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Highly confined Love waves modes by defect states
in a holey SiO2/quartz phononic crystal

Yuxin Liu,1, a) Abdelkrim Talbi,1 Philippe Pernod,1 and Olivier Bou Matar1

Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 IEMN,
LIA LICS/LEMAC

(Dated: 28 September 2018)

Highly confined Love modes are demonstrated in a phononic crystal based on a square array of etched holes
in SiO2 deposited on the ST-cut quartz. An optimal choice of the geometrical parameters contributes to a
wide stop-band for shear waves’ modes. The introduction of a defect by removing lines of holes leads to the
nearly flat modes within the band gap and consequently paves the way to implement advanced designs of
electroacoustic filters and high-performance cavity resonators. The calculations are based on the finite element
method in considering the elastic and piezoelectric properties of the materials. Interdigital transducers are
employed to measure the transmission spectra. The geometrical parameters enabling the appearance of
confined cavity modes within the band gap and the efficiency of the electric excitation were investigated.

PACS numbers: 68.60.Bs

I. INTRODUCTION

Phononic crystals (PnCs), as an elastic analog of
the photonic crystals, have received increasing atten-
tion in the last two decades. PnCs are widely investi-
gated for their potential applications in various areas,
including RF communications[1–7], acoustic isolators[8–
13], sensors[14–19], thermoelectric materials[20–23] and
meta-materials[24–32]. Composed of 1D, 2D, or 3D peri-
odic arrays of inclusions embedded in a matrix, PnCs give
rise to the complete or partial band gaps for both bulk
acoustic waves (BAW)[1, 5, 33–36] and surface acoustic
waves (SAW)[9, 12, 37–44]. The introduction of defects
into PnCs is at the origin of multiple applications such
as waveguide[2, 45, 46], cavity[1, 47, 48], filter[5, 49] and
multiplexer[50]. Most research on the defect modes is
based on the bulk waves[1, 2, 5], Rayleigh waves[51] and
Lamb waves[47, 52], while sensors, especially the bio-
sensors, are based on the Love waves and antisymmet-
ric Lamb waves, which are compatible with the liquid
environment[15, 16] and leak less energy in the liquid.
However, Lamb waves propagate on the extremely thin
slabs, making them comparably fragile and therefore dif-
ficult to manipulate. Whereas Love waves, a shear hor-
izontal (SH) polarized SAW, exist in the guiding layer
deposited on a semi-infinite substrate, which guarantees
both the confinement of the energy and the toughness of
the device, in comparison with the Lamb waves devices.
In recent years, the partial band-gap effect of PnCs on
Love waves has been reported and a reflective grating was
then proposed[12, 43]. Nevertheless, the exploitation of
Love waves interacting with the defect states in PnCs
remains to be investigated.

In this paper, we demonstrate the acoustic band gap
effect in a 2D PnC consisting of a square array of holes

a)Electronic mail: yuxin.liu@phd.ec-lille.fr

in a thin amorphous SiO2 (silica) layer covering a ST-cut
quartz substrate. Localized defect or cavity modes in
the band gap which are introduced by removing lines of
holes in the lattice are observed. The efficiency of cavity
modes in the isolation of PnC is investigated as a function
of the geometrical parameters of PnC and cavity. These
effects are used to design micro-electromechanical res-
onators with highly confined cavity modes of Love waves.
The band structures and transmission spectra are calcu-
lated with the finite element method (FEM, COMSOL
Multiphysicsr). The transmission spectra are compared
with the dispersion curves and the resonant frequencies,
showing good compatibility.
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FIG. 1: (a) Unit cell of the PnC with cylindrical holes
arranged in square array in the silica film. The substrate
is 90ST-cut quartz. r = 0.3a, H = 0.6a, a = 4µm; (b)
1st BZ of the PnC. The gray square is the irreducible BZ;
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FIG. 2: Complete band structures of (a) holey square arrayed PnC and (b) homogeneous silica on quartz (without
PnC). Red-yellow colors denote the SH polarization ratio. Red indicates Love modes and yellow represents Rayleigh
modes. Gray lines denote the modes propagating into the volume. Blue zone is the band gap in the Γ-X direction.

r = 0.3a, H = 0.6a, a = 4µm.

II. MODELS AND SIMULATION

The guiding layer of Love waves is silica (ρ =
2200kg/m3,E = 70GPa, ν = 0.17), with a height of H =
2.4µm, covering a 40µm-height 90ST-cut quartz sub-
strate (Euler angles=(0°, 47.25°, 90°), LH 1978 IEEE),
which has been rotated 90 degrees around the z-axis from
the ST-cut quartz, for a fast SH waves (5000m/s) can be
generated by the electric field. The shear wave velocity in
the silica film is 3438m/s, less than that in the 90ST-cut
quartz substrate, indicating the existence of Love waves.
The cylindrical holes in the silica film have a radius of
r = 1.2µm. The square array period or the lattice con-
stant is a = 4µm. The air hole is chosen because of its
strong contrast in density and elastic constants with re-
gard to the silica. A unit cell of the PnC constructed in
COMSOL, showing in Fig 1(a), is employed to calculate
the dispersion curves or the band structure. Floquet pe-
riodic boundary conditions are applied along the x and
y directions to form a whole crystal, and the bottom of
the substrate is assumed fixed. Love waves propagate
along the x-axis (the y-axis of the ST-cut quartz), where
Rayleigh waves can not be generated[12] due to a zero
electromechanical coupling factor to the substrate. The
first Brillouin zone (BZ) of the PnC is shown in Fig 1(b).
Considering the anisotropy of the quartz substrate, the
irreducible BZ is a square bounded by Γ-X-M-Y-Γ. The
surface of the PnC coincides with the plane z = 0. The
wavelength normalized energy depth (NED) is calculated
to select the surface modes for which is less than 1.

NED =

∫∫∫
D

1
2TijS

∗
ij(−z)dxdydz

λ
∫∫∫
D

1
2TijS

∗
ijdxdydz

(1)

Tij is the stress and Sij the strain. The asterisk (*) signi-
fies the complex conjugate. D denotes the whole domain
of the unit cell. λ is the wavelength. Note that the in-
tegral in the denominator is the total acoustic potential

energy in the unit cell and that the integral in the nu-
merator is weighted by the depth of the point where the
acoustic energy is not zero. That means if the average
depth of the energy is less than the wavelength, the NED
will be less than 1. The NED can well select the modes
with speed less than the SH wave velocity of the sub-
strate, where the wave vector k is relatively large. As for
a relatively small k, λ is fixed to 2a that is resulting from
k = π

a and k = 2π
λ . Moreover, the NED can filter out

the plate modes appeared in our finite-depth substrate
which is supposed to be semi-infinite for Love waves.

Surface modes include SH type SAW and Rayleigh
type SAW. The ratio of SH polarization is calculated to
distinguish between Love waves and Rayleigh waves.

SH ratio =

∫∫∫
D uSHu

∗
SHdxdydz∫∫∫

D(uxu∗x + uyu∗y + uzu∗z)dxdydz
(2)

ux, uy and uz are respectively the displacements along
the x, y, z directions. uSH is the SH displacement com-
ponent that can be expressed as ux cos θ−uy sin θ, which
is perpendicular to the wave vector k. θ is the angle
between k and the y-axis with tan θ = kx

ky
. The com-

plete band structure calculated with COMSOL is shown
in Fig 2(a). The gray part is the radiation zone, where the
waves diffuse to the volume (the bulk waves). The black
line is the dispersion relation of the SH waves (here the

fast shear waves) in the substrate, according to v = 2πf
k .

The curves in red and yellow denote the surface polariza-
tion modes. With the change of propagation direction,
certain modes become gray as they start to diffuse into
the volume. The modes colors are determined by their
SH ratio. The red modes have a large SH ratio, indicat-
ing the Love modes. The yellower the modes, the closer
they are to the Rayleigh type. Orange implies a coupling
between Love modes and Rayleigh modes. In the Γ-X di-
rection, the Love waves are not coupled to the Rayleigh
waves, showing a large band gap ranging from 374.9 to
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FIG. 3: Love modes eigenfrequencies of the PnC as a
function of the hole radius. Between the two black curves
representing the two Love modes is the band-gap region

of the PnC. H = 0.6a, a = 4µm.

544.7 MHz between the two Love modes. Band struc-
ture without PnC is shown in Fig 2(b), with no band
gap for the Love modes. The relation between the band
gap width and the normalized hole radius is shown by
the two black curves in Fig 3, where the band gap is be-
tween the two curves representing the two Love modes,
consistent with the results reported by LIU et al.[43].
The PnC gives rise to the appearance of the band gap,
and the band width reaches a maximum (170.3 MHz) at
r/a=0.29. Since the center of the band gap tends to de-
crease with the augmentation of the normalized radius,
the relative band width (∆f/fcenter) reaches its maxi-
mum (37.1%) at r/a=0.31. The displacement fields of
the two Love modes at the point X of the BZ and their
polarizations along the three axis are shown in Fig 4.
It is found that the polarizations along the x-axis and
the z-axis are negligible compared with the polarization
on the y-axis, which means the polarizations of the two
modes are horizontally perpendicular to the wave prop-
agation direction (x-axis), proving that they are of SH
type. Due to the exclusive generation of Love waves by
the generated electric field, we only consider the Love
modes in the rest of this paper. As the wave vector devi-
ates from the x-axis, the band gap closes in the center of
X-M. Therefore the propagation direction for calculating
the transmission is along the x-axis.

The calculation of transmission spectra is realized by
simulating a SAW device consisting of two parts of alu-
minum inter-digital transducers (IDTs) and a PnC lo-
cated between the IDTs. The height of IDTs is hIDT =
200nm. The IDTs are constructed on the quartz surface
which is piezoelectric to generate the electric field. The
graphic representation of the model is shown in Fig 5(a).
Since the device has translational symmetry along the y-
axis which is perpendicular to the direction of propaga-

																Polarization ux uy uz 
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FIG. 4: Displacement fields and polarizations of the two
Love modes at 374.9 and 544.7 MHz. r = 0.3a, H = 0.6a,

a = 4µm.
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FIG. 5: (a) Schematic of the SAW device model for cal-
culating the transmission spectra of Love waves through
the PnC. r = 0.3a, H = 0.6a, a = 4µm; (b) Zoom of the
band structure of Love modes around the band-gap zone
in the Γ-X direction; (c) Normalized transmission spectra
of Love waves propagating through the PnC around the
band-gap zone. NPnC = 10, NIDT = 20, hIDT = 200nm,

V0 = 1V .

tion, periodic boundary conditions are applied along the
y-axis, reducing the simulation structure to only one pe-
riod. The model is surrounded by perfectly matched lay-
ers (PMLs) for absorbing the undesired reflections from
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FIG. 6: (a) Schematic diagram of the PnC lattice con-
taining a defect (cavity). The arrow denotes the direction
of waves propagation; (b) Supercell of the defect-included
PnC containing 6+W/a unit cells, with NPnC = 3 on

each side of the cavity.

the boundary. The bottom and lateral sides are assumed
fixed. One of the IDTs performing as a transmitter is
given a harmonic voltage signal, with an amplitude of
1V , to excite acoustic waves in the quartz substrate.
These waves are confined in the silica film and propa-
gate through the PnC. They are received by the IDT on
the other side. The output is measured by averaging the
voltage difference between the odd and even fingers. The
odd fingers of the input and output IDTs are assigned to
the electrical ground. The even fingers of the output IDT
are set to zero surface charge accumulation. Note that
the width of the IDT fingers LIDT should be updated
for each frequency in the spectrum according to the re-
lation LIDT = λ

4 = v
4f . v is the velocity of Love waves

for H = 0.6a, resulting from the basic dispersion relation
of Love waves. That is, each frequency corresponds to
a single wave velocity and wavelength. This frequency
response is then normalized by that of the matrix (with-
out PnC) to show the transmission loss contributed by
the PnC only. Our previous work[53] has proved the re-
liability of this model, giving coincident results between
simulations and experiments. Fig 5(c) shows the normal-
ized transmission spectra of the PnC, calculated with 10
PnC holes in center and 20 IDT fingers on each side. The
attenuation appears clear and is consistent with the band
structure prediction.

The resonator is realized by removing W lines of holes
along the y direction in the PnC lattice, forming a cav-
ity perpendicular to the propagation direction. A super-
cell containing 1×(6 +W/a) unit cells is constructed and
shown in Fig 6(b), with periodic boundary conditions ap-
plied in the x and y directions. Here we set the cavity
width to W = 5a. The band structures of Love waves in
the PnCs containing the defect are calculated along Γ-X
and are shown in Fig 7(a) and (d), for r/a=0.2 and 0.3
respectively. Note that the Γ-X is 11 times smaller as we
calculate for a supercell which is 11 times longer, and the
band structure will be folded and repeated 11 times in
the rest part. It is found that new flat modes, referred
to as defect modes or cavity modes, appear inside the
previously observed band gaps. These band structures
are attributed to the coupling between the cavity and

the perfect PnCs. Two cavity modes are predicted in
Fig 7(a), respectively at 479.5 MHz and 538.5 MHz. In
Fig 7(d), another two are at 401.4 and 475.9 MHz. The
corresponding displacement fields of the cavity modes are
shown in Fig 7(c) and (f). The displacements are con-
centrated in the center of the model (in the cavity) and
attenuated at both ends. Inside the cavity, the displace-
ments are uniform throughout the defect with maximums
near the edges. It can be seen that the cavity modes
for r = 0.2a are more confined to the surface than that
for the radius of 0.3a. In Fig 7(d), the flat mode on
the upper limit of the band-gap region is not referred
to as a cavity mode, since its displacement is no more
concentrated in the cavity. Fig 7(b) and (e) show the
normalized transmission spectra with and without the
cavity in the PnCs, for the two different radius, calcu-
lated with 4 holes on each side of the cavity (NPnC=4).
For r = 0.2a, two obvious peaks are found at 478 MHz
and 540.6 MHz, consistent with the predicted resonant
frequencies with small shifts due to the numeric mesh
construction process of the FEM. These two flat cavity
modes give rise to the highly confined transmission peaks.
This means the cavity enables the propagation of waves
that are otherwise forbidden in the perfect PnC. Each of
the two transmission peaks possesses an antisymmetric
line-shape, referred to as Fano resonance. The 1st trans-
mission peak starts with an anti-resonance and ends with
a resonance, while the 2nd transmission peak possesses
the opposite behavior. In Fig 7(e) for r = 0.3a, only a
small dip is found at 403.2 MHz, corresponding to the
first defect mode in the band-gap region. This resonance
is rather difficult to recognize from the band-gap bot-
tom. Furthermore, no resonance has been found at the
2nd predicted resonant frequency, which is referred to as
a deaf mode. These phenomena might be resulting from
the less confinement of the cavity modes for r/a = 0.3.
In other parts of the band-gap region, a superposition of
the two curves is observed.

Fig 8(a) shows the eigenfrequency-radius relation of a
5 holes removed supercell (W=5a), with 3 holes on each
side of the cavity (NPnC=3), calculated at the limit of
the BZ (point X). Between the two black curves is the
band-gap region of the perfect PnC. Two cavity modes
are already in the band-gap region when r/a is near 0.
They are separated with a certain distance as the radius
increases. The two modes below penetrate into the band
gap and become the cavity modes. It seems that the four
cavity modes have a tendency to reach a similar distance
from each other, referred to as mode spacing, the same
way as the Love modes with r/a close to 0. Once this
distance is reached, the lower external modes will cut in
and their frequencies will be little affected by the normal-
ized radius of the PnC. The modes outside are disturbed
when approaching the band gap, and begin to surround
this region. However, a larger radius of the holes and a
lower order of the cavity modes result in a deeper mode
energy (less confined to the surface), leading to a drop
of energy transmission. The lowest cavity mode that ap-
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FIG. 7: Band structures of Love modes on the defect-containing PnCs in the Γ-X direction around the band-gap
region with (a)r = 0.2a and (d)r = 0.3a, Blue zones are the predicted band gaps of the perfect PnCs; Normalized
transmission spectra of Love waves with and without the defect (cavity) for (b)r = 0.2a and (e)r = 0.3a, with
NPnC = 4; Displacement fields of the supercells at the resonant frequencies of the cavity modes for (c)r = 0.2a and

(f)r = 0.3a. W = 5a, H = 0.6a, a = 4µm

pears around r/a=0.45 becomes even difficult to recog-
nize. This explained the different transmission peaks for
the r = 0.2a and r = 0.3a defect-containing PnCs. For
this reason, we change the radius of the holes for our PnC
to r = 0.2a in the rest of this paper, corresponding to a
band gap extending from 426.8 to 555.5 MHz.

Fig 8(b) is the eigenfrequency-cavity width relation of
a supercell with r = 0.2a, calculated at point X. In-
side the band gap denoted in blue are the cavity modes.
As the cavity width increases, the frequencies of cavity
modes decrease and modes with higher order appear (de-
noted by numbers). Apart the 1st cavity mode, other
modes are in pairs, and each pair is twisted outside the
band-gap region and mutually merged. In our range of
measurement (for W from −0.6a to 6a), the confine-

ment of Love modes in the band-gap region is better
for a larger cavity width (W > 3a) or a squeezed cav-
ity width (W < −0.3a) . As the order of the cavity
modes increases, the modes become less inclined, provid-
ing a larger cavity width range for each mode inside the
band-gap region. For example, from 1a to 2.3a for the
3rd cavity mode, and from 3a to 4.7a for the 5th cav-
ity mode. The wave period in the cavity increases by
one-half for every higher mode order.

According to the cavity modes predictions in Fig 8(b),
the transmission peaks of cavity modes can be displaced
inside the band-gap region by changing the width of the
cavity. The fifth and sixth cavity modes are shown as
examples in Fig 9. As the cavity width increases, the
resonant frequency of each cavity mode decreases, with
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FIG. 8: (a) Love modes eigenfrequencies of the defect-containing PnC as a function of the hole radius. Inside the
two black curves delimiting the band-gap zone of the perfect PnC are the cavity modes. Red-white colors denote
the normalized energy depth (NED) of the Love modes. Red indicates a good confinement to the surface. W = 5a,
H = 0.6a, a = 4µm, NPnC = 3; (b)Love modes eigenfrequencies as a function of the cavity width. Blue zone is the
predicted band gap of the perfect PnC. The numbers denote the order of the cavity modes. r = 0.2a, H = 0.6a,

a = 4µm, NPnC = 3.

different occurring order of resonance and anti-resonance
on the transmission peaks. This proved the possibility
of manipulation on the position of transmission peaks.
However, significant changes in shape are observed. This
can be explained after carefully observing the dispersion
curve of each peak. It is found that the group velocity is
negative for the 5th cavity mode and is positive for the
6th cavity mode. This is not influenced by the change
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FIG. 9: Normalized transmission spectra for the defect-
included PnC on the (a) 5th and (b) 6th cavity mode.
Corresponding dispersion curve for each peak is shown on
the left. Blue zones denote the predicted band gap of the
perfect PnC. r = 0.2a, H = 0.6a, a = 4µm, NPnC = 4.

in cavity width. However, the continuity and homogene-
ity of the dispersion curves are altered. A well confined
(denoted in red) and smooth dispersion curve gives rise
to a high and sharp transmission peak, see the cases of
W = 4a and W = 5a for the 6th mode in Fig 9(b). If the
mode is leaky (denoted in white) somewhere in the dis-
persion curve and causes the curve to break (discontinu-
ity or non-smoothness), the corresponding transmission

350 400 450 500 550 600 650
f(MHz)

-25

-20

-15

-10

-5

0

5

N
or

m
al

iz
ed

T
ra

n
sm

is
si
on

(d
B
)

3PnC
4PnC
5PnC
6PnC
7PnC
8PnC

537 538 539 540
f(MHz)

-18

-14

-10

N
o
rm

a
li
ze

d
T
ra

n
sm

is
si
o
n
(d

B
)

FIG. 10: Transmission spectra of the PnC containing the
defect, with the number of PnC holes on each side of the
cavity varies from 3 to 8. Blue zone is the predicted band
gap of the perfect PnC. Inset shows the zoomed peak at
540 MHz for NPnC = 7. W = 5a, r = 0.2a, H = 0.6a,

a = 4µm.
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peak might be affected, in terms of height and/or sharp-
ness. The transmission peak of the 6th mode is perturbed
on a W = 5.5a cavity, exhibiting a shift at the resonant
frequency compared to the dispersion curve, which might
be another explication of its shortened peak. A confined
mode at point X is hence only a prerequisite for a high
and sharp peak. The dispersion curves for the 6th cavity
mode are more compact than the curves for the 5th mode,
as it possesses a larger range of cavity width within the
band gap.

Fig 10 shows the influences of the number of PnC holes
(the crystal size) on the formation of peaks. As NPnC
augments, the band-gap effect increases and it becomes
harder for the waves to penetrate through the crystal,
so the cavity peaks become shorter and sharper. The 1st

transmission peak (at 478 MHz) drops more quickly than
the 2nd peak, due to the enhanced band-gap effect in the
center of the band-gap region, and eventually disappears
after NPnC exceeds 7. On the other hand, insufficient
crystal size (NPnC below 4) results in the blunt peaks,
i.e., insufficient to filter out waves in the band-gap range
other than the cavity frequencies. The changes in qual-
ity factors (Qs) of the two peaks are shown in Fig 11.
As NPnC augments, the Qs have a tendency to increase
and then decrease. The Q of the 1st resonant mode de-
creases earlier due to its rapidly shortened peak. The Q
of the 2nd peak reaches a maximum (1100) at NPnC = 7,
where a highly confined cavity mode appears at 540 MHz,
shown in the inset of Fig 10. It begins to decrease at
NPnC = 8, owing to the shortened peak. For this reason,
the crystal size should be properly chosen to keep a good
quality factor as well as an isolation of the cavity modes.
It is further confirmed that in our range of measurement
(3 ≤ NPnC ≤ 8), the eigenfrequencies of cavity modes
are independent of the crystal size, with only slight fre-
quency shifts on the transmission peaks, which is mainly
due to the mesh construction of the FEM.

III. CONCLUTION

In summary, we have presented the evidence of a par-
tial band gap for Love waves propagating in a PnC con-
sisting of holey square arrayed silica film on a 90ST-cut
quartz. Cavity modes in the phononic band gap for Love
waves are first demonstrated by removing lines of holes
from the guiding film. The transmission peaks of cavity
modes in the band gap of the perfect PnC is attributed to
the appearance of new flat modes in the band structure.
The transmission spectra are proved to be consistent with
the band structure predictions. The resonant frequen-
cies of cavity modes are related to the cavity width. A
well confined and flat cavity mode, as well as a properly
chosen PnC size, is essential for obtaining sharp trans-
mission peaks. This study could be used for potential
applications of Love wave-based PnC devices.
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Llinares, and F. Meseguer, Nature 378, 241241 (1995).
34Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and

P. Sheng, Science 289, 17341736 (2000).
35J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L.

Dobrzynski, and D. Prevost, Physical Review Letters 86, 3012
3015 (2001).

36S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P.
Sheng, Physical Review Letters 88 (2002).

37L. Dhar and J. A. Rogers, Applied Physics Letters 77, 1402
(2000).

38T.-T. Wu, L.-C. Wu, and Z.-G. Huang, Journal of Applied
Physics 97, 094916 (2005).

39A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude,
Physical Review E 74 (2006).

40S. Mohammadi, A. A. Eftekhar, A. Khelif, W. D. Hunt, and A.
Adibi, Applied Physics Letters 92, 221905 (2008).

41S. Benchabane, O. Gaiffe, G. Ulliac, R. Salut, Y. Achaoui, and
V. Laude, Applied Physics Letters 98, 171908 (2011).

42Y. Achaoui, V. Laude, S. Benchabane, and A. Khelif, Journal of
Applied Physics 114, 104503 (2013).

43T.-W. Liu, Y.-C. Lin, Y.-C. Tsai, T. Ono, S. Tanaka, and T.-T.
Wu, Applied Physics Letters 104, 181905 (2014).

44S. Hemon, A. Akjouj, A. Soltani, Y. Pennec, Y. El Hassouani,
A. Talbi, V. Mortet, and B. Djafari-Rouhani, Applied Physics
Letters 104, 063101 (2014).

45M. Torres, F. R. Montero de Espinosa, and J. L. Aragfffdfffdn,
Physical Review Letters 86, 42824285 (2001).

46R. H. Olsson, I. F. El-Kady, M. F. Su, M. R. Tuck, and J.
G. Fleming, Sensors and Actuators A: Physical 145-146, 8793
(2008).

47S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, Ap-
plied Physics Letters 94, 051906 (2009).

48Y. Jin, N. Fernez, Y. Pennec, B. Bonello, R. P. Moiseyenko, S.
H emon, Y. Pan, and B. Djafari-Rouhani, Physical Review B 93
(2016).

49A. Khelif, P. A. Deymier, B. Djafari-Rouhani, J. O. Vasseur, and
L. Dobrzynski, Journal of Applied Physics 94, 13081311 (2003).

50Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, H. Larabi, A. Khe-
lif, A. Choujaa, S. Benchabane, and V. Laude, Applied Physics
Letters 87, 261912 (2005).

51S. Benchabane, O. Gaiffe, R. Salut, G. Ulliac, V. Laude, and K.
Kokkonen, Applied Physics Letters 106, 081903 (2015).

52T. Miyashita, Measurement Science and Technology 16, R47 R63
(2005).

53S. Yankin, A. Talbi, Y. Du, J.-C. Gerbedoen, V. Preobrazhensky,
P. Pernod, and O. Bou Matar, Journal of Applied Physics 115,

244508 (2014).


