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Abstract

Accurate detection of f waves during atrial flutter is dif-
ficult. However, f waves contain information on the pathol-
ogy and are useful for non-invasive diagnosis. The setup
and difficulties of f wave detection lends itself to the use
of statistical signal detection techniques. Real-life con-
straints can be modeled in the signal observation using
several parameters in order to produce signal detectors
with good performance. Several detectors were developed
and tested using real 12-lead ECG recordings with man-
ually annotated f wave markers available. At the end, a
simple detector is obtained with relatively good detection
performance (AUC = 0.89, (Se,Sp) = (0.87, 0.76)) and
a threshold is available for use in automatic detection of f
waves.

1. Introduction

In many cases, it is necessary to detect and delineate
different deviations (P, Q, R, S and T waves) visible on an
electrocardiogram (ECG) to obtain diagnostic information
on cardiac pathologies in a non-invasive manner. This al-
lows us to obtain different timing and morphology-related
measures which are closely related to cardiac functionality.

In supra-ventricular arrhythmia such as atrial flutter
(AFL), the P wave, commonly referred to as f waves is
of interest. They represent the continuous pathological ac-
tivation of the atrium, driven by depolarizing wavefronts
rotating around both atria using a specific circuit. A beat-
to-beat study of these f waves have shown to provide useful
information for localizing AFL circuits [1].

Accurate detection of these f waves is difficult as their
amplitudes are small compared to noise and other devia-
tions. During low atrio-ventricular conduction blocks (<
3:1), they can be overlapped by T waves. Furthermore,
ECG recordings are usually embedded in noise that are
non-Gaussian. Remarkably, the description above can be
represented as mathematical signal models. This allows
the use of statistical signal detection techniques [2]. They

allow us to obtain detectors which can be parameterized to
account for e.g. weak-amplitude signals, T wave overlaps
and non-Gaussian noise distribution.

In this paper, we develop several detectors using the
generalized likelihood ratio test (GLRT) procedure [2].
The development accounts for several variations of the ob-
served signal model, which allow us to better model real-
life constraints. We then test these detectors using real 12-
lead AFL recordings with known f wave onset markers and
evaluate their performance using standard metrics. Finally,
we show how the detection threshold, used to decide if a
signal is present or not is learned using a simple machine
learning approach. The threshold value can be then be used
for automatic detection of f waves.

2. Methodology

2.1. Dataset and workbench

25 recordings of 12-lead ECG from the Centre Hospital-
ier Princesse Grace in Monaco were acquired from patients
with AFL during ablation procedures using an acquisition
system (Bard, USA). All signals were filtered and down-
sampled to 250 Hz. The recordings contain manual anno-
tations of f wave onsets (2926 manual annotations in to-
tal). Algorithms were implemented in MATLAB R2014b
(MathWorks, USA) on a machine equipped with an Intel
Core i7 6500U processor running at 3GHz and 8GB of
memory.

2.2. Detection setup

f waves manifest on the ECG as a continuous waveform
with a relatively stable beat-to-beat morphology. It is of-
ten possible to find a single f wave not overlapped on top
of QRS or T waves, usually just before the onset of a QRS
complex. This single f wave s of length N was manually
segmented and serves as a reference for the signal of inter-
est. Throughout the ECG recording, we observe multiple
f waves which can be thought of as a version of the ref-
erence modulated by a factor A and delayed by an integer



n1.
ECG recordings are typically perturbed by noise w orig-

inating from various sources. These noise are randomly
distributed and has an associated probability density func-
tion (PDF) p(w). In this paper, we consider two distribu-
tions: normal Gaussian and Laplacian. The latter is par-
ticularly common with electrophysiological signals, where
the noise tends to be spiky and have a heavy-tailed distri-
bution. For simplicity, we assume that the noise is inde-
pendent and identically distributed from sample to sample.

Given a sample x of the recording data from a single
lead, we aim to decide between a signal-present (H1) and
signal-absent (H0) hypothesis, formulated as follows:

H0 : x = w

H1 : x = Asn1 +w

It is shown that the detector which obtains optimum de-
tection performance in this setup is found by calculating
the likelihood ratio [2]:

L(x) =
p(x; A, n1, σ

2
w1
, H1)

p(x; σ2
w0
, H0)

H1

≷
H0

γ (1)

where the PDFs are parameterized by A, n1 and σ2
w under

each hypotheses, and γ is the detection threshold. When
the likelihood ratio value is above γ, we decideH1 is true,
and if it is below γ, we decideH0 is true.

2.3. Parameter estimation

The parameterized PDF depends on the values of the pa-
rameters and must be resolved to obtain a usable detector.
Values are assumed to be either known or unknown. This
allows the full use of any prior available information, and
in the latter case, allows them to be estimated.
σ2
w was estimated using the maximum likelihood (ML)

technique [3]. The logarithm of (1) was differentiated with
respect to σ2

w and set equal to 0. This can be thought of as
estimating the value of σ2

w which minimizes the slope of
the PDF curve, or which maximizes the PDF value for a
given x.

The value of A should be strictly positive; ML estima-
tors are by default unconstrained. To obtain a constrained
version, we used a non-negative least squares algorithm
to estimate A under Gaussian noise [4]. Under Laplacian
noise, the ML estimation of A consists of minimizing the
sum of absolute values, and is solved using the method of
steepest descent [5].

The estimator of n1 is n̂1 = argmaxn1
L(x) [2]. This

is done by sliding the reference signal across the whole
recording, and calculating the detector output at each time
instant. The estimate for n1 is then the peak of the output.

2.4. Detector expressions

The detector is obtained by developing (1), after resolv-
ing all parameter values. The top half of Table 1 sum-
marizes the different single-lead detector expressions as-
suming the combination of known or unknown parameter
values. The lead of choice was selected as the one with the
largest energy ratio between s and its corresponding QRS
complex. Â indicates an estimate of A using the technique
discussed previously. Detector D5 is known as an approx-
imate to the original GLRT [2], with sgn the operator that
outputs the sign of its argument. The symbol T indicates a
transpose.

2.5. T wave model and multilead exten-
sions

The signal model can be modified to account for T
waves that may overlap certain f waves. The hypotheses
are reformulated as follows:

H0 : x = Hb0 +w

H1 : x = Asn1
+Hb1 +w

where H is a matrix of basis functions and b the weights
of each function. In this paper, we used polynomials of
degrees 0 to 3 as a set of basis functions to estimate T
wave shapes, denoted as T = Hb. The parameters b0

and b1 were estimated using computational methods un-
der both noise distribution. The bottom half of Table 1
shows the estimators obtained using this model. Q =
I − H(HT H)−1HT is the orthogonal projector to the
null space of H.

Standard ECG recordings contain 12 leads. It is natural
then to consider using all leads in hopes to obtain a bet-
ter detector. The observations of each lead can be grouped
into a matrix X = [x1 · · ·x12]. The PDF of X requires in-
formation on the covariance structure between each lead.
In this paper, we consider that the observations are uncor-
related amongst the leads and have the same variance. This
results in the multilead PDF becoming the product of all
single-lead PDFs, which translates into a sum of detector
outputs when σ2

w is known and a product of detector out-
puts when σ2

w is unknown. This also applies when the T
wave is modeled in a multilead setting.

Considering all possible configurations, there were 32
detectors in total (16 single-lead detectors and 16 multilead
detectors).

2.6. Determination of the decision thresh-
old and performance

An example of a detector output is shown in (Fig 1).
Many peaks may be discerned, indicating a candidate de-



Table 1. Single-lead detector expressions
Parameter values w ∼ Gauss w ∼ Laplace

A and σ2
w known D1(x) = xT s D5(x) =

N−1∑
n=0

sgn (x[n])s[n]

A unknown D2(x) = Â(2xT s− ÂsT s) D6(x) =
N−1∑
n=0
|x[n]| − |x[n]− Âs[n]|

σ2
w unknown D3(x) =

xT x

(x− s)T(x− s)
D7(x) =

N−1∑
n=0
|x[n]|

/ N−1∑
n=0
|x[n]−As[n]|

A and σ2
w unknown D4(x) =

xT x

(x− Âs)T(x− Âs)
D8(x) =

N−1∑
n=0
|x[n]|

/ N−1∑
n=0
|x[n]− Âs[n]|

A and σ2
w known D9(x) = xT Qs D13(x) =

N−1∑
n=0
|x[n]−T̂0[n]|−|x[n]−As[n]−T̂1[n]|

A unknown D10(x) = Â(2xT Qs−ÂsT Qs) D14(x) =
N−1∑
n=0
|x[n]−T̂0[n]|−|x[n]−Âs[n]−T̂1[n]|

σ2
w unknown D11(x) =

xT Qx

(x−s)T Q(x−s)
D15(x) =

N−1∑
n=0
|x[n]−T̂0[n]|

/N−1∑
n=0
|x[n]−As[n]−T̂1[n]|

A and σ2
w unknown D12(x) =

xT Qx

(x−Âs)T Q(x−Âs)
D16(x) =

N−1∑
n=0
|x[n]−T̂0[n]|

/N−1∑
n=0
|x[n]−Âs[n]−T̂1[n]|

Figure 1. Example of a detector output (bottom trace; D5 using a single lead) and its corresponding ECG record (top
trace; lead V1). Red circles indicate detection peaks, with filled ones being true detection. Blue diamonds indicate manual
annotations. The dashed line indicates the best threshold selected using the method described in Section 2.6. The true
detection and manual annotations can be seen to agree well with each other.

tection. The threshold γ separates true and false detec-
tion and is generally determined during the development
of the detector expressions. However, false detection peaks
are generally lower than true ones, resembling a classifica-
tion problem. Machine learning methods can then be used
to determine an optimal threshold γopt that best separates
true and false detection. Furthermore, this threshold can
be used with new recordings to perform automatic detec-
tion of f waves. In this paper, we used an approach based
on leave-one-out (LOO) cross-validation, suitable for the
small number of annotations that were available.

The peaks were classed as either true or false detection
by comparing the instant of a detector peak to manual an-
notations. We used a limit of ±25 ms from a true anno-
tation and selection of highest peak as criteria to decide a
true detection. The remaining peaks are classed as false de-

tection. Peaks within the duration of QRS complexes were
discarded. To standardize the detection output across the
whole dataset of recordings, the peaks for each recording
were normalized by its largest-valued peak, giving values
between 0 and 1. All peaks were grouped together and
labeled.

For a fixed threshold γ′, we applied a LOO cross-
validation algorithm. First, a test sample ytest of label ltest
is removed from the ensemble, resulting in a reduced train-
ing set. We calculate PTrue

above, the probability that the re-
maining labels are true knowing that their associated peak
value is above γ′, and likewise for false ones, noted PFalse

above.
The same is also done for samples below the threshold,
producing PTrue

below and PFalse
below.

Validation is then performed by predicting the test la-
bel through a comparison of two probabilities (PTrue

above and



PFalse
above or PTrue

below and PFalse
below) depending on the location of

ytest with regards to γ′, and deciding the class based on
which one is larger. The predicted label is tested against
ltest: if matching, then a counter is incremented. The algo-
rithm then repeats by selecting a different test sample, until
all samples have been used. At the end, the counter indi-
cates the number of correct predictions made for γ′. After
all values of γ have been evaluated, the one for which the
count is maximized is taken as γopt.

Once the value of γopt was determined, the detection
performance can be quantified on the set of all peaks of a
given detector using standard performance metrics, which
are sensitivity Se, specificity Sp, accuracy Acc, all defined
as follows:

Se = TD/(TD + FR)

Sp = TR/(TR + FD)

Acc = (TD + TR)/(TD + FR+ FD+ TR)

and AUC, which is defined as the area under the curve of
Se against Sp.

TD are peaks above the threshold corresponding to f
waves, whereas TR are peaks below the threshold not cor-
responding to f waves. All three metrics are valued be-
tween 0 and 1.

3. Results and Discussion

The overall performance of the detectors can be quanti-
fied by the AUC. Of all 32 detectors, the single-lead ver-
sion of D5 has the highest AUC value (AUC = 0.89).

Table 2. Best detector performances and threshold
D5

AUC 0.89
Se,Sp 0.87 0.76
Acc 0.83
γopt 0.581

The thresholds issued by the algorithm and their corre-
sponding values of Se and Sp are shown in Table 2 for
detector D5. It is remarkable that several other detectors
have comparable performance to D5, but they have a ten-
dency to output significantly many false detection. In an
automatic detection setting for use in a beat-to-beat anal-
ysis, it is preferable to have a lower rate of false alarm to
avoid detecting false f waves, even if rate of detection has
to be traded off. This makes the other detectors a less fa-
vorable choice for use in automatic detection, compared to
D5. It is thus preferred for use in an automatic detection
setting. In terms of timing, D5 has an error of 1.26± 9.04
ms from a true annotation.

It is remarkable that the computational methods used for
estimating the different parameters of the signal model re-
quire massive amount of time ( 13 hours for a single record
using multilead detectors with T wave model). This is
partly due to the requirement of the detector expression.
It is possible to simplify the expression further, or use an-
other form of detector that do not require estimation of any
parameters [2].

4. Conclusion

In this paper, we developed several f wave detectors
based on the principles of generalized likelihood ratio test.
By employing this principle, these detectors are adapted
to real-life conditions by accounting for various effects
(modulation, T wave overlap, non-Gaussian noise). This
is achieved through the use of various signal models and
parameterization of the likelihood ratio. The detection
threshold–useful for automatic detection of f waves–is
learned using an original technique based on leave-one-
out cross-validation. The detector of choice shows good
performance with a small timing error.
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