise statement is taken from [42]. This method is so far the only known method to obtain
non-trivial upper bounds on growth exponents.

Theorem 5.1 (Muchnik-Pak [42]). Given a triple (G,S, π), assume that there exist η ∈ [0, 1] and
c0 > 0 together with embeddings for all ℓ

BG,S,π(ℓ) →֒
⋃

ℓ1+···+ℓd≤ηℓ+c0

K ×
d∏

i=1

BG,S,π(ℓi)

where K is a fixed finite set. Then there is a constant c > 0 such that γG,S,π(ℓ) ≤ ecℓ
α

with
α = log(d)

log(d)−log(η) .

Note that the assumptions need to be satisfied by one weighted generating set and the conclusion
then applies to the growth rate of G, hence for all weighted generating set. However in practice,
the constants η, c0, c and the finite set K depend on (S, π). The key point in the sequel will be to
find good generating sets and weights to lower η and thus α. Of course, this theorem is relevant
only in the case η < 1. To apply it, we will systematically use the following:

14



Proposition 5.2. Let G be a self-similar group with ψ : G →֒ G ≀Σ Sym(Σ). Assume there is a
weighted norm ‖ · ‖S,π with an egg ∆ and a constant η ∈ [0, 1] such that

∀δ ∈ ∆,
∑

x∈Σ

‖δx‖S,π ≤ η‖δ‖S,π (⋆)

where ψ(δ) = 〈δx1
, . . . , δxd

〉σ is the self-similar image of δ. Then the assumptions of Theorem 5.1
are satisfied with the same η.

We call the minimal such η = ηS,π(∆) the contraction coefficient of the egg ∆. In order to get
upper bounds on growth, we will construct eggs with small contraction coefficient.

Proof. Take K = Sym(Σ). The permutational wreath products defines an embedding G →֒
Sym(Σ)×GΣ by declaring that the image of g = 〈gx1

, . . . , gxd
〉σ is the d+ 1-tuple (σ, gx1

, . . . , gxd
).

It is sufficient to prove that the image of each element g in BG,S,π(ℓ) is in the desired union, i.e.
that

∑
x∈Σ ‖gx‖S,π ≤ ηℓ+ c0.

As ∆ is an egg, we can write g = δ1 . . . δnh minimal representative with δi ∈ ∆ and h ∈ F (we
use superscripts here only to avoid confusion with subscripts corresponding to sections). Then

g =

(
n∏

i=1

〈
δix1

, . . . , δixd

〉
σi
)
〈hx1

. . . , hxd
〉σ′

=

(
n∏

i=1

〈
δix1

, . . . , δixd

〉τi−1

)
〈hx1

, . . . , hxd
〉τnτnσ

′, where τi = σ1 . . . σi,

=

(
n∏

i=1

〈
δi
τ−1

i−1
.x1

, . . . , δi
τ−1

i−1
.xd

〉)〈
h
τ−1

n .x1
, . . . , h

τ−1
n .xd

〉
τnσ

′

=

〈(
n∏

i=1

δi
τ−1

i−1
.x1

)
h
τ−1

n .x1
, . . . ,

(
n∏

i=1

δi
τ−1

i−1
.xd

)
h
τ−1

n .xd

〉
τnσ

′.

By injectivity of the embedding, we have gx =
(∏n

i=1 δ
i
τ−1

i−1
.x

)
h
τ−1

n .x
for each section x and σ = τnσ

′.

Therefore

d∑

t=1

‖gt‖S,π ≤
d∑

t=1

n∑

i=1

∥∥∥∥δ
i
τ−1

i−1
.t

∥∥∥∥
S,π

+
∥∥∥hτ−1

n .t

∥∥∥
S,π

=
n∑

i=1

d∑

t=1

∥∥∥δit
∥∥∥
S,π

+
d∑

t=1

‖ht‖S,π ≤
n∑

i=1

η
∥∥∥δi
∥∥∥
S,π

+ c0 ≤ η‖g‖S,π + c0 ≤ ηℓ+ c0.

Note that c0 is at most d times the maximal length of a section of an element in F .

6 Semi-algorithms computing upper bounds

In order to apply the contraction criterion of the previous section and obtain an upper exponent
α as small as possible, we have to find an egg ∆ with minimal coefficient η for some norm ‖ · ‖S,π.
More precisely, we want to estimate

η̄(G) := inf
(S,π)

inf
∆

max
w∈∆

η̄S,π(w), where η̄S,π(w) =
∑
x∈Σ ‖wx‖S,π
‖w‖S,π

, (5)

15



where the first infimum is over all weighted generating sets (S, π) and the second is over all eggs ∆
for ‖ · ‖S,π. However there is a last technical issue that it is difficult to estimate the actual norm
‖w‖S,π of a word (or rather of the element represented by this word), and much easier to estimate
the length |w|π. So in practice we will evaluate

η(G) := inf
(S,π)

inf
∆

max
w∈∆

ηS,π(w), where ηS,π(w) =
∑
x∈Σ |wx|π
|w|π

, (6)

This is sufficient because of the

Fact 6.1. η̄(G) ≤ η(G).

Proof. Recall that we always have ‖w‖S,π ≤ |w|π. For each w in a fixed egg ∆, we have

η̄S,π(w) ≤
∑
x∈Σ |wx|π
‖w‖S,π

=
∑
x∈Σ |wx|π
|w|π

= ηS,π(w),

except if ‖w‖S,π < |w|π which means that w is not minimal for (S, π). But in the latter case we
can safely remove w from ∆ and still obtain an egg ∆′ = ∆ \ {w}.

Finally if we have (6), we deduce (5). Then Theorem 5.1 and Proposition 5.2 give

γG(ℓ) ≤ ecℓα

, where α =
log(d)

log(d)− log(η(G))
and d = #Σ.

Automata groups come naturally with a preferred generating set (in bijection with the stateset).
For simplicity, we have chosen to use this particular one and not change it.

6.1 A semi-algorithm with fixed weights

Let (G,S, π) be fixed. We explain here how to obtain upper bounds on

η(G,S, π) := inf
∆
ηS,π(∆), where ηS,π(∆) = max

w∈∆
ηS,π(w).

The first issue is to ensure the existence of an egg with ηS,π(∆) < 1.

6.1.1 A procedure to obtain eggs.

Let P (w) be a property of words in S, and assume that we are able to determine algorithmically
whether P (w) is true or not for a given w. We describe a procedure aiming at producing an egg ∆
of (G,S, π) such that P (w) is true for all w in ∆.

At time one, we set L = S as a list. (We recall that e /∈ S.) At each time, we take the first
word w in the list, we remove it from L and do

(a) if P(w) is true, then add w to the set ∆,

(b) if P(w) is false, then for each s ∈ S

(i) if we detect that ‖ws‖π < ‖w‖π + ‖s‖π, do nothing,

(ii) elif we detect u in L such that ws =G u, do nothing,

(iii) otherwise we add ws at the end of L.

The procedure stops once L is empty.

16



Lemma 6.2. If the procedure above stops in finite time, then the resulting set ∆ is an egg of
(G,S, π) such that P (w) is true for all w in ∆.

Proof. Let g be an element of G with a representative w = s1 . . . sm minimal for ‖ · ‖S,π. Arguing
by induction, it is sufficient to prove that if ‖g‖S,π is large enough, there is a prefix of w which is
equal in G to a word δ1 of ∆.

Assume by contradiction that no prefix of w is equal in G to a word in ∆. Then we claim that
for each k ≥ 1, there exists a word wk that was in L at some time during the algorithm such that
g =G wksk+1 . . . sm.

Indeed, this is obvious for k = 1. Assume this is true for k and consider wksk+1. This word
is not in ∆ by assumption, so case (a) does not apply. It is of length ‖wk‖S,π + ‖sk+1‖S,π by
minimality of w, so case (b)(i) does not apply. Therefore either case (b)(ii) wksk+1 equals in G to
some u =: wk+1 that was in L at the same time, or case (b)(iii) wksk+1 =: wk+1 was added to L.

If the algorithm stopped in finite time, there has been finitely many elements in L and we get
a contradiction as soon as |wk|π is bigger than all their π-lengths.

In fact the lemma still holds if we do not try to detect (b)(i) or (b)(ii). However the resulting
egg ∆ (if it exists) would be bigger and the time of computation would be larger.

6.1.2 The target semi-algorithm.

Given an automaton group G with a fixed weighted generating system (S, π), we use a semi-
algorithm, presented in Fig. 4, to obtain an upper bound on η(G,S, π). This semi-algorithm
implements the procedure described above with the following property.

For a target coefficient ηtar ∈ (0, 1], we say a word w satisfies property Pηtar
(w) if it satisfies

condition (⋆) of Proposition 5.2 for η = ηtar, i.e.

ηS,π(w) =
∑
x∈Σ |wx|π
|w|π

≤ ηtar

Lemma 6.2 guarantees that if the semi-algorithm stops, it furnishes an egg for ‖ · ‖S,π all of which
element have property Pηtar

(w).
In order to try to detect (b)(i) when ‖ws‖S,π < ‖w‖S,π + ‖s‖S,π we consider an auxiliary group

G̃ of which G is a quotient (so minimality in G implies minimality in G̃ but not conversely). Then
‖ · ‖

G̃,S̃
just denotes the usual word norm with respect to S̃ as in Section 4.2. In practice, this

auxiliary group will be either a free group or a finite free product of free groups.
We also use an auxiliary list Laux. All the elements of this auxiliary list have the same ‖ · ‖

G̃,S̃
-

length, and the evolution of the size of this list (with length of words) gives a good heuristical
information whether the procedure is about to succeed or fail.

Note that according to (b)(ii), we add the word ws to the auxiliary list Laux only if it represents
a new group element. This is what we mean by ∪G. We are aware that this uncontrolled choice of
representative word (a priori) impacts the final bound but it would be substantially more difficult
to take this into account and seek the best representative.

Finally, the egg obtained obviously satisfies that ηS,π(w) ≤ maxw∈∆ ηS,π(w) =: ηmax for all w
in ∆, which we can record along the run. We conclude

η(G,S, π) := inf
∆
ηS,π(∆) ≤ ηmax.

This algorithm was implemented in GAP by the function IsSubExp_rec. It is also performed by
IsSubExp_fast which is faster (it avoids functions calling). When the weights are uniform, the func-
tion IsSubExp_fast_uni is even faster. The code is given at https://www.irif.fr/~godin/automatongrowth.html.

17



Data: An automaton group G,S, π and a target coefficient ηtar ∈ (0, 1].
Result: An egg ∆ and a coefficent ηmax ≤ ηtar such that ηS,π(w) ≤ ηmax for all w ∈ ∆

L← S ;
ηmax ← 0;
while L 6= ∅ do

Laux ← ∅;
for w ∈ L do

if η(w) ≤ ηtar then

∆← ∆ ∪ {w};
ηmax ← max (ηmax, ηS,π(w));

else

for s ∈ S do

if |ws|
G̃,S̃

= |w|
G̃,S̃

+ |s|
G̃,S̃

then

Laux ← Laux ∪G {ws};
end

end

end

end

L← Laux;
end

Figure 4: The target semi-algorithm of Section 6.1.2, implemented as IsSubExp_rec in GAP.

There the list ∆ is called shell and the list L is called the yolk. The algorithm stops once the yolk
list is empty. While running the algorithm, we record their sizes which give a good heuristical
indication whether the algorithm is likely to finish or not. Moreover in order to avoid endless
computation, we input a radius, which is the maximal length (uniform in S) of words allowed in
the shell list ∆ and the yolk list L.

6.2 Improving weights for a fixed egg

Once we obtain an egg, we wish to modify the weights in order to minimize ηS,π(∆). The difficulty is
twofold. First by construction, the fact that a set is an egg depends a priori strongly on the weights
chosen. Second we need to actually minimize a function of the form ηS,π(∆) = maxw∈∆ ηS,π(w),
where ηS,π(w) is a rational function of π ∈ (0, 1]S .

The choice of auxiliary group G̃ permits to bypass the first difficulty. Indeed, we choose G̃
to be either a free group or a finite free product of finite groups. In the first case, we impose no
restriction on π while in the second case we impose that π satisfies the triangular conditions (4)
of Lemma 4.7. For such weights in such groups, minimality of representative words is invariant,
so the detections (b)(i) when we perform the target semi-algorithm do not depend on the choice
of weight. This guarantees that we can change weights freely as long as we respect the triangular
conditions.

There remains the second task to evaluate the following function of π:

η(∆) = inf
π∈Ω

max
w∈∆

ηπ(w), where ηπ(w) =
∑
x∈Σ |wx|π
|w|π

.

18



The domain Ω is a subset of [0, 1]S bounded by the triangular conditions (4) and the functions
ηπ(w) are rational functions of π. Indeed for a word w in S and an element s ∈S, let us denote by
Ns(w) the number of occurences of the letter s in w. Then |w|π =

∑
s∈S Ns(w)π(s). It follows that

ηπ(w) =
∑
s∈S

∑
x∈ΣNs(wx)π(s)∑

s∈S Ns(w)π(s)
.

When we run the target semi-algorithm, we register the coefficients Ns(w) and Ns(wx) for s ∈ S
and x ∈ Σ.

To concretely estimate ηπ(∆), we use a numerical algorithm wmo based on a generalized gra-
dient method. wmo comes from recursive multi-level solution of a second order dynamical system
with embeded ad-hoc inertia effects to escape from local minima. The algorithm is described
in [40, 41]. In implementation, the overall GAP-program calls for the application wmo provid-
ing it with the coefficients above and the triangular constraints. The algorithm wmo returns the
estimated minimum together with the estimated optimal weights.

It seems very challenging to make exact optimization here because the function to minimize is
not convex and has several local minima. It also appeared experimentally on some sets of data that
very different weights π can lead to values extremely close to the observed minimum.

6.3 Mixed strategies

The minimization problem (6) is intrinsically two dimensionnal, since we have to find both an
optimal weight π and an optimal egg ∆. (Recall that in order to simplify the problem, we chose to
fix once and for all the generating set S.) The algorithms described previously are essentially one
dimensionnal, and they have to be coupled to obtain good results. For this, we implemented three
GAP-functions described at https://www.irif.fr/~godin/automatongrowth.html.

• The function IsSubExp_opt takes as input a given weight π and a target ηtar, it searches an
egg according to the target semi-algorithm. Once it obtains an egg ∆1 it calls wmo in order
to find the weights π1 optimizing η(∆1). This algorithm can be looped by searching for a
new egg ∆2 using the weights π1 for a new target ηtar,2.

• Given an update parameter, the function IsSubExp_ovi takes as input a given weight π and
a target ηtar, it searches an egg according to the target semi-algorithm, but everytime the
yolk list contains words of length multiple of the update parameter, it applies the weight-
optimization algorithm wmo to the whole set of words ∆∪L, and updates the weight vector
according to the output. It stops once it reaches the target.

• The function IsSubExp_loop permits the user to control the strategy. At each step the
function asks for an instruction either of exploration (applying the main loop of the target
algorithm of Fig. 4 to a chosen subset of ∆ ∪ L) or of weight optimization (using wmo over
a chosen subset of ∆ ∪ L).

7 Data and comments

7.1 Test of implemented functions

We use the first Grigorchuk group in order to test our functions. We consider it together with
its usual Mealy automaton, but also with the associated automata of the actions on the second
and third levels. In these disguised descriptions, it is much harder to obtain good numerical upper
bounds.

19



7.1.1 Test of IsSubExp_rec

In view of [3, 22], we know the optimal weights are [.305061, .34747, .223839, .123631] for S =
{a, b, c, d} and the optimal contraction coefficients η are ηopt = .8106, η2

opt = .6572 and η3
opt = .5327

for level 1, level 2 and level 3 respectively.
Indeed, iterating the condition of Theorem 5.1 ensures that

BG,S,π(ℓ) →֒
⋃

ℓ1+···+ℓ
d2 ≤η2ℓ+c1

Kd+1 ×
d2∏

i=1

BG,S,π(ℓi),

so if η is valid for the first level, then η2 is valid for the second level. By induction ηk is valid
also for the kth level. However, a computationnal issue is the increase of the additive constant
c1 = ηc0 + (d + 1)c0. This additive constant is unessential in theory, but in practice it has to be
taken care of by an over approximation of η in the ratios (⋆) of Proposition 5.2. This explains
why the radius and size of eggs blow up as we tighten our precision on the target. We explored
numerically this dependance on the target for the optimal weights in Table 4.

level target radius egg size η α
1 .90 2 4 .8106 .7675

2

.9 8 12 .8857 .9195
.75 14 73 .7497 .8280
.70 25 1360 .6997 .7952
.69 33 5947 .6900 .7889
.68 45 93855 .6800 .7824

3

.9 9 32 .8954 .9496
.80 11 52 .7980 .9022
.70 17 154 .6999 .8536
.65 23 427 .6493 .8281
.60 36 3715 .5999 .8028
.59 40 7499 .5900 .7977
.58 46 19616 .5800 .7924

Table 4: Testing the function IsSubExp_rec on the first Grigorchuk group with optimal weights.

We also studied the dependance on the weights, using perturbations of the (normalized) optimal
weights by vectors λ[1,−1, 1,−1] for λ = .02 and λ = .005. The data are given in Table 5.

It appears that in some situations the non-optimal weights provide (very slightly) smaller eggs,
but as we tighten our target precision, this is no longer the case. For this reason, it will be difficult
to detect whether weights are optimal or not.

7.1.2 Test of IsSubExp_ovi

Given a target, this function calls wmo in order to optimize weights once an egg for the initial
weights is obtained. We would like to use it in order to find suitable weights for new automata
groups where optimal weights are unknown. Data obtained for the Grigorchuk group is described
in Table 6

A first flaw is that the existence of such an egg depends on the weights. For instance for uniform
weights on the Grigorchuk group at first or second level, no egg is obtain so the algorithm does not
end. The reason is that words of the form (ab)k are not contracting. An easy way to bypass this

20



weights on first Grigorchuk group level target radius egg size η α

[.325061, .32747, .243839, .103631]
optimal ± .02

1 .90 2 4 .8719 .8349

2
.75 17 88 .7471 .8263
.70 89 28645 .7000 .7954

3

.65 25 418 .6497 .8283

.60 40 4145 .6000 .8028

.59 53 9672 .5900 .7977

.58 69 33001 .5800 .7925

[.310061, .34247, .228839, .118631]
optimal ± .005

1 .90 2 4 .8261 .7840

2
.75 15 76 .7419 .8229
.70 29 1595 .7000 .7954

3

.65 23 427 .6499 .8284

.60 35 3576 .6000 .8028

.59 40 7477 .5900 .7977

.58 50 20744 .5800 .7925

Table 5: Dependance of radius and size of eggs on the weights – compare also with Table 4.

difficulty is to break the symmetry and use almost uniform weights. However not all symmetry
breaking works.

A second flaw appears for instance on level two with almost uniform initial weights. The output
weights turn out to be a permutation of the optimal weights and when we plug in these weights
with a tighter target, the algorithm does not end. We reached a local minimum of our optimization
problem and this function cannot exit it.

When given aa initial weight close to the optimal value (say [.30, .35, .20, .10]), the function
outputs a slightly better weight. But as seen on Table 6 the evolution of the weights and contraction
coefficient η is very slow and it is not clear whether they would often converge to the optimal vector
or to unsatisfying local minima.

7.1.3 Test of IsSubExp_opt

Given a fixed target, this function looks for an egg, but every update round it applies the optimizer
wmo to the whole set of words ∆ ∪ L, then it continues using the new weights until next update.
Experimental data are given in Table 7.

At the first level, the results and output weights are very close to optimal, but it may be due to
the simplicity of the problem. At the second level, they are still close to optimal but the obtained
eggs are substantially bigger. Again, the relative simplicity of the problem might account for this
success.

At the third level, it is much harder to obtain satisfying output vectors. The best results are
obtained with tighter targets and sparser updates, but at the expense of longer computations.

Note that on level 3, for target .65 and update 4, at round 28 the use of wmo provided the
following vector [.2959, .3521, .2705, .0817], much closer to the optimal vector than the final output
– see Table 7.

21



level loop target initial weights radius egg size η α output weights

1
1 .9999 uniform does not end
1 .9999 [1.,.99,.98,.97] 2 4 .8119 .7689 [.3067,.3467,.2232,.1236]
1 .9999 [1.,.97,.98,.99] does not end

2

1 .9999 uniform does not end
1 .9999 [1.,.99,.98,.97] 5 8 .8107 .8686 [.3052,.3474,.1237,.2239]
2 .8106 from loop 1 does not end
1 .80 [.30,.35,.20,.10] 10 30 .7901 .8548 [.2851,.3575,.2251,.1325]
2 .75 from loop 1 14 93 .7463 .8258 [.2866,.3568,.2257,.1311]
3 .70 from loop 2 30 1700 .6999 .7953 [.2865,.3568,.2258,.1312]

3

1 .9999 uniform 9 32 .8508 .9279 [.3164,.3419,.1710,.1710]
2 .85 from loop 1 10 36 .7992 .9027 [.3563,.3219,.1917,.1303]
3 .70 from loop 2 17 147 .6910 .8491 [.3720,.3141,.1932,.1209]
4 .65 from loop 3 23 361 .6491 .8280 [.3736,.3132,.1934,.1199]
5 .63 from loop 4 30 810 .6281 .8173 [.3696,.3153,.1956,.1198]
6 .61 from loop 5 42 2155 .6099 .8079 [.3687,.3157,.1968,.1190]
7 .60 from loop 6 48 3964 .6000 .8028 [.3682,.3159,.1969,.1191]
1 .7 [.40,.30,.10,.20] 40 315 .6971 .8522 [.4024,.2988,.1035,.1955]
2 .67 from loop 1 166 2313 .6672 .8371 [.4097,.2952,.1107,.1846]
3 .66 from loop 2 114 2636 .6587 .8328 [.4023,.2989,.1178,.1812]
4 .65 from loop 3 234 4854 .6492 .8280 [.3998,.3001,.1195,.1808]
1 .70 [.30,.35,.20,.10] 16 154 .6966 .8519 [.2943,.3529,.2286,.1244]
2 .65 from loop 1 23 535 .6497 .8283 [.2966,.3517,.2275,.1243]

Table 6: Testing the function IsSubExp_ovi on the first Grigorchuk group.

22



level target update radius egg size η α output weights

1 .90
2 2 4 .8113 .7683 [.3052,.3475,.2243,.1232]
4 5 8 .8107 .7676 [.3053,.3474,.2238,.1236]
10 11 64 .8136 .7707 [.3118,.3442,.2219,.1224]

2

.90
2 2 4 .8113 .8690 [.3100,.3452,.1227,.2224]
4 4 8 .8121 .8695 [.3072,.3465,.1229,.2236]
10 10 32 .8124 .8697 [.3089,.3456,.1232,.2534]

.75
2 16 284 .7467 .8260 [.3071,.3465,.1912,.1554]
4 18 315 .7487 .8273 [.3129,.3436,.1922,.1515]
10 24 536 .7499 .8281 [.3296,.3353,.1822,.1532]

.72
4 32 805 .7166 .8063 [.3069,.3466,.2068,.1399]
10 36 1199 .7198 .8083 [.3051,.3475,.2086,.1390]

3

.90 2 or 4 or 10 9 24 .8889 .9464 [.2500,.2500,.2500,.2500]

.70

2 23 269 .6899 .8486 [.3762,.3119,.2223,.0897]
4 21 225 .6985 .8529 [.4729,.2636,.1814,.0823]
10 28 231 .6990 .8531 [.5089,.2456,.2229,.0228]
15 23 462 .6996 .8534 [.2501,.3750,.2438,.1313]

.65

2 40 715 .6430 .8249 [.4901,.2550,.1847,.0704]
4 40 934 .6477 .8273 [.4789,.2606,.2059,.0548]
10 38 670 .6487 .8278 [.4597,.2702,.1877,.0826]
15 24 961 .6499 .8284 [.2795,.3603,.2443,.1161]

.63
10 60 1823 .6287 .8176 [.4004,.2999,.2345,.0654]
15 27 1734 .6300 .8183 [.2795,.3603,.2443,.1161]

Table 7: Testing the function IsSubExp_opt on the first Grigorchuk group. Initial weights are
uniform.

23



7.2 Results on new groups

7.2.1 The group of Fig. 7 acting on a 6-letters alphabet

The function IsSubExp_opt starting from uniform weights with ηtar = .67 and update 10 yield the
vector [.3352, .1899, .1899, .2849]. With these weights, the function IsSubExp_fast attained target
η = 0.645 with radius 76 and an egg of size 69978. So this group has growth exponent at most
α = .8034. In view of the difficulty to find optimal weights, it is likely that the actual exponent is
substantially smaller. However it would be a surprise if it were smaller than that of the Grigorchuk
group.

7.2.2 The group of Fig. 8 acting on an 8-letters alphabet

Optimizations stronly suggest to use the following weights [1., 0., 0.], i.e. to take only the involutive
generator into account. Then the function IsSubExp_fast attained target η = 0.819 with radius
464 and an egg of size 2098. So this group has growth exponent at most α = .9124. We believe
this bound is close to optimal.

Note that using uniform weights, IsSubExp_fast attained target η = 0.8299, hence α = .9178,
with radius 157 and an egg of size 5690.

7.2.3 The group of Fig. 9 acting on a 7-letters alphabet

The function IsSubExp_opt with ηtar = .9 and update 10 returned the weights [.3115, .2731, .4154].
With this and target .83, the function IsSubExp_ovi yield the weights [.3238, .2794, .3968] and
η = .8297. Then IsSubExp_fast attained target η = .8200 with radius 91 and an egg of size 54727.
So this group has growth exponent at most α = .9075.

7.2.4 The group with X-shape Schreier graph, 9 states and 17 letters

This group was defined in Section 2.4. The function IsSubExp_fast_uni attained target η =
0.9286 with radius 18 and an egg of size 240039. So this group has growth exponent at most
α = .9746. It is likely that the actual growth exponent is much smaller, but it is already challenging
to prove intermediate growth. The amount of data is so big that the functions IsSubExp_ovi and
IsSubExp_opt cannot get to optimization on an ordinary laptop. This is why only uniform weights
are used.

8 Super-polynomial growth

In this section we provide a folklore sufficient criterion that ensures super-polynomial growth of
some automata groups. In particular, all the assumptions below are satisfied by the examples
presented in Section 2.4.

Let G be an automaton group.

Assumption 8.1. There exists A1, . . . , Ak finite subgroups of G with pairwise trivial intersection
such that

• either k ≥ 3 or k = 2 and A1, A2 are not both groups of size 2,

• the group G is generated by an automaton A with stateset Q = A1 ∪ · · · ∪Ak.

24



Under Assumption 8.1, we take S = Q \ {e}. We denote the self-similar images of the genera-
tors as:

∀s ∈ S, ψ(s) =
〈
s|x1

, . . . , s|xd

〉
π(s). (7)

Assumption 8.2. For any word w in S∗, and for any section x ∈ Σ, we have

|w|x|S ≤
|w|S + 1

2
.

Given our automaton A, we construct an approximating sequence (Gk)k≥0 as follows (we use
superscripts to avoid confusion with sections which are denoted with subscripts).

Set G0 = A1 ∗ · · · ∗ Ak to be the free product of the finite subgroups of Assumption 8.1 and
S0 = S.

For each k ≥ 1, the group Gk will be a subgroup of Gk−1 ≀Σ Sym(Σ) generated by a set Sk in
canonical bijection with S. More precisely

ψk : Gk = 〈Sk〉 →֒ Gk−1 ≀Σ Sym(Σ)

where the generators are given by

∀sk ∈ Sk, ψk(sk) =
〈
sk−1

|x1
, . . . , sk−1

|xd

〉
π(s) modelled on (7).

(Here, Sk, Sk−1 and S are all in canonical bijection as generating sets of their appropriate groups.)

Lemma 8.3. Under Assumptions8.1 and 8.2, for any word w in S∗ of length |w|S ≤ 2k, the
evaluation w(S) in G is trivial if and only if the evaluation w(Sk) in Gk is trivial.

Proof. To check whether the evaluations are trivial, it is sufficient to check if their images in the
iterated wreath products

Gk
ψk◦···◦ψ1

→֒ G0 ≀Σk (Sym(Σ) ≀Σ · · · ≀Σ Sym(Σ)) and G
ψ◦k

→֒ G ≀Σk (Sym(Σ) ≀Σ · · · ≀Σ Sym(Σ))

are trivial. But by construction of Gk, the images in Sym(Σ) ≀Σ · · · ≀Σ Sym(Σ) are the same. On the
other hand for any section u ∈ Σk, one has w(Sk)|u = w(S)|u as words in S0 and S respectively. Now

Assumption 8.2 guarantees that if |w|S ≤ 2k, then |w|u|S ≤ 1. By Assumption 8.1 and definition
of G0, the evaluations of w(Sk)|u and w(S)|u are either both trivial or both non-trivial.

Assumption 8.4. The self-similarity map ψ : G →֒ G ≀Σ Sym(Σ) is surjective on the first section,
i.e. for all g1 in G, there exists g in G such that g|x1

= g1.

Proposition 8.5. Assume G satisfies Assumptions 8.1, 8.2, 8.4 and (⋆) of Proposition 5.2, then
G has intermediate growth.

The following proof uses the notion of amenability of a group, which we will not define here.
The reader can refer to [7] for instance. For our purpose, it is sufficient to know that subexponential
growth implies amenability, that amenability passes to quotients and subgroups and that virtually
free groups (e.g. the group G0 under Assumption 8.1) are not amenable.

Proof. Property (⋆) of Proposition 5.2 guarantees subexponential growth. There remains to check
super-polynomial growth. By Gromov’s theorem, this amounts to prove that G is not virtually
nilpotent. As finitely generated nilpotent groups are finitely presented, it is sufficient to prove that
G is not finitely presented. Assume the contrary and take a finite presentation of G with respect to
the generating set S. There exists some R such that all the defining relations have length ≤ R. By
Lemma 8.3 all these relations also hold in (Gk, Sk) for k large enough. Therefore Gk is a quotient
of G hence amenable too. However by construction and Assumption 8.4, the group Gk contains a
non-trivial free product G0 = A1 ∗ · · · ∗Ak which is non amenable. This is a contradiction.

25



References

[1] A. Akhavi, I. Klimann, S. Lombardy, J. Mairesse, and M. Picantin. On the finiteness problem
for automaton (semi)groups. International Journal of Algebra and Computation, 22(6):1–26,
2012.

[2] V. Aleshin, S. Finite automata and the Burnside problem for periodic groups. Mat. Zametki,
11:319–328, 1972.

[3] L. Bartholdi. The growth of Grigorchuk’s torsion group. Internat. Math. Res. Notices, 20:1049–
1054, 1998.

[4] L. Bartholdi. A Wilson group of non-uniformly exponential growth. C. R. Math. Acad. Sci.
Paris, 336(7):549–554, 2003.

[5] L. Bartholdi. FR – GAP package “Computations with functionally recursive groups”, Version
2.2.1, 2015. http://www.gap-system.org/Packages/fr.html.

[6] L. Bartholdi. Algorithmic decidability of Engel’s property for automaton groups. In Com-
puter Science - Theory and Applications - 11th International Computer Science Symposium in
Russia, CSR 2016, St. Petersburg, Russia, June 9-13, 2016, Proceedings, pages 29–40, 2016.

[7] L. Bartholdi. Amenability of groups and G-sets. Sequences, Groups, and Number Theory.
Springer International Publishing, 2018.

[8] L. Bartholdi and A. Erschler. Growth of permutational extensions. Invent. Math., 189(2):431–
455, 2012.

[9] L. Bartholdi and A. Erschler. Groups of given intermediate word growth. Annales de l’institut
Fourier, 64(5):2003–2036, 2014.

[10] L. Bartholdi, T. Godin, I. Klimann, and M. Picantin. A new hierarchy for automaton semi-
groups. In Proc. 23rd CIAA, LNCS, 2018.

[11] L. Bartholdi and Z. Šunić. On the word and period growth of some groups of tree automor-
phisms. Communications in Algebra, 29-11(11):4923–4964, 2001.

[12] S. Blackburn, C. Cid, and C. Mullan. Group Theory in Cryptography, volume 387 of LMS
Lecture Note Series, pages 133–149. The London Mathematical Society, 2011.

[13] I. V. Bondarenko, N. V. Bondarenko, S. N. Sidki, and F. R. Zapata. On the conjugacy problem
for finite-state automorphisms of regular rooted trees. Groups Geom. Dyn., 7(2):323–355, 2013.
With an appendix by R. M. Jungers.

[14] J. Brieussel. Amenability and non-uniform growth of some directed automorphism groups of
a rooted tree. Math. Z., 263:265–293, 2009.

[15] J. Brieussel. Growth behaviors in the range er
α
. Afrika Matematika, 25(4):1143–1163, 2014.

[16] J. Brieussel. An automata group of intermediate growth and exponential activity. Journal of
Group Theory, 21(4):573–578, 2018.

[17] J. Conway, R. Curtis, S. Norton, R. Parke, and R. Wilson. Atlas of Finite Groups: Maximal
Subgroups and Ordinary Characters for Simple Groups. Clarendon Press, 1985.

26



[18] F. Cotton. Chemical Applications of Group Theory. A Wiley-Interscience publication. Wiley
India, 2003.

[19] P. de la Harpe. Topics in Geometric Group Theory. Chicago Lectures in Mathematics. Uni-
versity of Chicago Press, 2000.

[20] A. Egri-Nagy, A. R. Francis, and V. Gebhardt. Bacterial genomics and computational group
theory: The BioGAP package for GAP. In H. Hong and C. Yap, editors, 2014, pages 67–74,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[21] A. Erschler. Boundary behavior for groups of subexponential growth. Ann. Math., 160:1183–
1210, 2004.

[22] A. Erschler and T. Zheng. Growth of periodic Grigorchuk groups. ArXiv e-prints, Feb. 2018.

[23] J. Fabrikowsky and N. Gupta. On groups with sub-exponential growth functions, ii. J. Indian
Math. Soc.(NS), 56:217–228, 1991.

[24] The GAP Group. GAP – Groups, Algorithms, and Programming, 2015. http://www.gap-
system.org.

[25] E. S. Golod. On nil-algebras and finitely residual groups. Izv. Akad. Nauk SSSR. Ser. Mat.,
28:273–276, 1964.

[26] E. S. Golod and I. Shafarevich. On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat.,
28:261–272, 1964.

[27] R. I. Grigorchuk. Milnor’s problem on the growth of groups. Sov. Math. Dokl., 28:23–26, 1983.

[28] R. I. Grigorchuk. Degrees of growth of finitely generated groups, and the theory of invariant
means. Izvestiya: Mathematics, 25(2):259–300, 1985.

[29] R. I. Grigorchuk. On the growth degrees of p-groups and torsion-free groups. Math. USSR
Sbornik, 54(1):185–205, 1986.

[30] R. I. Grigorchuk. Milnor’s problem on the growth of groups and its consequences, pages 705–
774. Princeton University Press, 2014.

[31] R. I. Grigorchuk and I. Pak. Groups of intermediate growth: an introduction. In Enseign.
Math. Citeseer, 2008.

[32] M. Gromov. Groups of polynomial growth and expanding maps. Publ. Math., Inst. Hautes
Étud. Sci, pages 53–73, 1981.

[33] H. Helfgott. Isomorphismes de graphes en temps quasi-polynomial (d’après Babai et Luks,
Weisfeiler-Leman,...). Astérisque, (1125), 2018.

[34] I. Klimann. To Infinity and Beyond. In I. Chatzigiannakis, C. Kaklamanis, D. Marx, and
D. Sannella, editors, 45th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2018), volume 107 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 131:1–131:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

27



[35] I. Klimann, J. Mairesse, and M. Picantin. Implementing computations in automaton
(semi)groups. In Proc. 17th CIAA, volume 7381 of LNCS, pages 240–252, 2012.

[36] A. Mann. How Groups Grow. London Mathematical Society Lecture Note Series. Cambridge
University Press, 2011.

[37] J. Milnor. Growth of finitely generated solvable groups. J. Diff. Geom., 2:447–449, 1968.

[38] J. Milnor. A note on curvature and fundamental group. J. Diff. Geom., 2:1–7, 1968.

[39] J. Milnor. Problem 5603. Amer. Math. Monthly, 75(6):685–686, 1968.

[40] B. Mohammadi. Optimal transport, shape optimization and global minimization. Comptes
Rendus Mathematique, 344(9):591 – 596, 2007.

[41] B. Mohammadi and P. Redont. Improving the identification of general pareto fronts by global
optimization. Comptes Rendus Mathematique, 347(5):327 – 331, 2009.

[42] R. Muchnik and I. Pak. On growth of Grigorchuk groups. International Journal of Algebra
and Computation, 11(01):1–17, 2001.

[43] Y. Muntyan and D. Savchuk. AutomGrp – GAP package for computations in self-similar groups
and semigroups, Version 1.2.4, 2014. http://www.gap-system.org/Packages/automgrp.html.

[44] V. Nekrashevych. Self-similar groups, volume 117 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 2005.

[45] V. Nekrashevych. Palindromic subshifts and simple periodic groups of intermediate growth.
Ann. Math. (2), 187(3):667–719, 2018.

[46] P. S. Novikov and S. I. Adjan. Infinite periodic groups I. Izv. Akad. Nauk SSSR Ser. Mat.,
32:212–244, 1968.

[47] F. Olukoya. The growth rates of automaton groups generated by reset automata. ArXiv
e-prints, Aug. 2017.

[48] I. I. Reznikov. On 2-state mealy automata of polynomial growth. Algebra and Discrete Math-
ematics, 4, 2003.

[49] I. I. Reznikov and V. I. Sushchanskii. A software system for growth analysis of Mealy automata.
Cybernetics and Systems Analysis, 42(2):265–276, Mar 2006.

[50] S. Sidki. Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity. Journal
of Mathematical Sciences (New York), 100(1):1925–1943, 2000. Algebra, 12.

[51] R. Slansky. Group theory for unified model building. Physics Reports, 79(1):1 – 128, 1981.

[52] A. Svarc. A volume invariant of coverings. Dokl. Akad. Nauk. SSSR, 105:32–34, 1955.

[53] J. Tits. Free subgroups in linear groups. J. Algebra, 20:250–270, 1972.

[54] Y. Vorobets. Notes on the Schreier graphs of the Grigorchuk group. In R. Amer. Math. Soc.,
Providence, editor, Dynamical systems and group actions, volume 567, pages 221–248, 2012.

28



[55] J. S. Wilson. Further groups that do not have uniformly exponential growth. J. Algebra,
279:292–301, 2004.

[56] J. S. Wilson. On exponential growth and uniformly exponential growth for groups. Invent.
Math., 155(2):287–303, 2004.

[57] J. A. Wolf. Growth of finitely generated solvable groups and curvature of Riemannian mani-
folds. J. Diff. Geom., 2:421–446, 1968.

[58] A. Zuk. Groupes engendrés par des automates. Seminaire Bourbaki 971, 2006.

Jérémie Brieussel — IMAG, Université de Montpellier — jeremie.brieussel@umontpellier.fr

Thibault Godin — IMAG, Université de Montpellier — thib.godin@gmail.com

Bijan Mohammadi — IMAG, Université de Montpellier — bijan.mohammadi@umontpellier.fr

29



A Figures of automata groups and their Schreier graphs

c

a

b d

e

111|111

111|111

111|111

110|010 000|100 101|001 011|111
010|110 100|000 001|101 111|011

110|110

110|110

010|000
000|010
100|101
101|100
001|011
011|001

010|000
000|010
100|100
101|101
001|011
011|001

110|110
010|010
000|000
100|101
101|100
001|001
011|011

id

Figure 5: The automata generating the first Grigorchuk group on level 3.

110 010 000 100 101 001 011 111

b

a c

a d

Figure 6: The Schreier graph on level 3 of the automata generating the first Grigorchuk group.

30



c

a

d b

e

1|1

1|1

1|1

1|2 2|1 3|4
4|3 5|6 6|5

2|2
3|3
4|5
5|4
6|6

2|3
3|2
4|4
5|5
6|6

2|3
3|2
4|5
5|4
6|6

id

1 2 3 4 5 6

b

a c

a d

Figure 7: A novel automata generating a group of intermediate growth (on the top) and its Schreier
graph on level 1 (on the bottom). Notice the similarities with the Grigorchuk group on Fig. 2.

e

b

b
−1

a

2|2
3|4
4|3
5|8
6|7
7|6
8|5

1|2
2|3
3|1
4|5
5|6
6|4

1|3
2|1
3|2
4|6
5|4
6|5

1|1

7|7

7|7

8|8 8|8

1|1
2|2
3|3
4|4
5|5
6|6
7|7
8|8

3

1

2

4

5

6

7

8
a

b

b−1

Figure 8: The automaton a = 〈a, e, e, e, e, e, e, e〉(3, 4)(5, 8)(6, 7); b =
〈
e, e, e, e, e, e, b, b−1

〉
(1, 2, 3)(4, 5, 6)

(on the left) from [16] and its Schreier graph on level 1 (on the right).

31



c

a b

e

1|1
2|2 5|5

7|7

3|4
4|3
5|5
6|7
7|6

1|2
2|1
3|6
4|4
6|3

1|1
2|3
3|2
4|5
5|4
6|6

id

3

2

1

4

5

6

7

a

a

b

c

Figure 9: A novel automata generating a group of intermediate growth (on the left) and its Schreier
graph on level 1 (on the right).

32


