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Detecting Flutter Waves in the Electrocardiogram Using Generalized Likelihood Ratio Test

Accurate detection of f waves during atrial flutter is difficult. However, f waves contain information on the pathology and are useful for non-invasive diagnosis. The setup and difficulties of f wave detection lends itself to the use of statistical signal detection techniques. Real-life constraints can be modeled in the signal observation using several parameters in order to produce signal detectors with good performance. Several detectors were developed and tested using real 12-lead ECG recordings with manually annotated f wave markers available. At the end, a simple detector is obtained with relatively good detection performance (AUC = 0.89, (Se, Sp) = (0.87, 0.76)) and a threshold is available for use in automatic detection of f waves.

Introduction

In many cases, it is necessary to detect and delineate different deviations (P, Q, R, S and T waves) visible on an electrocardiogram (ECG) to obtain diagnostic information on cardiac pathologies in a non-invasive manner. This allows us to obtain different timing and morphology-related measures which are closely related to cardiac functionality.

In supra-ventricular arrhythmia such as atrial flutter (AFL), the P wave, commonly referred to as f waves is of interest. They represent the continuous pathological activation of the atrium, driven by depolarizing wavefronts rotating around both atria using a specific circuit. A beatto-beat study of these f waves have shown to provide useful information for localizing AFL circuits [START_REF] Kamarul Azman | Localizing atrial flutter circuit using variability in the vectorcardiographic loop parameters[END_REF].

Accurate detection of these f waves is difficult as their amplitudes are small compared to noise and other deviations. During low atrio-ventricular conduction blocks (< 3:1), they can be overlapped by T waves. Furthermore, ECG recordings are usually embedded in noise that are non-Gaussian. Remarkably, the description above can be represented as mathematical signal models. This allows the use of statistical signal detection techniques [START_REF] Kay | Fundamentals of Statistical Signal Processing: Detection Theory[END_REF]. They allow us to obtain detectors which can be parameterized to account for e.g. weak-amplitude signals, T wave overlaps and non-Gaussian noise distribution.

In this paper, we develop several detectors using the generalized likelihood ratio test (GLRT) procedure [START_REF] Kay | Fundamentals of Statistical Signal Processing: Detection Theory[END_REF]. The development accounts for several variations of the observed signal model, which allow us to better model reallife constraints. We then test these detectors using real 12lead AFL recordings with known f wave onset markers and evaluate their performance using standard metrics. Finally, we show how the detection threshold, used to decide if a signal is present or not is learned using a simple machine learning approach. The threshold value can be then be used for automatic detection of f waves.

Methodology

Dataset and workbench

25 recordings of 12-lead ECG from the Centre Hospitalier Princesse Grace in Monaco were acquired from patients with AFL during ablation procedures using an acquisition system (Bard, USA). All signals were filtered and downsampled to 250 Hz. The recordings contain manual annotations of f wave onsets (2926 manual annotations in total). Algorithms were implemented in MATLAB R2014b (MathWorks, USA) on a machine equipped with an Intel Core i7 6500U processor running at 3GHz and 8GB of memory.

2.2.

Detection setup f waves manifest on the ECG as a continuous waveform with a relatively stable beat-to-beat morphology. It is often possible to find a single f wave not overlapped on top of QRS or T waves, usually just before the onset of a QRS complex. This single f wave s of length N was manually segmented and serves as a reference for the signal of interest. Throughout the ECG recording, we observe multiple f waves which can be thought of as a version of the reference modulated by a factor A and delayed by an integer n 1 .

ECG recordings are typically perturbed by noise w originating from various sources. These noise are randomly distributed and has an associated probability density function (PDF) p(w). In this paper, we consider two distributions: normal Gaussian and Laplacian. The latter is particularly common with electrophysiological signals, where the noise tends to be spiky and have a heavy-tailed distribution. For simplicity, we assume that the noise is independent and identically distributed from sample to sample.

Given a sample x of the recording data from a single lead, we aim to decide between a signal-present (H 1 ) and signal-absent (H 0 ) hypothesis, formulated as follows:

H 0 : x = w H 1 : x = As n1 + w
It is shown that the detector which obtains optimum detection performance in this setup is found by calculating the likelihood ratio [START_REF] Kay | Fundamentals of Statistical Signal Processing: Detection Theory[END_REF]:

L(x) = p(x; A, n 1 , σ 2 w1 , H 1 ) p(x; σ 2 w0 , H 0 ) H1 ≷ H0 γ (1) 
where the PDFs are parameterized by A, n 1 and σ 2 w under each hypotheses, and γ is the detection threshold. When the likelihood ratio value is above γ, we decide H 1 is true, and if it is below γ, we decide H 0 is true.

Parameter estimation

The parameterized PDF depends on the values of the parameters and must be resolved to obtain a usable detector. Values are assumed to be either known or unknown. This allows the full use of any prior available information, and in the latter case, allows them to be estimated.

σ 2 w was estimated using the maximum likelihood (ML) technique [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF]. The logarithm of (1) was differentiated with respect to σ 2 w and set equal to 0. This can be thought of as estimating the value of σ 2 w which minimizes the slope of the PDF curve, or which maximizes the PDF value for a given x.

The value of A should be strictly positive; ML estimators are by default unconstrained. To obtain a constrained version, we used a non-negative least squares algorithm to estimate A under Gaussian noise [START_REF] Lawson | Solving Least Squares Problems[END_REF]. Under Laplacian noise, the ML estimation of A consists of minimizing the sum of absolute values, and is solved using the method of steepest descent [START_REF] Singleton | A method for minimizing the sum of absolute values of deviations[END_REF].

The estimator of n 1 is n1 = arg max n1 L(x) [START_REF] Kay | Fundamentals of Statistical Signal Processing: Detection Theory[END_REF]. This is done by sliding the reference signal across the whole recording, and calculating the detector output at each time instant. The estimate for n 1 is then the peak of the output.

Detector expressions

The detector is obtained by developing (1), after resolving all parameter values. The top half of Table 1 summarizes the different single-lead detector expressions assuming the combination of known or unknown parameter values. The lead of choice was selected as the one with the largest energy ratio between s and its corresponding QRS complex. Â indicates an estimate of A using the technique discussed previously. Detector D 5 is known as an approximate to the original GLRT [START_REF] Kay | Fundamentals of Statistical Signal Processing: Detection Theory[END_REF], with sgn the operator that outputs the sign of its argument. The symbol T indicates a transpose.

T wave model and multilead extensions

The signal model can be modified to account for T waves that may overlap certain f waves. The hypotheses are reformulated as follows:

H 0 : x = Hb 0 + w H 1 : x = As n1 + Hb 1 + w
where H is a matrix of basis functions and b the weights of each function. In this paper, we used polynomials of degrees 0 to 3 as a set of basis functions to estimate T wave shapes, denoted as T = Hb. The parameters b 0 and b 1 were estimated using computational methods under both noise distribution. The bottom half of Table 1 shows the estimators obtained using this model. Q = I -H(H T H) -1 H T is the orthogonal projector to the null space of H.

Standard ECG recordings contain 12 leads. It is natural then to consider using all leads in hopes to obtain a better detector. The observations of each lead can be grouped into a matrix

X = [x 1 • • • x 12 ].
The PDF of X requires information on the covariance structure between each lead. In this paper, we consider that the observations are uncorrelated amongst the leads and have the same variance. This results in the multilead PDF becoming the product of all single-lead PDFs, which translates into a sum of detector outputs when σ 2 w is known and a product of detector outputs when σ 2 w is unknown. This also applies when the T wave is modeled in a multilead setting.

Considering all possible configurations, there were 32 detectors in total (16 single-lead detectors and 16 multilead detectors).

Determination of the decision threshold and performance

An example of a detector output is shown in (Fig 1). Many peaks may be discerned, indicating a candidate de- 
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Example of a detector output (bottom trace; D 5 using a single lead) and its corresponding ECG record (top trace; lead V1). Red circles indicate detection peaks, with filled ones being true detection. Blue diamonds indicate manual annotations. The dashed line indicates the best threshold selected using the method described in Section 2.6. The true detection and manual annotations can be seen to agree well with each other.

tection. The threshold γ separates true and false detection and is generally determined during the development of the detector expressions. However, false detection peaks are generally lower than true ones, resembling a classification problem. Machine learning methods can then be used to determine an optimal threshold γ opt that best separates true and false detection. Furthermore, this threshold can be used with new recordings to perform automatic detection of f waves. In this paper, we used an approach based on leave-one-out (LOO) cross-validation, suitable for the small number of annotations that were available.

The peaks were classed as either true or false detection by comparing the instant of a detector peak to manual annotations. We used a limit of ±25 ms from a true annotation and selection of highest peak as criteria to decide a true detection. The remaining peaks are classed as false de-tection. Peaks within the duration of QRS complexes were discarded. To standardize the detection output across the whole dataset of recordings, the peaks for each recording were normalized by its largest-valued peak, giving values between 0 and 1. All peaks were grouped together and labeled.

For a fixed threshold γ , we applied a LOO crossvalidation algorithm. First, a test sample y test of label l test is removed from the ensemble, resulting in a reduced training set. We calculate P True above , the probability that the remaining labels are true knowing that their associated peak value is above γ , and likewise for false ones, noted P False above . The same is also done for samples below the threshold, producing P True below and P False below . Validation is then performed by predicting the test label through a comparison of two probabilities (P True above and P False above or P True below and P False below ) depending on the location of y test with regards to γ , and deciding the class based on which one is larger. The predicted label is tested against l test : if matching, then a counter is incremented. The algorithm then repeats by selecting a different test sample, until all samples have been used. At the end, the counter indicates the number of correct predictions made for γ . After all values of γ have been evaluated, the one for which the count is maximized is taken as γ opt .

Once the value of γ opt was determined, the detection performance can be quantified on the set of all peaks of a given detector using standard performance metrics, which are sensitivity Se, specificity Sp, accuracy Acc, all defined as follows: Se = TD/(TD + FR) Sp = TR/(TR + FD) Acc = (TD + TR)/(TD + FR + FD + TR) and AUC, which is defined as the area under the curve of Se against Sp.

TD are peaks above the threshold corresponding to f waves, whereas TR are peaks below the threshold not corresponding to f waves. All three metrics are valued between 0 and 1.

Results and Discussion

The overall performance of the detectors can be quantified by the AUC. Of all 32 detectors, the single-lead version of D 5 has the highest AUC value (AUC = 0.89). The thresholds issued by the algorithm and their corresponding values of Se and Sp are shown in Table 2 for detector D 5 . It is remarkable that several other detectors have comparable performance to D 5 , but they have a tendency to output significantly many false detection. In an automatic detection setting for use in a beat-to-beat analysis, it is preferable to have a lower rate of false alarm to avoid detecting false f waves, even if rate of detection has to be traded off. This makes the other detectors a less favorable choice for use in automatic detection, compared to D 5 . It is thus preferred for use in an automatic detection setting. In terms of timing, D 5 has an error of 1.26 ± 9.04 ms from a true annotation.

It is remarkable that the computational methods used for estimating the different parameters of the signal model require massive amount of time ( 13 hours for a single record using multilead detectors with T wave model). This is partly due to the requirement of the detector expression. It is possible to simplify the expression further, or use another form of detector that do not require estimation of any parameters [START_REF] Kay | Fundamentals of Statistical Signal Processing: Detection Theory[END_REF].

Conclusion

In this paper, we developed several f wave detectors based on the principles of generalized likelihood ratio test. By employing this principle, these detectors are adapted to real-life conditions by accounting for various effects (modulation, T wave overlap, non-Gaussian noise). This is achieved through the use of various signal models and parameterization of the likelihood ratio. The detection threshold-useful for automatic detection of f waves-is learned using an original technique based on leave-oneout cross-validation. The detector of choice shows good performance with a small timing error.

Table 1 .

 1 

		Single-lead detector expressions	
	Parameter values	w ∼ Gauss	w ∼ Laplace
	A and σ 2 w known	D 1	

Table 2 .

 2 Best detector performances and threshold

		D 5
	AUC	0.89
	Se, Sp	0.87 0.76
	Acc	0.83
	γ opt	0.581
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