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Introduction

Let X be a complex projective manifold. Recall that we say that X is of general type if its canonical bundle K X is big, i.e. if for m large enough, the evaluation map gives a well defined rational map X ⇢ PH 0 (X, K ⊗m X ), birational on its image. Similarly, we say that a projective variety is of general type if its smooth birational models are of general type. According to the following conjecture of Green, Griffiths and Lang, the geometry of such a manifold should satisfy many restrictions, which extend beyond the frame of pure algebraic geometry: Conjecture 1.1 (Green-Griffiths [GG80], Lang [Lan87]). Let X be a complex projective manifold. Then X is of general type if and only if there exists a proper algebraic subset Exc(X) ⊊ X such that 1. for any entire holomorphic curve f ∶ C → X such that f (C) ⊂ Exc(X), f is constant.

2. for any subvariety V ⊂ X such that V ⊂ Exc(X), V is of general type.

The two properties above are related to the general notion of complex hyperbolicity: a manifold satisfying the first one of these is said to be Brody hyperbolic modulo Exc(X), while the second property is a weak case of algebraic hyperbolicity (see [START_REF] Demailly | Hyperbolic algebraic varieties and holomorphic differential equations[END_REF]).

The study of this conjecture has been addressed on many families of examples of complex manifolds, and in particular, it has led to an important amount of work in the case of compactifications of quotients of bounded symmetric domains, which are the objects we will consider from now on.

Let X = Γ Ω be a smooth compactification of a quotient of a bounded symmetric domain by a torsion free arithmetic lattice (see the beginning of Section 2.2 for more details). In this setting, we know from the work of Tai and Mumford [START_REF] Ash | Smooth compactifications of locally symmetric varieties[END_REF][START_REF] Mumford | Hirzebruch's proportionality theorem in the noncompact case[END_REF] that there exists a subgroup of finite index Γ 0 ⊂ Γ, such that for any other subgroup Γ ′ ⊂ Γ 0 of finite index, any smooth compactification X ′ = Γ ′ Ω is of general type. Thus, there is an infinite number of such varieties on which it makes sense to study the Green-Griffiths-Lang conjecture.

It has been proved by Rousseau [Rou15] that if the index [Γ ∶ Γ ′ ] is high enough, then X ′ is Kobayashi hyperbolic modulo its boundary D ′ , which means that the Kobayashi metric (see [START_REF] Kobayashi | Intrinsic distances, measures and geometric function theory[END_REF]) separates any two points of X ′ which are not in the boundary. In particular, this shows that the entire curves on X ′ must belong to D ′ , which was first proved by Nadel [START_REF] Nadel | The non-existence of certain level structures on abelian varieties over complex function fields[END_REF].

In the same spirit, Brunebarbe [START_REF] Brunebarbe | A strong hyperbolicity property of locally symmetric varieties[END_REF] recently showed that if [Γ ∶ Γ ′ ] is high enough, any subvariety of X ′ which is not of general type must be included in the boundary D ′ . While the core of the proof of [START_REF] Rousseau | Hyperbolicity, automorphic forms and Siegel modular varieties[END_REF] was based on simple metric arguments combined with the Ahlfors-Schwarz lemma to bound the size of holomorphic disks contained in X ′ , Brunebarbe's proof uses subtle methods related to the theory of variations of Hodge structures, to show the bigness of the cotangent bundles of subvarieties of X ′ which are not included in the boundary. Then, an application of a theorem of Campana and Pȃun [CP15] permits to conclude that these varieties are of general type.

The main goal of this article is to present a unified treatment of these two theorems, which will permit to generalize [START_REF] Rousseau | Hyperbolicity, automorphic forms and Siegel modular varieties[END_REF] to the case of p-measure hyperbolicity (which is a direct generalization of Kobayashi hyperbolicity), and to give a metric point of view on the main result of [START_REF] Brunebarbe | A strong hyperbolicity property of locally symmetric varieties[END_REF], not using the difficult theory of variations of Hodge structure.

The method we will present consists in constructing a positively curved metric on the canonical bundle K V of a subvariety V ⊂ X. Then, a theorem of Boucksom [Bou02] permits to prove the bigness of the canonical bundle of K V , which shows that V is of general type. This kind of technique was already successfully used in a previous work with Y. Brunebarbe [BC17], to study the log-canonical bundle of varieties supporting a variation of Hodge structure. Here, the metric in question will be produced by twisting the metric induced by the Bergman metric on K V ; this method is similar to the main idea of [START_REF] Rousseau | Hyperbolicity, automorphic forms and Siegel modular varieties[END_REF].

Let us move on to the statement of our results. Consider a bounded symmetric domain Ω, and let Γ be a torsion free arithmetic lattice in Aut(Ω). Let X = Γ Ω , and let X π → X BB be a desingularization of the Baily-Borel compactification of the quotient X = Γ Ω . Let D = X ∖ X ; we choose π so that D is a simple normal crossing divisor. Then X supports the nef and big divisor π * K X BB . When Γ is a neat lattice, we can use [START_REF] Ash | Smooth compactifications of locally symmetric varieties[END_REF] to obtain directly a compactification X = X ⊔ D, with D having simple normal crossings. Remark that by [START_REF] Ash | Smooth compactifications of locally symmetric varieties[END_REF][START_REF] Mumford | Hirzebruch's proportionality theorem in the noncompact case[END_REF], when Γ is neat, X admits some particular compactifications X = X ⊔ D for which π * K BB X is none other than the log-canonical divisor K X + D (see Section 2.2). Normalize the Bergman metric on Ω so that Ric(h Berg ) = -ω Berg , and let -γ ∈ Q * + be the maximum of the holomorphic sectional curvature on Ω.

Our main result is a criterion for algebraic and transcendental hyperbolicity of X in term of the positivity of the line bundle

L 0 = O X π * K X BB .
Theorem 1. There exists a series of constants 0 < γ = C 1 ≤ C 2 ... ≤ C n = 1, depending only on Ω, such that the following holds.

Suppose that for some p ≥ 1, there exists a rational number α

> 1 Cp such that the Q-line bundle L α = L 0 ⊗ O X (-αD) is effective. Then, 1. Any subvariety V ⊂ X, such that V ⊂ B(L α ) ∪ D, and dim V ≥ p, is of general type. 2. X is infinitesimally p-measure hyperbolic modulo B(L α ) ∪ D.
In particular, any generically immersive holomorphic map f ∶ C p → X has its image in B(L α ) ∪ D.

Here, we denote by B(L) = ⋂ m∈N Bs (L ⊗m ) the stable base locus of a Q-line bundle L. The last statement about the hyperbolicity of X modulo B(L α ) ∪ D is a generalization of a theorem of Nadel [START_REF] Nadel | The non-existence of certain level structures on abelian varieties over complex function fields[END_REF], which treated only the case of entire curves in X. However, in [START_REF] Nadel | The non-existence of certain level structures on abelian varieties over complex function fields[END_REF], the stable base locus B(L α ) was mistakenly omitted, as pointed to us by Y. Brunebarbe.

Remark that in the particular case p = 1, the first point could also be proved using Guenancia's recent result [Gue18] (see Remark 2.11). Indeed, if L α is effective, with α > 1 γ , we can twist the restriction of the Bergman metric to T V in a similar fashion to [Cad16]. This yields a singular metric on V , bounded everywhere, with negative sectional curvature, which implies by [Gue18] that V is of general type.

However, studying metrics directly on K V , as we propose to do here, seems to be a more direct approach, and, as stated above, it has the advantage of providing more precise information for the subvarieties of higher dimension. Also, we are able to obtain an explicit lower bound on the volume of the canonical bundle of the subvarieties of such a quotient, as asserts our next result.

Theorem 2. Let α be a positive rational number such that L α = L 0 ⊗ O X (-αD) is effective. Let V ⊂ X be a subvariety with dim V ≥ p and V ⊂ D ∪ B(L α ), and let Ṽ j → V be a resolution of singularities such that F = j * D has normal crossings. Denote by F red the associated reduced divisor.

Then, for any λ ∈ ]0,

C p α[ ∩ Q, the Q-line bundle O Ṽ (K Ṽ + (1 -λ)F red )
is big, and we have the following lower bound on its volume :

vol K Ṽ + (1 -λ)F red ≥ C p -λ α 2π dim V V ω dim V Berg .
Using Theorem 1, we can give a very simple proof of the following strong hyperbolicity result. Its algebraic part is the main result of [START_REF] Brunebarbe | A strong hyperbolicity property of locally symmetric varieties[END_REF], while its transcendental part, concerning the Kobayashi metric, was proved in [START_REF] Rousseau | Hyperbolicity, automorphic forms and Siegel modular varieties[END_REF].

Theorem 3 ([Bru16], [Rou15]). Let λ = 1 γ n+1 2
+ 2 . Assume that Γ is neat, and let X be a toroidal compactification of X in the sense of [START_REF] Ash | Smooth compactifications of locally symmetric varieties[END_REF]. Let X ′ → X, be a ramified cover, étale on the open part, and ramifying at orders higher or equal to λ on each boundary component. Then X ′ is Kobayashi hyperbolic modulo its boundary D ′ , and any subvariety V ⊂ X ′ , V ⊂ D ′ , is of general type.

Later on, once a few more notations are introduced, we will give another version of this theorem, more precise if we consider only subvarieties of dimension higher than some constant (see Theorem 7). For the time being, let us simply mention another version of Theorem 1 in the case of the ball, based on the results of Bakker and Tsimerman [START_REF] Bakker | The Kodaira dimension of complex hyperbolic manifolds with cusps[END_REF].

Theorem 4. Suppose that Ω = B n , and assume that Γ has only unipotent parabolic isometries. Let X ′ → X be a ramified cover, étale on the open part, and ramifying at orders higher than some integer l on the boundary. Let p = ⌈ 2π l ⌉ -1. Then X ′ is infinitesimally p-measure hyperbolic modulo D ′ , and any subvariety V ⊂ X ′ with dim V ≥ p and V ⊂ D ′ , is of general type.

In particular, taking l = 1, we obtain the following striking result.

Corollary 1.2. Let X = Γ B n be as in Theorem 4. Any subvariety V ⊂ X such that dim V ≥ 6 and V ⊂ D is of general type.

Note that if the Green-Griffiths-Lang conjecture holds true, this last result would imply the following conjecture :

Conjecture 1.3. Let X = Γ B n be as in Theorem 4, with n ≥ 6. Then there exists an algebraic subset Σ ⊂ X, with dim Σ ≤ 5, such that any non-constant entire curve, or any subvariety which is not of general type, is included in D ∪ Σ.

In the following, we present a few applications of our previous general results, especially in the case of Siegel modular variety.

Application to the Siegel modular variety

We now turn our attention to the case of Siegel modular variety A g (l), which parametrizes the principally polarized abelian varieties with an l-level structure ; this is always a fine moduli space if l ≥ 3. The variety A g is a quotient of the Siegel generalized upper half-space H g of dimension n = g(g+1)

2

, by the lattice Γ(l) = Ker (Sp(2g, Z) → Sp(2g, Z lZ)). Our results in this setting will be based on the following explicit computation of the constants C p for the domain H g . Proposition 1.4. For some g ≥ 2, let Ω = H g . For any p ∈ 1, g(g+1)

2

, we define k to be the largest integer such that k(k+1) 2 ≤ p -1, and we let r = p -1 -k(k+1)

2

. Then, the value of C p can be computed in terms of k and r, accordingly to the table given in Figure 1. This computation, joint with a small generalization of Theorem 1 to the case of singular quotients of bounded symmetric domains, gives the following corollary, which is a slight improvement of a result of Weissauer [START_REF] Weissauer | Untervarietäten der Siegelschen Modulmannigfaltigkeiten von allgemeinem Typ[END_REF].

g -k = 1 g -k = 2 g -k = 3 g -k = 4 g -k ≥ 5 r = 0 r+2 g+1 2 g-k 1 g+1 r = 1
Corollary 1.5. Let g ≥ 12 and let V ⊂ A g BB a subvariety which is not included in the boundary, nor in the set of elliptic singular points. If codim(V ) ≤ g -12, then V is of general type.

Recall that when l ≥ 3, the lattice Γ(l) is neat (see [Cha85]), so we can use [START_REF] Ash | Smooth compactifications of locally symmetric varieties[END_REF] to obtain a smooth toroidal compactification of the moduli space A g (l). Adding more level structure, we can formulate statements valid for all subvarieties of A g (l). Applying Theorem 1, we obtain the following theorem, which improves a result first stated in [START_REF] Brunebarbe | A strong hyperbolicity property of locally symmetric varieties[END_REF]:

Theorem 5. Let l > 6g, and consider a toroidal compactification A g (l), with boundary D. Then, A g (l) is Kobayashi hyperbolic modulo D, and any subvariety V ⊂ A g (l) with V ⊂ D, is of general type.

The claim concerning the Kobayashi metric was first proved in [START_REF] Rousseau | Hyperbolicity, automorphic forms and Siegel modular varieties[END_REF]. If we allow hyperbolicity modulo a subset other than D, we can take a uniform lower bound on n, as shown by the next result. Theorem 6. Let l ≥ 54. Then there is a proper algebraic subset Z ⊊ A g (l), such that A g (l) is Kobayashi hyperbolic modulo Z ∪ D, and such that any subvariety V ⊂ A g (l), with V ⊂ D ∪ Z, is of general type.

Application to the moduli space of curves with l-level structure

We now fix some genus g ≥ 2, and some integer l ∈ N. As explained by Deligne and Mumford [DM69], we can define a coarse moduli space M g,l curves of genus g with an l-level structure on their Jacobian variety, which comes with a compactification M g,l . By the work of Mumford and Harris [START_REF] Harris | On the Kodaira dimension of the moduli space of curves[END_REF], and Farkas [Far09b], we know that M g,l is of general type if g = 22 or g ≥ 24. In the contrary, when g ≤ 16, the manifolds M g are not of general type (see [Far09a] for a good survey of all these results). Nevertheless, not much seems to have been explicitly stated about the Kodaira dimension of the manifolds M g,l .

In this situation, we can use the previous results to obtain some information about the level structure needed for M g,l to be of general type, for the small values of g. Indeed, the period map induces a generically immersive morphism M g,l → A g,l , and in this situation, we can use Theorem 1 to show that the compactification M g,l is of general type, for many pairs (g, l).

Corollary 1.6. Let g ≥ 2, and let k be the largest integer such that 3g -4 ≥ k(k+1)

2

. Let l ∈ N satisfying the following conditions :

1. if g ≥ 12, let l ≥ 6(gk -1) ; 2. if g ≤ 11, let l ≥ l 0 , where l 0 is given by the following table.

Then M g,l is of general type. 

Organization of the paper

This article will be organized as follows. We will first introduce the definitions needed to complete the proofs of Theorem 1 and 2. We will then prove these results, and explain how we can use them to obtain the previous statements concerning the Kobayashi hyperbolicity or the type of a subvariety of any dimension (see Theorem 7).

We will then move on to the particular examples of the ball and the Siegel half space, for which it is possible to compute explicitly the constants C p mentioned earlier. Our computation will be followed by a presentation of the results concerning the p-measure hyperbolicity and the type of the subvarieties of bounded dimension, for a quotient of one of these two domains.

In order to deal with the case of the variety A g , it is actually necessary to consider the case of nonnecessarily torsion free lattices. In the last section, we will explain one method to extend the field of application of our results, inspired from [START_REF] Weissauer | Untervarietäten der Siegelschen Modulmannigfaltigkeiten von allgemeinem Typ[END_REF]. In particular, we will present a generalization of Theorem 1 to the singular case, in the spirit of [START_REF] Cadorel | Hyperbolicity of singular spaces[END_REF] (see Corollary 4.4). To avoid delaying too much the proof of our main results by introducing the necessary definitions, we have preferred to deal only with torsion free lattices in the first three sections; as we will explain in the last section, we can formulate similar results in the torsion case without much change in the arguments.
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Hyperbolicity results in the torsion-free case

Before starting the proof of our main result, we must introduce a few notations.

Upper bounds on the Ricci curvature of subvarieties

Let Ω ⊂ C n be a bounded symmetric domain. Suppose that the Bergman metric on Ω in normalized as Ric(h Berg ) = -ω Berg , and let γ ∈ Q * + be such that the holomorphic section curvature is bounded from above by -γ.

We will first define properly the constants mentioned in Theorem 1. Let us recall the following classical definition.

Definition 2.1. Let h be an hermitian metric on some complex manifold V , with curvature form Θ. The bisectional curvature of h is defined to be the following function on

T V × T V : ∀u ∈ T V,x , ∀v ∈ T V,x , B(u, v) ∶= iΘ(u, u, v, v) u 2 h v 2 h . (1) 
Now, let p ∈ 1, n , and let x ∈ Ω and v be a non-zero tangent vector at x. Since the bisectional curvature on Ω is non-positive, we deduce that for any vector subspace V containing v, we have

Tr V h Berg i Θ(h Berg ) V V ⋅ (v, v) = i j Θ(e j , e j , v, v) = j B(e j , v) v 2 ≤ -γ v 2 (2)
where Tr V h Berg denotes the trace on V with respect to the Bergman metric. Here, (e j ) j is any unitary frame of V for the metric h Berg . We can take for example e 1 = v v , which gives easily the last inequality. For each p, and for any (x, v) as above, we can now define a constant C x,v,p in the following way :

C x,v,p = - sup V ∋v,dimV =p Tr V h Berg i Θ(h Berg ) V V ⋅ (v, v) v 2 . ( 3 
)
By (2), for any choice of (x, v, p), we have:

C x,v,p ≥ γ > 0.
Definition 2.2. For any p, we let

C p = min v∈T Ω,x ∖{0} C x,v,p .
Since Ω is a homogeneous space, we see immediately that this definition is independent of x. The following property is straightforward.

Proposition 2.3. We have the inequalities

γ ≤ C 1 ≤ C 2 ≤ ... ≤ C n = 1.
The bisectional curvature decreases on subvarieties, so we can find an upper bound on the Ricci curvature on the subvarieties in terms of the constants C p .

Proposition 2.4. Let (Y, 0) ⊂ (Ω, 0) be a germ of submanifold of dimension p. Then, the restriction of the Bergman metric to Y has its Ricci curvature bounded as

Ric h Berg Y ≤ -C p j * ω Berg . ( 4 
)
where j ∶ Y → Ω is the embedding map.

Proof. Let v be a tangent vector to Y at 0, and let V = T Y,0 . We have, by definition of the Ricci curvature:

Ric h Berg Y ⋅ (v, v) = Tr V h Berg Y i Θ(h Berg Y ) V V ⋅ (v, v) ≤ Tr V h Berg i Θ(h Berg ) V V ⋅ (v, v) ≤ -C p v 2 ,
where the first inequality comes from the fact that the bisectional curvature decreases on submanifolds. The last inequality comes simply from the definition of C p .

Remark 2.5. The inequality (4) is optimal: if Y osculates a vector space V ⊂ T Ω,0 realizing the upper bound in (3), for some v ∈ V such that C 0,v,p = C p , then we have

Ric h Berg Y (v, v) = -C p v 2 Berg

Smooth compactifications of X

In this section, we give the proofs of our main hyperbolicity results, in the torsion free case. Before that, let us give a few properties of the smooth compactifications we will consider.

Consider then a torsion free arithmetic lattice Γ ⊂ Aut(Ω). By [BB66, Sat60], it is possible to compactify the smooth quotient X = Γ Ω into a normal projective variety X BB . Note that in this situation, X BB has an ample canonical bundle

K X BB . Consequently, if π ∶ X → X BB is a desingularization map, the pull-back L 0 = π * O X BB K X BB is nef and big.
In the following, we will choose a desingularization π which is biholomorphic over X, and such that D = X ∖ X is a simple normal crossing divisor. Moreover, when the lattice Γ is neat, we can use [START_REF] Ash | Smooth compactifications of locally symmetric varieties[END_REF] to produce particular smooth compactifications X = X ⊔ D, on which D is an SNC divisor, with a natural projection map π ∶ X → X BB . In this case, we have a natural identification L 0 ≅ O X K X + D , by [START_REF] Mumford | Hirzebruch's proportionality theorem in the noncompact case[END_REF]. We now state a result which is a slight variant of a lemma already stated in [START_REF] Cadorel | Hyperbolicity of singular spaces[END_REF]. It permits to control the growth of the norm of sections of powers of π * K X BB near the boundary, which will be of particular importance in the sequel. Recall that the Bergman metric induces a singular metric on T X , which we will also denote by h Berg , when no risk of confusion results. The restrictions π * K X BB X and K X X are canonically identified, so it makes sense to talk about the norm of sections of O X m π * K X BB . Lemma 2.6 (see [START_REF] Cadorel | Hyperbolicity of singular spaces[END_REF]). Let m ∈ N, and let s ∈ H 0 X, L ⊗m 0 . Then, for any neighborhood of a point of the boundary, there exists some constants C > 0 and α > 0 such that,

s 2 (det h * Berg ) m ≤ C log w 2 α , ( 5 
)
where w is a local equation for D.

Proof. The first step of the proof is to show that we can have a bound of the form (5) on a particular normal compactification X 1 of X. To do this, we need to consider a compactification X ′ of a quotient of Ω by a sub-lattice of Γ, constructed as follows.

By [Bor69], we can find a neat normal sublattice of finite index Γ ′ ⊂ Γ. We can then use [START_REF] Ash | Smooth compactifications of locally symmetric varieties[END_REF] to form a smooth compactification of the quotient X ′ = Γ ′ Ω , which will take the form of a smooth projective variety X ′ = X ′ ∪ D ′ , on which D ′ is an SNC divisor. Let G = Γ Γ ′ ; this finite group acts naturally on X ′ . Now, remark that since X BB has normal singularities, s descends to a well defined element

s 0 ∈ H 0 X BB , O X BB (m K X BB ) .
The section s 0 lifts to a G-invariant section s

′ ∈ H 0 X ′ , O X ′ (m (π ′ ) * K X ′ BB ) .
Here, we have denoted by

π ′ ∶ X ′ → X ′ BB the natural projection map.
Since Γ ′ is neat, [START_REF] Mumford | Hirzebruch's proportionality theorem in the noncompact case[END_REF] asserts that s ′ satisfies a bound of the form (5), on any small open subset of the manifold X ′ . Thus, on any neighborhood of a point of the boundary D ′ ⊂ X ′ , there are some constants C ′ > 0 and β > 0 such that

s ′ 2 (det h * Berg ) m ≤ C log w ′ 2 β ,
where w ′ is a local equation for the boundary D ′ . Now, let X 1 be the normal variety G X ′ , where

π 1 ∶ X 1 → G X ′ BB ≅ X BB is the induced projection map. Since the restriction s ′ X is G-invariant, it descends to a global section s 1 of O X1 m (π 1 ) * K X BB on X 1 .
As announced above, we can now check that s 1 has the required growth.

If (w i ) i is a set of local equations for the boundary Weil divisor D 1 ∶= G D ′ , on some open subset of X 1 , we have an equality of ideal sheaves (w ′ ) = ∑ i (p * w i ) i , where p ∶ X ′ → X 1 . Thus, we deduce that for some suitable k ∈ N, we have locally

s 1 2 ≤ C k i log w i β . (6) 
We have proved the required inequality on the birational model X 1 , which completes the first part of the proof.

To conclude, we just need to relate the right hand side of ( 5) and ( 6) on the open part X, which embeds in both X 1 and X. For this, note that the graph of the birational transformation X 1 ⇢ X can be resolved as in the following diagram.

Z u ~v X 1 X o o / / X, Let D Z = u * (D 1 ) red = v * D
; all these divisors are equal because they are all identified to the reduced divisor underlying schematic pullbacks of the boundary of X BB to Z. Thus, if w z is a local equation for this divisor above open subsets of X 1 and X as before, then, on the open set X, the functions ∑ i log w i , log w ′ , and log w r are pairwise commensurable (we say that f and g are commensurable if f = O(g) and g = O(f )).

Finally, on X ⊂ Z, we have u * s 1 = v * s and thus s 1 ○u = s ○v, so these commensurability relations combined with (6) give the required inequality (5).

Before starting the proof of our main result, we introduce two constants that will be useful in applications of Theorem 1. Recall that since K X BB is ample, the line bundle L 0 = O X π * K X BB is big. This property is open, so for any α > 0 small enough, L α = L 0 ⊗ O(-αD) is effective. This allows us to define the following constant:

Definition 2.7. α eff = sup{α > 0 ; L 0 ⊗ O(-αD) is effective }
From what has just been said, we have α eff > 0.

Besides, according to [HT06, Proposition 4.2], there exists α ∈ Q * + such that the stable base locus of the

Q-divisor L 0 ⊗ O(-αD) is included in D. We then let Definition 2.8. α base = sup {α > 0 ; B ( L 0 ⊗ O(-αD) ) ⊂ D}. Actually, it is shown in [HT06, Proposition 4.2] that α base ≥ 1 n+1 2
+2 in general. We will see later on that for some particular toroidal compactifications, we can have better lower bounds on both α base and α eff (see Propositions 3.2, 2.14 and 2.15).

Algebraic hyperbolicity. Proof of Theorem 2

Let us now move on to the proof of the first point of Theorem 1. It is actually an immediate consequence of Theorem 2 ; here is the proof of this last result.

Proof of Theorem 2. Suppose that L α is effective, and let V ⊂ X be a subvariety of dimension q ≥ p such that V ⊂ B(L α ) ∪ D. Choose a rational number λ ∈]0, C p α[, and consider a resolution of singularities Ṽ j → V ⊂ X such that F = j * D has simple normal crossing support.

By assumption, there exist an integer m ∈ N and a section s ∈ H 0 X, L ⊗m 0 ⊗ O(-mαD) , such that s V is non-zero. Moreover, since α > λ Cp , we can find a real number β ∈ λ αm , Cp m . We define a singular metric h on O K Ṽ + (1λ)F red * , in the following way:

h = s 2β det(j * h Berg ), (7) 
where the norm ⋅ is induced by h Berg on L ⊗m 0 . In particular, s is seen as a section vanishing at order mα over D.

To conclude the proof, we will show that the dual metric h * satisfies the hypotheses that permit to apply the main result of [Bou02].

Lemma 2.9. The metric h is locally bounded everywhere on Ṽ .

Proof of Lemma 2.9. We first prove that j -1 (h Berg ) has Poincaré growth near the simple normal crossing divisor F red , in the sense of [START_REF] Mumford | Hirzebruch's proportionality theorem in the noncompact case[END_REF]. The following argument comes directly from [BC17], so we only mention it briefly for completeness: it is a simple application of the Ahlfors-Schwarz lemma, combined with the fact that h Berg has negative holomorphic curvature.

The metric h Berg has negative holomorphic sectional curvature, bounded from above by -γ. Since the holomorphic sectional curvature decreases on submanifolds, this is also true for j * h Berg , at the points where the latter is regular. Moreover, j * h Berg is locally bounded on Ṽ ∖ j -1 (D). Thus, the usual extension lemma for psh functions across analytic subsets shows that, on Ṽ ∖ j -1 (D), the singular metric j * h Berg has negative holomorphic sectional curvature bounded from above by -γ ; this means that the metric induced on any disk has negative curvature uniformly bounded from above, in the sense of currents. We can now use the Ahlfors-Schwarz lemma (see for example [START_REF] Demailly | Hyperbolic algebraic varieties and holomorphic differential equations[END_REF]) for singular metrics to conclude that j * h Berg has Poincaré growth near the simple normal crossing divisor F red .

The previous argument implies that det(j * h Berg ), seen as a metric on O Ṽ (K Ṽ +F red ) * is locally bounded. Thus, if w is a local equation for F red , and if σ is a local frame for O Ṽ K Ṽ + (1λ)F red * , we have:

σ 2 det(j * h Berg ) ≤ C 1 w 2λ ,
for some constant C. Recall that s vanishes at order mα near D, and that the norm ⋅ on L ⊗m 0 induced by h Berg has logarithmic growth near D, by Lemma 2.6. Consequently, the smooth function s is bounded from above as s ≤ C 1 w mα log w k for some k > 0, and we see by the definition (7) that since βmα > λ, the metric h is locally bounded everywhere. This ends the proof of the lemma.

Lemma 2.10. The singular metric h * has positive curvature iΘ( h * ), in the sense of currents, and its absolutely continuous part with respect to the Lebesgue measure satisfies

iΘ( h * ) ac ≥ (C p -βm) ω Berg . (8) 
Proof. The curvature of h at any point of V reg ∖ D can be bounded as:

iΘ( h)(v, v) = iβj * Θ det h * Berg m (v, v) + iΘ(det(j * h Berg ))(v, v) = [-βm j * Ric(h Berg ) + Ric(j * h Berg )] (v, v) ≤ (βm -C q ) v 2 ≤ (βm -C p ) v 2 . ( 9 
)
where at the third line we used Proposition 2.4 and our normalization hypothesis on h Berg , while at the fourth line we used Proposition 2.3. Thus, since βm < C p , the metric h has negative curvature at the points where it is smooth. This means that if locally h * loc = e -ϕ , the weight ϕ is psh on its smooth locus.

Thus, we see that the singular metric h on O Ṽ (K Ṽ + (1λ)F red ), is locally bounded everywhere, and has negative curvature outside the divisor j -1 (D ∪ V sing ). Thus, the local weights ϕ for h * are psh on their smooth locus, and locally bounded. By the usual extension theorem for plurisubharmonic functions across an analytic subset, they are psh on their domain of definition. This means that h * has positive curvature in the sense of currents. Moreover, dualizing (9) yields the wanted inequality, since V reg ∖ D is of full Lebesgue measure in Ṽ . Now, we can use [Bou02], to bound vol(K Ṽ + (1λ)F red ) from below as

vol(K Ṽ + (1 -λ)F red ) ≥ Ṽ i 2π Θ( h * ) ac p
By the inequality (8), this implies that

vol K Ṽ + (1 -λ)F red ≥ C p -βm 2π q Vreg∖(D∪{s=0}) ω q Berg ,
and, making β → λ αm , we obtain

vol(K Ṽ + (1 -λ)F red ) ≥ C p -λ α 2π q Vreg∖D ω q Berg ,
which proves Theorem 2.

Remark 2.11. In the case p = 1, we can follow a different approach using the recent work of Guenancia [Gue18]. If we suppose that L α is effective for some α > 1 C1 , then, with the same notations as before, we can choose a section s ∈ H 0 X, L ⊗m 0 ⊗ O(-mαD) , and we can construct the following singular metric on T Ṽ , in a fashion similar to (7):

h = s 2β j * h Berg ,
with ⋅ having the same meaning, and β being taken as above. Then, by an argument similar to Lemma 2.9, we see that h is locally bounded everywhere. Moreover, a simple computation shows that on its regular locus, h has negative holomorphic sectional curvature, bounded from above by a negative constant. By [Gue18, Proof of Theorem 4.4, Step 6], this implies that V is of general type.

p-measure hyperbolicity. End of the proof of Theorem 1

Before proving the second claim of Theorem 1, we need to recall some classical definitions concerning measure hyperbolicity, that we can find with more details in [START_REF] Demailly | Hyperbolic algebraic varieties and holomorphic differential equations[END_REF]. On any complex manifold X, we can define several intrinsic infinitesimal metrics, whose properties permit to characterize the hyperbolicity properties of X.

Definition 2.12. Let X be a complex manifold, and let ξ = v 1 ∧ ... ∧ v p be a decomposed p-vector based at some point x ∈ X. The Kobayashi-Eisenman pseudometric of v is the real number

e p (ξ) = min {λ > 0; ∃f ∶ B p → X, f (0) = x, λf * (τ p ) = ξ} ,
where τ p = e 1 ∧ ... ∧ e p ∈ ⋀ p T B p ,0 is the canonical p-vector based at 0 ∈ B p . When p = 1, this coincides with the Kobayashi metric. Following the construction of the Kobayashi pseudodistance (see [START_REF] Kobayashi | Intrinsic distances, measures and geometric function theory[END_REF]), we can form various notions of p-measure hyperbolicity modulo a subset. We will deal with the following strong version. Definition 2.13. We say a complex manifold X is infinitesimally p-measure hyperbolic modulo a subset Z if there exists a positive continuous metric υ on the space of all decomposed p-vectors on X ∖ Z such that e p (ξ) ≥ υ(ξ) for any such p-vector ξ.

We can now complete the proof of the transcendental part of our main result.

End of the proof of Theorem 1. The basic idea of the proof is to use the Ahlfors-Schwarz lemma to bound the size of holomorphic balls B p → X. To do this, we construct a metric on these balls, of the same form as (7). Let us describe how to define such a metric. Let x ∈ X ∖ (D ∪ B(L α )), and let ξ be a non-zero p-vector at x. We consider a holomorphic map f ∶ B p → X and a real number λ > 0, such that λf * (τ 0 ) = ξ. Then, since x ∈ B(L α ), we can, as in the proof of Theorem 2, find an integer m ∈ N and a section s of L ⊗m 0 , vanishing at order mα along D, such that s(x) ≠ 0. Now, pick a real number β as before, and define the singular metric

h 0 = s 2β p j * h Berg (10) 
on B p . Now, we show that det h 0 has negative curvature in the sense of currents. By the same argument as in Lemma 2.9, we see that h = det(h 0 ) is locally bounded everywhere on B p ∖ Σ, where Σ is the set of multiple points of p -1 (D) red . Note that codimΣ ≥ 2. Moreover, h * has positive curvature at the points where it is smooth, so that i∂∂ log det h 0 = iΘ( h * ) ≥ j * ω Berg , with = C pβm. Now, if we pick a constant C > sup X s 2β q , the extension theorem for plurisubharmonic functions across analytic subsets implies that We can now state and prove the following more precise version of Theorem 3.

i∂∂ log det h 0 ≥ C ω h0 ( 
Theorem 7. Assume that Γ is neat, and that X is a toroidal compactification of X, as constructed in [START_REF] Ash | Smooth compactifications of locally symmetric varieties[END_REF]. Let p ∈ 1, n and let X ′ → X be a ramified cover, étale on the open part, ramifying at orders higher than some integer l above the boundary. Denote by D ′ the boundary of X ′ . Then, for l ≫ 1 there exists an algebraic subset Z ⊊ X ′ , such that X ′ is Kobayashi hyperbolic modulo Z, and such that any V ⊂ X ′ , with V ⊂ Z, is of general type. More precisely,

1. if l > 1 α eff Cp , we can take Z = Z ′ ∪ D ′ , for some Z ′ ⊊ X ′ .

if l >

1 α base Cp , we can take Z = D ′ . Proof. We will only prove the first claim, the second one being similar. Remark that since Γ is neat, we have L 0 = O X K X + D by [START_REF] Mumford | Hirzebruch's proportionality theorem in the noncompact case[END_REF].

Under the hypothesis l > 1 α effCp , we can pick a rational number such that β > 1 Cp and β l < α eff . Then

K X ′ + (1 -β)D ′ ≥ π * K X + 1 - β l D ,
where the symbol "≥" means that the difference between the two Q-divisors is effective. Since β l < α eff , the divisor on the right hand side is effective. Thus, the divisor on the left is also effective, and since β > 1 Cp and C p ≤ C q for any q ≥ p, the result follows immediately from Theorem 1. Now, Theorem 3 is a direct consequence of Theorem 7, since α base ≥ 1 n+1 2

+2 by [START_REF] Hwang | Uniform boundedness of level structures on abelian varieties over complex function fields[END_REF].

The Siegel moduli space A g is a particular toroidal compactification of a quotient of the Siegel half-space H g , and in this setting, we also have effective lower bounds on both α eff and α base , as the following two propositions show.

Proposition 2.14 ( [START_REF] Weissauer | Untervarietäten der Siegelschen Modulmannigfaltigkeiten von allgemeinem Typ[END_REF]). If X = A g , we have α base ≥ g+1 12 .

Proposition 2.15 ([Gru09]). If X = A g , we have

α eff ≥ (g + 1) (2g! ζ(2g)) 1 g (2π) 2 .
Remark that A g is in general a singular variety, so we define here A g to be a desingularization of the boundary components of A g BB . In the following proof, we state a result about the varieties A g (l), which are smooth when l ≥ 3, so the results we proved until now about smooth quotients apply. Then, the previous two propositions permit to obtain easily the theorems 5 and 6.

Proof of Theorems 5 and 6. We just have to estimate the two ratios appearing in Theorem 7 in the case Ω = H g . For this domain, we can take γ = 2 g(g+1) . Then, by Proposition 2.14, we have

1 α base γ ≤ 12 g + 1 g(g + 1) 2 = 6g.
Similarly, by Proposition 2.15, we find

1 α eff γ ≤ (2π) 2 (g + 1)(2g! ζ(2g)) 1 g g(g + 1) 2 ≤ (2π) 2 2 √ 2πg g+ 1 2 e -g 1 g g 2 ≤ e(2π) 2 2 < 54,
where we used the fact that ζ(2g) > 1, as well as Stirling's upper bound g! ≥ √ 2πg g+ 1 2 e -g . Since A g (n) → A g is a cover ramifying at order at least n on each boundary component if we chose two suitable toroidal compactifications (see [START_REF] Nadel | The non-existence of certain level structures on abelian varieties over complex function fields[END_REF]), both results follow from Theorem 7.

Hyperbolicity in intermediate dimensions: cases of B n and H g

We now present some effective results derived from Theorem 1, based on an explicit computation of the constants C p when Ω is the ball, or the generalized Siegel half-space H g .

Case of the ball

Proposition 3.1. Let Ω = B n . Then, for any p ∈ 1, n , we have C p = p+1 n+1 . Proof. We endow B n with its usual coordinates (z 1 , ..., z n ). Then the Bergman metric, normalized so that -Ric(h Berg ) = ω Berg , takes the form

ω Berg = i(n + 1) (1 -z 2 ) ∑ j dz j ∧ dz j + ∑ j z j dz j ∧ ∑ j z j dz j (1 -z ) 2 .
Let V ⊂ T B n ,0 be a subspace of dimension p. By letting U (n) acting on B n , we can assume V = Vect ∂ ∂z1 , ..., ∂ ∂zp . Now, a direct computation yields

iΘ(h Berg ) 0 = i∂∂h Berg (0) = -i ⎡ ⎢ ⎢ ⎢ ⎣ n j=1 dz j ∧ dz j ⋅ I n + t X ∧ X ⎤ ⎥ ⎥ ⎥ ⎦
, where X is the row vector (dz 1 , ..., dz n ). Restricting to V , we find

i j * Tr V [Θ(h Berg )] V V = -p j * ⎛ ⎝ i n j=1 dz j ∧ dz j ⎞ ⎠ + iTr t X ∧ X V V = -i(p + 1) p j=1 dz j ∧ dz j = - p + 1 n + 1 ω Berg,0 V .
This gives the result, by definition of C p .

We can now use the following result of Bakker and Tsimerman to deduce Theorem 4 and Corollary 1.2.

Proposition 3.2 (Bakker-Tsimerman [START_REF] Bakker | The Kodaira dimension of complex hyperbolic manifolds with cusps[END_REF]). Assume Ω = B n and Γ has only unipotent parabolic isometries. Then α eff ≥ α base ≥ n+1 2π . Actually, when Γ has only unipotent parabolic isometries, Mok [Mok12] gives an explicit description of a minimal toroidal compactification of X. Then, Bakker and Tsimerman show in [START_REF] Bakker | The Kodaira dimension of complex hyperbolic manifolds with cusps[END_REF] that for such a minimal compactification, and for any 0 < λ < n+1 2π , the divisor K X + (1λ)D is ample. Now, to prove Theorem 4, it suffices to combine Theorem 7 with the previous Proposition 3.1 and Proposition 3.2. Corollary 1.2 follows easily.

Case of the Siegel half-space H g

Let us now deal with the case where Ω = H g , for some g ∈ N ∖ {0, 1}. The proof of Corollary 1.6 will be given at the end of the section.

The hermitian symmetric space H g is the classical hermitian symmetric space D III g as denoted in [Mok89], and it can be embedded in D I g,g ≅ M ∈ M g (C) ; M 2 < 1 as

H g ≅ D III g ≅ M ∈ M g (C) ; t M = M and M 2 < 1 .
We will first determine the values of the constants C p when g ≥ 8. To simplify the computations, we will change our normalization on the Bergman metric: we let h be the standard Kähler-Einstein metric on H g , with the normalization Ric(h) = -(g + 1)ω h .

Before we start the proof, and introduce the function which will allow us to compute the constants C p (see Definition 3.3), let us recall a few facts concerning the bisectional curvature on H g . The tangent space to 0 ∈ D III g is isomorphic to the vector space of symmetric square matrices S g (C), and the metric h is determined by the norm X 2 h = Tr(XX). For any X, Y ∈ S g (C), we let B 0 (X, Y ) = iΘ(X, X, Y, Y ), where Θ is the curvature form of the metric h. Then, by (1), we have:

B 0 (X, Y ) = B(X, Y ) X 2 Y 2 .
According to [Mok89], the function B 0 can be computed as follows:

∀X, Y ∈ S g (C), B 0 (X, Y ) = -2 XY 2 , ( 12 
)
with the natural identification

T 0 D III g ≅ S g (C). Let X ∈ T 0 D III g ≅ S g (C).
Still by [Mok89], by letting U (g) act on T 0 D III g , we can assume that X = diag(α 1 , ..., α g ),

where α 1 , ..., α g are real numbers satisfying α 1 ≥ ... ≥ α g ≥ 0. For each i, we let m i = α 2 i . The eigenspaces of the quadratic form Y ∈ S g (C) → -B 0 (X, Y ) with respect to the hermitian metric h admit the following simple description. For i, j ∈ 1, g , let E i,j denote the standard elementary matrix at the i-th row and j-th column. Then, we see directly from the expression (12) that the quadratic form -B 0 (X, ⋅) admits the following eigenvalues.

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 2m i
with multiplicity 1 for each i ∈ 1, g , with unitary eigenvector E i,i m i + m j with multiplicity 1 for each i, j ∈ 1, g with i < j, and with unitary eigenvector

F i,j = 1 √ 2 (E i,j + E i,j ) .
For each p ∈ 1, g(g+1) 2 and each X ∈ S n (C) of norm 1, we introduce the constant

D X,p = min V ∋X,dim V =p Tr V V (-B 0 (X, ⋅) V ) ,
where the trace is taken with respect to the hermitian metric h on the subspaces V .

Remark that because of (3), we have

C 0,X,p = D X,p D X,n ,
where n = g(g+1)

2 is the dimension of H g . With our choice of normalization for h, we have D X,n = g + 1 for any X with X = 1.

Thus, to find the value of C p , it suffices to determine the value of D p = min X =1 D X,p ; the constant C p will then be given by C p = Dp g+1 . For a unitary tangent vector X, we can also write D X,p as follows

D X,p = -B 0 (X, X) + min V ⊂X ⊥ ,dim V =p-1 Tr V V (-B 0 (X, ⋅) V ) .
This second term on the right hand side is actually equal to the sum of the p -1 smallest eigenvalues of the quadratic form -B 0 (X, ⋅), restricted to X ⊥ . We will need to consider a certain set of combinatorial data, on which we will define the function F, whose minimum will be be the constant D p , as stated in Proposition 3.4. For this, we let T = (i, j) ∈ 1, g 2 ; i ≤ j , and let S p be the set of subsets of T of cardinal p -1, with less than g -1 elements on the diagonal. We also introduce the simplex ∆ g = {(m 1 , ..., m g ) ∈ R g + ; ∑ i m i = 1 and m 1 ≥ ... ≥ m g }. We can now define the function F. Definition 3.3. For any Γ ∈ S p and any m ∈ ∆ g , we define the following number:

F(m, Γ) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 2 + ∑ (i,j)∈Γ j>i (m i + m j ) if Γ has g -1 diagonal elements 2 ∑ g i=1 m 2 i + ∑ (i,j)∈Γ (m i + m j ) otherwise Proposition 3.4. We have D p = min {F(m, Γ) ; m ∈ ∆ g , Γ ∈ S p } .
We break down the proof of this proposition into a series of lemmas. We first show a lower bound for D p . The converse upper bound will proved in Lemma 3.10.

Lemma 3.5. D p ≥ min {F(m, Γ) ; m ∈ ∆ g , Γ ∈ S p }.
Proof. Let X = diag(α 1 , ..., α g ) be a real unitary diagonal matrix with α 1 ≥ ... ≥ α g ≥ 0, realizing the minimum D p = D X,p . For each i, let m i = α 2 i and let m = (m 1 , ..., m g ). Let S(X) p-1 be the set of the p -1 smallest eigenvalues of -B(X, ⋅) X ⊥ . Since the space E diag of diagonal matrices and the space E off = Span(F i,j ) i<j are orthogonal with respect to the quadratic form Y ↦ B 0 (X, Y ), the eigenspaces corresponding to the elements of S(X) p-1 split accordingly to the direct sum X ⊥ = (E diag ∩ X ⊥ ) ⊕ E off . Let k be the number of eigenvalues of S(X) p-1 whose eigenspace is included in E diag , counted with multiplicities. We have to cases to deal with, depending on the value of k.

Assume first that k ≤ g -2. Then, by definition of D X,p , we have

D X,p = -B 0 (X, X) + λ∈S(X)p-1 λ = 2 g i=1 α 4 i + λ∈S(X)p-1 λ.
Then, the sum of the elements of S(X) p-1 is bounded from below by the sum of the p -1 smallest eigenvalues of B 0 (X, ⋅), with multiplicities. The eigenvalues of B 0 (X, ⋅) being equal to the m i + m j , for i ≤ j, we can choose Γ ⊂ T such that these p -1 eigenvalues are

{m i + m j ; (i, j) ∈ Γ} ,
with multiplicities. Since the m i are non-increasing, and since Card(Γ) ≤ g(g+1)

2

-1, we see easily that we can suppose that Γ has less than n -1 diagonal elements (or else we could shift one of these elements the right to get a new set Γ ′ with F(m, Γ ′ ) ≤ F(m, Γ) ). Consequently, Γ ∈ S p .

But then we have

D X,p ≥ 2 i m 2 i + (i,j)∈Γ (m i + m j ) = F(m, Γ).
Since D p = D X,p , this gives the result in that case.

Suppose now that k = g -1. Then, if Σ ⊂ S(X) p-1 denotes the set of all diagonal eigenvalues of -B 0 (X, ⋅) X ⊥ , we have Card

(Σ) = g -1 = dim(X ⊥ ∩ E diag ), so -B 0 (X, X) + λ∈Σ λ = -B 0 (X, X) -Tr E diag ∩X ⊥ B 0 (X, ⋅) X ⊥ = -Tr E diag B 0 (X, ⋅) E diag = 2 g i=1 m i = 2 X 2 = 2.
All the elements of S(X) p-1 which are not diagonal have their eigenspaces included in E off : they are of the form m i +m j , for some j > i. Let Γ + be the set of all the (i, j) appearing this way, and let Γ = Γ + ∪{(i, i); i ≠ 1}. Clearly, Γ ∈ S p . Thus we have

D X,p = 2 + (i,j)∈Γ+ (m i + m j ) = F(m, Γ),
which gives the result. Now, we choose a minimizing pair for the function F, whose properties will be studied in the rest of the section.

Definition 3.6. Let (m 0 , Γ 0 ) ∈ ∆ g × S p minimizing (m, Γ) ↦ F(m, Γ), and we suppose in addition that (m 0 , Γ 0 ) satisfies the following conditions, stated in order of decreasing priority.

1. m 0 has the largest possible l such that (m 0 ) g-l+1 = ... = (m 0 ) g = 0 ;

2. among all sets Γ minimizing the function Γ ↦ F m 0 , Γ , Γ 0 has the largest possible number of diagonal elements, the off-diagonal elements are maximal for the lexicographic order, and the diagonal elements have the largest possible indices.

In the rest of the section, l will have the meaning given in the first point of Definition 3.6.

Remark 3.7. Since the elements of m 0 are non-increasing, then Γ 0 is saturated, in the following sense: for any off-diagonal element (i, j) ∈ Γ 0 , we must have {(s, t); s ≥ i, t ≥ j} ⊂ Γ 0 . Indeed, if it were not the case, we could replace (i, j) by an element (s, t) such that m i + m j ≥ m s + m t and (k, l) ≥ (s, t), with respect to the lexicographic order. Also, if (i, i) ∈ Γ 0 , we must have {(j, j); j ≥ i} ⊂ Γ 0 .

In the next lemma, we show a first restriction on the shape of Γ 0 . In the rest of the section, k will denote the number of diagonal elements of Γ 0 . Then the diagonal elements of Γ 0 are the (i, i), for i ≥ gk + 1.

Lemma 3.8. We have l = k.

Proof. We have two cases to study, depending on the value of k.

Case 1: Suppose that k ≤ g -2. Let us show that k ≤ l. Suppose by contradiction that l > k, which means that m g-k = 0. If Γ 0 has an off-diagonal element, we can move it to (gk, gk), to obtain a new set Γ, with one more diagonal element than Γ 0 , and such that

F(m 0 , Γ 0 ) ≥ F(m, Γ).
This is absurd by our choice of Γ 0 , since Γ 0 is supposed to have the largest possible number of diagonal elements. Thus, Γ 0 has no off-diagonal element, and m 0 minimizes

m → F(m, Γ 0 ) = 2 g i=1 m 2 i + 2 g i=g-k+1
m 2 i .

Since gk ≥ 2, this implies easily (for example by Lemma 3.9 below) that (m 0 ) i = 1 g-k for 1 ≤ i ≤ gk, and is equal to 0 otherwise, so (m 0 ) g-k ≠ 0. This is again absurd, so l ≤ k. Now, we show that l ≥ k. Then, m 0 minimizes F(⋅, Γ 0 ), which takes the form

F(m 0 , Γ 0 ) = 2 g i=1 (m 0 ) 2 i + (i,j)∈Γ0 ((m 0 ) i + (m 0 ) j ) (13) = 2 g i=1 (m 0 ) 2 i + 2 g i=g-k+1 (m 0 ) i + g i=1 c i (m 0 ) i
where c i is the number of times the integer i appears in a off-diagonal element of Γ 0 . These numbers are non-decreasing Γ 0 since is saturated. Thus, if b i is the number of times (m 0 ) i appears in the sum in (13), we have b i = 2 ⋅ 1 i≥g-k+1 + c i , and

g-k+1 i=1 (b g-k+1 -b i ) ≥ g-k i=1
2 ≥ 4 since gk ≥ 2. Thus, by Lemma 3.9 below, we have (m 0 ) g-k+1 = ... = (m 0 ) g = 0. This shows that l ≥ k.

Case 2: Suppose that k = g -1.

Then the g-uple m 0 minimizes the function

m ∈ ∆ g → F(m, Γ 0 ) = 2 + j>i (i,j)∈Γ 0 (m i + m j ).
The latter can be written as

F(m, Γ 0 ) = 2 + g i=1 a i m i ,
In the remaining cases, we are going to find other restrictions on the shape of Γ 0 .

Lemma 3.12. If p > k(k+1) 2 + 1, then Γ 0 = T g-k ∪ Π 0 , where T g-k is the upper triangle

T g-k = {(i, j); j ≥ i ≥ g -k + 1} , and Π 0 ⊂ Q g-k ∶= 1, g -k × g -k + 1, g .
Proof. As we saw before, we have (m 0 ) i + (m 0 ) j = 0 for i ≥ j ≥ gk + 1, and by hypothesis, Card(Γ) > Card(T g-k ). Since Γ 0 minimizes F(m 0 , ⋅), it follows from the assumptions we made on Γ 0 that T g-k ⊂ Γ 0 . Now, it suffices to show that for any i ≤ j ≤ gk, then (i, j) ∈ Γ 0 . But for such an (i, j), we have (m 0 ) i + (m 0 ) j ≥ 2(m 0 ) j ≥ 2(m 0 ) g-k . Thus, if (i, j) ∈ Γ, we can replace (i, j) by (gk, gk) in Γ, to obtain a new set Γ ′ , with one more element on the diagonal, and F(m 0 , Γ ′ ) ≤ F(m 0 , Γ 0 ). This is a contradiction.

From now on, we suppose that p > k(k+1) 2 + 1, so Γ 0 has the shape described in Lemma 3.12. For any i ∈ 1, gk , let a i be the number of elements of Π 0 on the i-th row. Then

F(m 0 , Γ 0 ) = 2 g-k i=1 (m 0 ) 2 i + g-k i=1 a i (m 0 ) i . (14) 
Since the (m 0 ) i are in non-increasing order, we see that Π 0 can only have one row which is partially filled, and that all the subsequent ones must be totally filled (or else we could move some elements in Π 0 ⊂ Γ 0 to the bottom-right without increasing F(m 0 , Γ 0 )). Moreover, the elements of the row which is not totally filled must be located on the far right of the row, by our assumptions on Γ 0 .

The following lemma gives an important restriction on the number of elements of Q g-k ∖ Π 0 .

Lemma 3.13. We must have Card

(Q g-k ∖ Π 0 ) ≤ 3. Proof. Suppose by contradiction that Card(Q g-k ∖ Π 0 ) ≥ 4. Then ∑ g-k j=1 (a g-k -a j ) = Card(Q g-k ∖ Π 0 ) ≥ 4
. By Lemma 3.9, since m 0 minimizes (14), this implies that (m 0 ) g-k = 0. This is a contradiction. Now, two types of shapes for Π 0 are a priori possible.

Case 1. The last row of Π 0 is filled. We will see that in this case, since we assumed g ≥ 8, the only possibility is that gk = 1, so F(m 0 , Γ 0 ) = g + 1.

In the case 1, we have a g-k = k. So, if gk = 1, we see that by Lemma 3.12 that Γ 0 = T ∖ {(1, 1)}, and m 0 = (1, 0, ..., 0). Thus F(m 0 , Γ 0 ) = g + 1.

The next lemma shows that necessarily gk = 1 in the case 1. Lemma 3.14. If g ≥ 8 and gk ≥ 2, the case 1 cannot happen.

Proof. We start by ruling out two possibilities, listed below. In each case, the method is the same: we remove a certain number δ ≤ 4 of elements to Π 0 , which we choose to be the smallest possible in the lexicographic order of T . This gives a new set Γ ′ , for which we clearly have F(m 0 , Γ 0 ) ≥ F(m 0 , Γ ′ ). Now, let m be a minimizer in ∆ g for the function F(⋅, Γ ′ ). We can make our choice of removed elements so that above a certain row indexed by some integer l ≤ g -k, there is at least 4 empty slots in Γ ′ . Now, by the same argument as in the proof of Lemma 3.13, this shows that m l = ... = m g = 0. Now, in each one of the following cases, l and δ can be chosen so that there is enough room in the triangle {gk ≥ j ≥ i ≥ l} to add back δ elements to Γ ′ , to give a new set Γ 1 . Then

F(m 0 , Γ 0 ) ≥ F(m 0 , Γ ′ ) ≥ F(m, Γ ′ ) = F(m, Γ 1 ).
But then Card(Γ 1 ) = Card(Γ 0 ) = p -1, and m g-k = 0, so this gives a contradiction with our previous choice of m 0 . This method shows that the following cases cannot happen: (i) k ≥ 4 and gk ≥ 4 ;

(ii) k ≤ 3 and gk ≥ 5 ; Now, we treat the case gk = 3. Then k ≥ 5 because we supposed that g ≥ 8. By the previous argument, all lines of Π 0 must be filled. Indeed, if there were a missing element on the first row, we could remove 3 elements on this row, and put them in the triangle {2 ≤ i ≤ j ≤ 3}, to obtain a new set Γ ′ . Then we would achieve a lower bound F(m, Γ ′ ) ≤ F(m 0 , Γ 0 ), for m = (1, 0, ..., 0), which is absurd. Thus, we have a 1 = ... = a g-k = k, and m 0 achieves the minimum of

F(m 0 , Γ 0 ) = 2 ∑ g-k i=1 (m 0 ) 2 i + k ∑ g-k i=1 (m 0 ) i .
We see easily that the minimum of this expression is equal to F(m 0 , Γ 0 ) = 2 g-k + k = 2 3 + k. However, if we move 3 elements of the first row of Γ 0 to the triangle {2 ≤ i ≤ j ≤ 3}, to get a set Γ ′ , and if we let m = (1, 0, ..., 0), we have

F(m, Γ ′ ) = 2 + (k -3) = k -1 < F(m 0 , Γ 0 ).

This is absurd.

The only case left is when gk = 2. Then a 2 = k, and a 1 = kδ, with δ ∈ {0, 1, 2, 3}. In that case m 0 = ((m 0 ) 0 , (m 0 ) 1 , 0, ..., 0) minimizes

m ∈ ∆ g → F(m, Γ 0 ) = 2 m 2 1 + m 2 2 + k -δm 1 ,
among all possible choices of (m 0 ) 1 ≥ (m 0 ) 2 ≥ 0 such that (m 0 ) 0 + (m 1 ) 1 = 1. We compute easily the value of this minimum: we have

F(m 0 , Γ 0 ) = 2 + k -1 + δ 4 
2 . But if we move one element of the last row of Γ to the slot (1, 1) to get a new set Γ ′ , and if m = (1, 0, ..., 0), we have

F(m, Γ ′ ) = 2 + (k -δ -1) ≤ F(m 0 , Γ 0 ),
since δ ≤ 3. This contradicts our choice of m 0 .

Case 2. The last row of Π 0 is not full, and all the other ones are empty. We will determine a finite number of subcases in this situation, all summed up in Proposition 3.15. Let r be the number of elements of Π 0 on this last row. Then we have r

= Π 0 = p -1 -k(k+1) 2 > 0. The g-uple m 0 minimizes m ∈ ∆ g → F(m, Γ 0 ) = 2 g-k i=1 m 2 i + r m g-k .
By Lemma 3.9, since (m 0 ) g-k ≠ 0, we see that we must have r(gk -1) ≤ 3. This leaves only a finite number of possibilities, for which we can compute the value of F(m 0 , Γ 0 ).

Putting everything together, we obtain the following result.

Proposition 3.15. In the case 2, the only possibilities are the one listed in the table of Figure 3, which gives the value of D p for each case. Then, we have the following diagram:

g -k = 1 g -k = 2 g -k = 3 g -k = 4 r = 1 r + 2
V ○ = ∆ * × ∆ n-1 i / / p U ○ q W ○ = ∆ * × ∆ n-1 j / / G U ○ where V ○ is any connected component of the fibre product W ○ × G U ○ U ○ .
The group of the étale cover p is cyclic of order r for some r ≥ 1, and its generator acts by [1] ⋅ (z 1 , ..., z n ) = (γz 1 , z 2 ..., z n ), with γ = e 2iπ r . Moreover, p can be written p (z 1 , ..., z n ) = (w 1 = z r 1 , w 2 = z 2 , ..., w r = z r ). Remark that both i and j are open immersions, and that i is a morphism of étale covers. Thus, if g ∈ G is the image of [1] by the induced map Z rZ → G, we must have, for any (z 1 , ..., z n ) ∈ V ○ :

i(γz 1 , z 2 ..., z n ) = g ⋅ i (z 1 , ..., z n ).
Since g r = Id U , by Bochner's linearization theorem, we can suppose that there are coordinates near U ○ such that g has the expression g ⋅ (Z 1 , ..., Z n ) = (γ a1 Z 1 , ..., γ an Z n )

for some integers a i ∈ 0, r -1 . Thus, if we write i(z) = (F 1 (z), ..., F n (z)) for z ∈ V 0 , we see easily that for any k, we have

F k (z) = z a k 1 G k (z r 1 , z 2 , ..., z n ), for some holomorphic map G k ∶ W → U , where W = ∆ × ∆ n-1 ⊃ W ○ .
As explained in [START_REF] Weissauer | Untervarietäten der Siegelschen Modulmannigfaltigkeiten von allgemeinem Typ[END_REF], we can now write a condition on g such that for any d-vector field v ∈ Γ W, ⋀ d T W , the meromorphic vector field i * p * (v) is actually holomorphic.

Let I ⊂ 1, n be a subset of cardinal d. Then, we have Now, if we assume that the criterion (I x,d ) is satisfied for any point x ∈ E ∖ F (2) , the metric h Berg on U 0 ⋐ Ω being equivalent to the standard metric h C n . Thus, we see that the norm of any d-vector field in ⋀ d T W is bounded from above on W , for the metric ⋀ d h Berg .

Moreover, the Bergman metric has negative holomorphic curvature, so it has Poincaré growth near any point x ∈ D ∖ F (2) by the argument already used in Lemma 2.9 (see [BC17]). This implies that h Berg is bounded on T X (log D) near such any point of D ∖ F (2) .

More precisely, we get the following result.

Proof. The proof of the first point goes in the same lines as for Theorem 8: we resume the same notations, mutatis mutandis. In this case, the metric ⋀ p h Berg is not necessarily bounded on Λ p T X (log D). However, we see easily that we can choose s so that the metric h of ( 16) is still locally bounded on K * Ṽ . Indeed, for m high enough, we can find a section s of L ⊗m 0 vanishing at some order l i along any E i , so that li m ≥ β i p , and s V ≠ 0. Expending equation (15) and using Definition 4.2, we see easily that h is locally bounded near E and D if we choose β as in the proof of Theorem 2 (with λ = 1). As before, for such a choice of β, the metric h has positive curvature on its smooth locus. This permits to conclude that K Ṽ is big using again [Bou02].

The proof of the p-measure hyperbolicity can be extended in the same manner.

We now get back to the study of A g . Let A g π → A g BB be any resolution of singularities. Recall the following result of Weissauer [START_REF] Weissauer | Untervarietäten der Siegelschen Modulmannigfaltigkeiten von allgemeinem Typ[END_REF]:

Proposition 4.5 ([Wei86, Zusammenfassung, p. 218]). The condition (I x,p ) holds for any simple point of the exceptional divisor of A g , as soon as p ≥ dim A gg + 7.

Thus, Theorem 8 yields the following improved version of the main result of [START_REF] Weissauer | Untervarietäten der Siegelschen Modulmannigfaltigkeiten von allgemeinem Typ[END_REF], which is equivalent to Corollary 1.5: Corollary 4.6. Let A g be any resolution of singularities of A g BB . Then, any subvariety V which is not included in the boundary nor in the exceptional divisor, and such that codimV ≤ g -12, is of general type.

Proof. To deduce the result from Theorem 8, we just need to confirm that if codimV = g(g+1)

2

p ≥ g -12, then L α has its base locus included in D for some α > 1 Cp . By Proposition 2.14, this will be true if g+1 12 > 1 Cp . By the table 1, we have C p = g+1-codimV g+1 in that case, so the result follows.

Annex. Python procedures for the computation of the constants C p for the domain H g In this annex, we describe the Python functions which were used in the proof of Proposition 1.4 and 1.6. We resume the notations of Section 3.2.

For a given (g, p), the function setGamma returns the set of all pairs (k, Γ 0 ), arising in the following manner. Let Γ ∈ S p be such that the off-diagonal element of Γ are maximal for the lexicographic order. If the number of diagonal elements is an integer k ≤ g -1, and if Γ 0 is the tuple (a 1 , ..., a g-1 ), where a i is the number of off-diagonal elements of the i-th row of Γ, then the pair (k, Γ 0 ) is an acceptable pair.

It proceeds inductively, constructing first the pairs (k ′ , Γ ′ 0 ) associated to (g, p -1). Then, it determines all the possible pairs (k, Γ 0 ), by adding 1 to the integers appearing in (k ′ , Γ ′ 0 ) whenever it is possible. def setGamma(g,p):

if p == 1: res = set() res .add( (0, tuple([0] * (g-1))) ) return res l1 = list(setGamma(g, p-1)) res = set() for t in l1 :

if 
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 1 * i * (dZ I ) = p * i * G k ○ p)dz 1 + z a k 1 d(G k ○ p) expression,we see that if the following condition (I x,d ) is satisfied, p * i * (dZ I ) has no pole along w 1 = 0 for any I, or dually, that for any I, the p-vector field i * p * ⋀ j∈I ∂ ∂zj is bounded near E on U ○ . Condition I x,d . For the given x ∈ E ∖ F (2) , let (a 1 , ..., a n ) and r be as above. Then for any choice of d distinct elements a I1 , ..., a I d , we have d j=1 Ij ≥ r. (I x,d ) Remark that if (I x,d ) is satisfied, then (I x,p ) is satisfied for any p ≥ d.
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for some non-decreasing integers a i . Then it is clear that the minimum is reached for m 0 = (1, 0, ..., 0), so l = g -1.

Lemma 3.9. Let b 1 ≤ ... ≤ b g be non-negative integers, and let t be the smallest integer such that ∑ t i=1 (b tb i ) ≥ 4 (we take t = g if there is no such integer). Let m = (m i ) 1≤i≤g ∈ ∆ g be a minimizer for the quadratic form

Then m t+1 = ... = m g = 0, and the value of the minimum is

Proof. Assume first that t = g, i.e.

i , so the minimum is realized at the point R which is the projection of P = -b1 4 , ..., -bg 4

on the convex domain ∆ g . The point R is actually the point of ∆ g which is closest to π ⊥ H (P ), the orthogonal projection of P on the hyperplane H = {∑ i x i = 1}.

We have π ⊥ H (P ) = -b1 4 + ∑ i bi 4g + 1 g , ...,

, the last coordinate of π ⊥ H (P ) is non-positive, so R lies on the hyperplane {x g = 0}, thus m g = 0. The proof of the first point follows by decreasing induction on s.

To prove the second point, we see that we can suppose that t = g, so we have m = π ⊥ H (P ). The formula follows from a simple computation, using the above expressions for Q and π ⊥ H (P ). The following lemma ends the proof of Proposition 3.4. Lemma 3.10. We have F(m 0 , Γ 0 ) ≥ D p .

Proof. Assume first that k ≤ g -2. Let Y = diag(β 1 , ..., β g ), with β i = (m 0 ) i , and let

Then, since β g-k+1 = ... = β g = 0 by Lemma 3.8, we see that V ⊂ Y ⊥ . Moreover, by our choice of V , -B 0 (Y, ⋅) V can be diagonalized, with eigenvalues

In the case where k = g -1, we proceed exactly as before, using the fact that m 0 = diag(1, 0, ..., 0) in that case, as we saw in the proof of Lemma 3.9. Then we have 2 ∑ i (m 0 ) 2 i = 2, and ∑ (i,i)∈Γ (m 0 ) i = 0. Thus, the previous computation gives the same conclusion. Now, the only thing left to do is to compute the value D p = F(m 0 , Γ 0 ). There is one case where the computation is easy, as stated in the next lemma. In the following, we let k have the same meaning as above: we have m 0 = ((m 0 ) 1 , ..., (m 0 ) g-k , 0, ..., 0), with (m 0 ) g-k ≠ 0.

Proof. In that case, we have p-1 ≤ k(k+1)

2

, so since (m 0 ) g-k+1 = ... = (m 0 ) g = 0, the p-1 smallest (m 0 ) i +(m 0 ) j are all equal to 0. Thus,

i , and m 0 minimizes this expression in ∆ g . This gives the result. Now, we can find the actual constant D p when g ≥ 8. Because of Lemma 3.11 and Proposition 3.15, we have D p = 2 g-k , where k is the smallest integer such that p -1 ≤ k(k+1)

2

, except if p is the cardinal of a set Γ 0 , having one of the shapes discussed in Proposition 3.15, which then gives the value of D p .

To find the values of the constants D p when g < 8, we only have a finite number of cases to handle. Rather than doing a tedious case by case analysis, we prefer to present a Python procedure to compute these constants. Incidentally, it can also permit to check that the previous computations are correct for a given value of g.

We present these Python functions in an annex to this article. The important functions are C, which computes the value of the constant D p using Proposition 3.4, and C1, which takes a pair (g, p), and returns (g + 1)C p , where C p is given by the table of Proposition 1.4. We check that C and C1 return the same values for any 2 ≤ g ≤ 8, and any p ≤ g(g+1) 2 , which ends the proof of Proposition 1.4. We can also check that we obtain the same results for other g ≥ 9, which tends to confirm our previous computations.

At this point, we can prove Corollary 1.6, by using Theorem 7, combined with Proposition 1.4.

Proof of Corollary 1.6. For n ≥ 3, the period map gives a generically immersive map from M g,n to the projective manifold A g (n). Let p = 3g -3 be the dimension of dimM g,n .

We can use Proposition 1.4 to determine the value of C p in this case: it is easy to see that

, so 24g -31 would be a perfect square. However, this is impossible, since 24g

. Thus, by Proposition 2.14, we have in that case 1 α baseCp ≤ 6(gk -1), which gives the first point by Theorem 7. If g ≤ 11, we can compute the constant C 3g-3 for each possible value of g (using for example the Python function C(g, p) provided in the annex), to give an upper bound for 1 α base C3g-3 for each g ∈ 2, 12 . Then, Theorem 7 permits to conclude in a similar manner.

To prove Corollary 1.5, we will need to extend the previous results, and especially Theorem 1, to the case of singular quotients of bounded symmetric domains. This is the purpose of the next section.

Singular quotients of bounded symmetric domains

We now explain how to extend the previous considerations to a setting where the lattice Γ is no longer assumed to be torsion free. We will instead assume that Γ has no element fixing some codimension 1 component. As above, we consider a resolution of the singularities of the Baily-Borel compactification X π → X BB .

Let D = p -1 (D BB ) be the boundary divisor of X, where D BB = X BB ∖ X, and let E ⊂ X be the sum of the components of the exceptional divisor lying above X. We can assume that E + D has simple normal crossing support. Let d ∈ N. Following [Tai82] and [START_REF] Weissauer | Untervarietäten der Siegelschen Modulmannigfaltigkeiten von allgemeinem Typ[END_REF] , we will determine a condition on the elliptic elements of Γ so that the singular metric induced by h Berg on ⋀ d T X is locally bounded on X ∖ D.

Denote by F (2) the set of crossing points of the support of E + D, and consider a point x ∈ E ∖ F (2) . Let W ≅ ∆ n be a polydisk centered at x such that W ∩ E = {w 1 = 0}, where (w 1 , ..., w n ) are coordinates on W . Then, we can find a neighborhood of W which is a resolution of a quotient G U , where U ⋐ Ω is an open subset and G is a finite group of automorphisms of U . Let U ○ ⊂ U be the open set where G acts freely, and

Proposition 4.1. Assume that (I x,d ) is satisfied for any x ∈ E ∖ F (2) . Then ⋀ d h Berg is locally bounded from above as a singular metric on ⋀ d T X (log D).

Proof. It only remains to be shown that ⋀ d h Berg is locally bounded as a metric on ⋀ d T X (log D) near F (2) . The metric ⋀ d h Berg has negative curvature on X ∖ (E ∪ D), so if s is a local holomorphic section of

, f is locally bounded at these points, so extends as a plurisubharmonic function across (E + D) ∖ F (2) . Finally, codim F (2) ≥ 2, so f also extends across E (2) as a psh function, and thus is locally bounded from above on O.

The previous considerations permit to give the following refinement of Theorem 1 in this context. As before, we let

Theorem 8. Let p ∈ 1, n . Suppose that there exists a rational number α > 1

Cp such that L α = L 0 ⊗ O(-αD) is effective, and that the condition (I x,p ) holds for any x ∈ E ∖ F (2) . Then the conclusion of Theorem 1 holds, with

Proof. Let us explain how to prove the first point of the conclusion, the second one being similar. Let V ⊂ X be a subvariety of dimension larger than p, and assume that V ⊂ D ∪ B(L α ) ∪ E. If Ṽ is a resolution of the singularities of V , we construct a metric on K Ṽ of the form

for some section s ∈ Γ (L r 0 ⊗ O(-qD)). The rest of the proof goes exactly in the same way ; note that Lemma 2.6 extends to this more general context, because of our assumption that Γ has no fixed component in codimension 1. Indeed, the proof of [START_REF] Cadorel | Hyperbolicity of singular spaces[END_REF] gives the first part of the proof of Lemma 2.6. Also, we can use the same graph argument as in the second part of the proof, to carry the estimate on the birational model for X used in [START_REF] Cadorel | Hyperbolicity of singular spaces[END_REF], to the model we used here.

The only missing element is to show that h * is locally bounded near E ∩ V . This part is provided by Proposition 4.1: this result implies indeed that the metric det(h Berg *

It is not hard to formulate a version of Theorem 8 free of the conditions (I x,d ), by introducing the following quantities.

Definition 4.2. Let p ∈ 1, n . For any component E i of E, let β i p ≥ 0 be the smallest rational number such that for any x ∈ E i ∖ F (2) , if we let (a 1 , ..., a n ) and r be as in Condition (I x,d ), we have, for any choice of p distinct elements a I1 , ..., a Ip ,

Remark 4.3. Let G i be the isotropy group of the subvariety V i ⊂ X on which the component E i projects. With the same notations as above, we necessarily have r ≤ G i since Z rZ embeds as a subgroup of G i . Moreover, for each l we have a l ≥ 1, since no codimension 1 component is fixed. This implies that ∑ p j=1 a Ij ≥ p, so

in general. In particular, if p ≥ max i G i , then β i p = 0 for any i, and the condition (I x,p ) is satisfied everywhere. Then, with the same proof as in Theorem 8, we can state the following result, which generalizes the criterions for hyperbolicity of [START_REF] Cadorel | Hyperbolicity of singular spaces[END_REF]:

Suppose that there exists a rational number α > 1 Cp such that the Qline bundle L α,p = O X (L 0 ⊗ O(-α∆ p )) is effective. Then the conclusion of Theorem 1 holds, with D ∪ B(L α ) replaced by D ∪ E ∪ B(L α,p ).

The function linPart takes a pair (k, Γ 0 ) provided by the function setGamma. If Γ ⊂ T is the associated subset, the function returns the list of elements (c i ) 1≤i≤g , where c i is the number of times i appears in an element of Γ, counting the diagonal elements twice. 

The function C(g,p) computes the value of the constant C p for the given value of g. To do this, it ranges among all the elements (k, Γ 0 ) provided by the function setGamma, and computes the value of µ = min m0∈∆g F(m 0 , Γ), where Γ is associated to (k, Γ 0 ). According to Definition 3.3, if k = g -1, then µ is equal to 2 plus the number of elements on the first row of Γ, and if k ≤ g -1, the value of µ is computed using the function minQuad.