Jean-Baptiste Chaudron
email: jean-baptiste.chaudron@isae-supaero.fr

Pierre Siron
email: pierre.siron@isae-supaero.fr

Martin Adelantado
email: martin.adelantado@onera.fr

Analysis and Optimization of time-management services in CERTI 4.0

Keywords: High-Level Architecture, Time-Management services, Run-Time Infrastructure, Discrete Event Synchronization

Time management services are one of the key features of the High Level Architecture (HLA) IEEE simulation standard. Several algorithms allow the implantation of HLA time management services ranging from the Chandy-Misra-Bryant (CMB) null message conservative algorithm up to optimistic Jefferson time warp one. For years now, we are interested in enhancing the high and/or real-time performance of our open source RTI (CERTI). In this paper, we precisely describe our updated conservative time management algorithm which, under some assumptions, limits the time creep problem inherent to the classical CMB algorithm. We will provide detailed analysis and experimental results for different implementations of HLA time management services using our new release version called CERTI 4.0.

Introduction

In the context of the PRISE project 1 (Research Platform for Embedded Systems Engineering) in ISAE-SUPAERO, we intend to provide to our students and researchers with a platform for the study, evaluation and validation of new embedded system concepts, architectures and techniques. For the design, prototyping and improvement of such concepts and systems, simulation tools and techniques are well-known, widely used and accepted among research institutes and industries. The simulation environment can be extremely complex and therefore require a lot of computing resources. Distributed computing paradigm proposes a high performance solution thanks to advances in network technologies where different programs located on several computers interact to achieve a global common goal. Designers and developers of distributed simulation applications had to face several problems such as heterogeneity of the various hardware and softwares components involved. The High Level Architecture (HLA) standard tackle this problematic by providing a well known and documented framework for interoperability and re-usability of heterogeneous distributed simulation. It has been originally designed per the US Department of Defense (DoD) in 1996 and, nowadays, the current standard version is the IEEE 1516 Evolved [START_REF]IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -Framework and Rules[END_REF], [START_REF]IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -Object Model Template (OMT) Specification[END_REF], [START_REF]IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -Federate Interface Specification[END_REF].

The HLA standard provides multiple services to handle the different complex aspects of a simulation. Especially, the so-called time management services provided by HLA are one of the main benefits of this simulation standard [START_REF] Fujimoto | Time Management in the High Level Architecture[END_REF]. These services allow to maintain a consistent global logical time throughout the whole simulation components by using different methods and algorithms. Specifically, each simulation message is assigned a logical time-stamp, and the use of these services ensures that messages are delivered to each simulator (i.e federate) in the logical time-stamp order, and no message is delivered to a simulator in its past (with respect to the logical time). Two types of approaches, which ensure the causality constraint, have been proposed in the literature. The first one is the optimistic strategy where each message is processed by the simulator in order of their arrival until it detects a logical timing violation (i.e a message in the past) and requires a mechanism for turning back (roll-back mechanism) [START_REF] Jefferson | Virtual Time[END_REF]. The second one is the conservative strategy which avoids the violation of the local causality constraint altogether during run-time. The HLA standard does not provide or advise a specific implementation for this Time Management service offered by the RTI. Based on our knowledge about HLA, its usage and application, we are always working on extensions and improvement of our HLA Run-Time Infrastructure (RTI) implementation called CERTI. This paper focuses on the study of time management services implemented in CERTI and their optimization, the remainder of this paper is as follow:

• Section 2 recalls the history of the CERTI project, its time-management services and the evolutions of CERTI 4.0;

• Section 3 describes the different optimizations we implemented and investigated for time-management services;

• Section 4 presents our new open-source project used for this analysis and illustrates its usage per different results;

• Finally, a discussion of results, as well as currently planned extensions of the infrastructure, is proposed in Section 5.

Note for reviewers: Although this document is a preliminary version, we are targeting a structure close to the one of the final paper. However, we have not been able to include and verify all the expected measurements nor the different design choices. Also, the CERTI 4.0 will b officially released this fall and the current release candidate is ready. If accepted, the final version will contain a more complete set of experiments and measurements.

2. An Open Source RTI named CERTI 2.1 Project History CERTI is the name of an HLA-RTI. The CERTI project started in 1996 [START_REF] Siron | Design and Implementation of a HLA RTI Prototype at ONERA[END_REF] in the early days of the HLA standard development. An open-source version was released in 2002 [START_REF] Benoit Brhole | CERTI, Evolutions of the ONERA RTI Prototype[END_REF] and a major revision was done in 2009 [START_REF] Noulard | CERTI: an open Source RTI, why and how[END_REF]. Note, that reference [START_REF] Noulard | CERTI: an open Source RTI, why and how[END_REF] explains well why we have chosen to do an open-source version. The first objectives of ONERA were to understand and to master the HLA services semantic and the corresponding RTI implementation for researches in the field of distributed simulation for Aeronautics, Space and Defense, this RTI will be also useful for teaching and training and for industrial applications. The main contributors of this project are today ONERA and ISAE-SUPAERO, Université de Toulouse, France.

The list of conducted or on-going research projects is interesting. We give only some examples with the main keyword and the main reference, without detailing these projects and their related works:

• Security [START_REF] Bieber | Security Extensions to ONERA HLA RTI Prototype[END_REF]; • Multi-Resolution [START_REF] Adelantado | Multiresolution Modeling and Simulation of an Air-Ground Combat Application[END_REF];

• Bridges between HLA Federations [START_REF] Brhole | Design and Implementation of a HLA Inter-federation Bridge[END_REF];

• High-Performance [START_REF] Adelantado | HP-CERTI: Towards a high Performance, high Availability Open Source RTI for Composable Simulations[END_REF][13];

• Time management analysis for real-time simulations [START_REF] Chaudron | Design and model-checking techniques applied to real-time RTI time management[END_REF][15]; • Scheduling HLA simulations [START_REF] Deschamps | Toward a formalism to study the scheduling of cyber-physical systems simulations[END_REF];

• Real-Time and Aircraft simulation (collaboration with Ecole Polytechnique de Montréal) [START_REF] Chaudron | Real-time distributed simulations in an HLA framework: Application to aircraft simulation[END_REF];

• Ptolemy-HLA (collaboration with University of California, Berkeley) [START_REF] Lasnier | Distributed Simulation of Heterogeneous and Real-time Systems[END_REF] and, in particular, the relation between HLA time management and time notion in Ptolemy [START_REF] Michel | Time Management of Heterogeneous Distributed Simulation[END_REF].

Many students have been and are involved in these research projects. They have also studied and demonstrated the interoperability between different flight simulators using CERTI (using different plugins): FlightGear (http://www.flightgear.org/), Xplane (http://www.x-plane.com/) and our flight simulator. The interoperability is illustrated by in formation flying. Regarding other teaching aspects, CERTI is used for practical works in different courses of ISAE-SUPAERO, Université de Toulouse: distributed systems, simulation for system engineering, validation of systems. A specific training for experimented users is given: HLA distributed modeling and simulation of complex systems.

Architecture description

As illustrated in Fig. 1, CERTI is recognizable through its original architecture of communicating processes. CERTI architecture includes a local RTI Component (RTIA) for each federate and a central/global one (RTIG), as well as a library (libRTI) linked with each federate. Each federate process interacts locally with a RTI Ambassador process (RTIA) through a Unix-domain socket (or TCP socket on the Windows platform). The RTIA processes exchange messages over the network through the RTIG process, via TCP (and also UDP) sockets, in order to run the various distributed algorithms associated with the RTI services.

The RTIG is the central gateway responsible for the delivery and the broadcast of relevant messages to all RTIA processes (depending on publication subscription of each federate). We will see in the next paragraph, as an illustration, how a classical time management algorithm is deployed on this architecture, and in the next chapter how we can take advantage of the central RTIG process for developing a new time conservative algorithm. The main programming language is C++, the libRTI has been written in the C++ or the Java language, different versions of this libRTI coexist corresponding to different versions of the HLA standard: 1.3, IEEE 1516-2000 or IEEE 1516-2010. The RTI also supports Python bindings and some bridges are maintained for Matlab and Fortran allowing a wide range of heterogeneous applications.

Time Management implementation in CERTI

The first generation of time management services are based on the so-called NULL Message Algorithm (NMA) from Chandy and Misra [START_REF] Chandy | Distributed Simulation: A Case Study in Design and Verification of Distributed Programs, Software Engineering[END_REF]. This is the main algorithm implemented in CERTI and it is used to avoid deadlock in a conservative federation. This approach is based on a contract for each federate called lookahead. Each federate undertakes not to send simulation messages with a logical timestamp less than its local time plus its lookahead. The respect of this contract enables the exchange of additional messages called NULL messages (messages containing only time-stamps) indicating the Lower Bound on the Time Stamp 2 (LBTS) of future messages it could send. We will not detail this well known algorithm but we will try to resume the use of this algorithm with the HLA services and with the CERTI architecture. The time advancing phase begins with a timeAdvancementRequest() call (TAR) for a time-stepped federate or a nextMessageRequest() call (NMR) for a event-driven federate. It finishes by a timeAdvanceGrant() (TAG) callback (Illustrations are given Fig. 2 and Fig. 3). All the federates are time regulating and constrained, the lookahead value is 1. The RTIA of the first federate receives a TAR or NER message and sends a NULL Message (NM) to the RTIG. The role of the RTIG is to forward this message to the RTIAs of the other federates. The RTIA manages also queues for the other events of the simulation (reflectAttributeValues() and receiveInteractions()). When the delivery conditions are met, callbacks are executed with the evokeCallback() service, the last callback is TAG. In Fig. 2, the separation and the link between the HLA services usage and their CERTI implementation though the exchange of messages is illustrated.

Figure 2. TAR/TAG message exchanges illustration for time-stepped federates

The following Fig. 3 illustrates the flow of messages for event-driven fedetares and the fact that this first algorithm has some performances issues (and is not working with zero lookahead). The classical NULL message algorithm requires a number of messages which is a proportion between lookahead and the distance from current logical time. The messages are nor all represented on the figure, it is possible to play the different scenarios discussed in the paper by using an interactive federate with traces. The interactive federate is one of our test case available as an open-source software with CERTI. A first version of this protocol was described in [START_REF] Chaudron | Design and model-checking techniques applied to real-time RTI time management[END_REF], we include in this paper a modified version of this new protocol and we are completing its description since our work is today more achieved. In particular, we have to talk of the link between the time management services and the object management services. The idea of our NULL Message Prime algorithm is to take advantage of the CERTI central component: the RTIG. In the classical NULL message algorithm the RTIG is only acting as a pure gateway which distributes the NULL message to each concerned federate. It does not even know the content of the message, nor the fact that Fed1 (resp. Fed2) is currently in a time advancing loop. Now, if we make the RTIG aware of the status of the federate, i.e. whether it has called NER (i.e. the federate is NERing) or TAR (i.e. the federate is TARing) and we make it collect all requested dates of the NERing federates then the RTIG might be able do a optimize its job.

When the federates are only involved in a time advance loop (i.e. all federates are NERing) then the algorithm is simple, when a federate is NERing it will send a NULL PRIME message to the RTI, which will compute an RTI-wide LBTS. Note that the RTI-wide LBTS computation includes the NULL and NULL PRIME message information, such that if some federate is TARing while other are NERing the protocol is still valid. Whenever the RTI-LBTS strictly increases, the RTI itself (in our case RTIG) will generate an anonymous NULL message Prim and broadcast it to all time constrained federates. When a federate (in fact its RTIA) receives an anonymous NULL message it will trigger the usual local LBTS computation. The message sequence chart corresponding to the previous case is given in Fig. 4. In this case the number of NULL messages exchanged before getting TAG(5) did go from 10 down to 4. However, the number of messages used by our NMP algorithm is independent of the NER value and the lookahead (including zero lookahead case) while classical NULL message algorithm requires a number which is a proportion between lookahead and the distance from current time. This description has been already done in our original paper but we haven't considered the case of the simulation message exchange. As stated before, we now have to talk about the link between the time management services and the object management. Our original optimization was causing some deadlocks in some corner cases with federates exchanging timestamped simulation messages by using updateAttributesValues() (UAV) or sendInteraction() (SI) services calls. As stated above, each federate has a contract with the RTI and it can't send a simulation message with a logical timestamp smaller than its current logical time plus its lookahead. Therefore, it is allowed to send a message with any logical time stamp bigger than the lookahead. As illustrated in Fig. 5, in the NMP algorithm, when a federate sends some simulation message, the time-stamp of Null Prim message will be the minimum value of the UAV/SI logical timestamps and the logical time-stamp in the NMR. The NMP algorithm co-exists with the classical NM algorithm, it only generates additional new NULL Message when enough information has been collected on the RTIA and the RTIG processes. The RTIG which sees every message exchanged inside the federation. Fully decentralized RTI may implement the same algorithm as soon as some broadcast protocol is available. We think that the NULL Prime Message algorithm is somehow equivalent to global reduction based algorithm like the one from Mattern [START_REF] Mattern | Efficient algorithms for distributed snapshots and Global Virtual Time approximation[END_REF]. We think that our approach has several advantages (it needs to be confirmed per further investigations in future):

1) It is automatically triggered as soon as something is worth doing it. We do not have to look for the appropriate instant to start a wave/reduction. 2) We do not have to face the restart issue neither because even if transient message are in the network, the anonymous NULL message built by the algorithm is valid.

3) The number of message generated by the algorithm is constant and independent from lookahead value, including zero lookahead.

Different Techniques of Polling

Even if our applications have not exhibited a very important computing load for the RTIG process, its communication load is important. Its main processing loop is dedicated to receive a message from each connected RTIA process, to filter it according to the instructions of publish/subscribe and retransmit the messages to corresponding other RTIA processes. All these messages receptions and transmissions are done using network sockets I/O. Therefore the RTIG needs a polling method to use for the monitoring of all the events generated by all the connected sockets to RTIA processes. Historically, the RTIG was using the oldest solution with the well known select() service. Nowadays, Linux Operating Systems provides new methods called poll() and epoll() which can offers better performances under certain configurations and assumptions [START_REF] Gammo | Comparing and evaluating epoll, select, and poll event mechanisms[END_REF]. We implanted these two additional methods inside the RTIG and the user can use each of these methods (under Linux) by selecting the proper compilation flag. We are comparing these methods in the next section (see Table 1).

RTIG as a network server

As stated many times above, the RTIG is the central communication process of CERTI. However, on traditional network architecture, the RTIG is located on a computing node with a single network connection. The following figure (Cf. Fig. 6) is illustrating the deployment of a federation composed of 4 nodes running several federates (1 to N in each node) in a classical switched Ethernet local area network with a bandwidth of 1 Gbits/s (it can be 100 Mbits/s). We can see in this figure that the RTIG, running on node 5, has a single access to the network even if it is supposed to handle all communication flows coming from the whole federation (i.e. all the federates). Therefore, in order to optimize CERTI performance, we thought to take advantage of intelligent software based switch. In other words, this specific device is a processor (mono/multi core(s)) with many Ethernet communication ports. As an example, the device we used for our tests has an Intel i5 cpu with 12 Ethernet ports (1 Gbits/s capables). Using such device, we can build architectures such as the one depicted in Fig. 7 where the RTIG process is used a central intelligent software based Ethernet switch. We are experimenting the use of this new architecture in the next section (see Table 2). Time management performance analysis will be done from a new benchmark program. Some unit testing programs have been proposed by DMSO back in the days but are no longer available or maintained (to our knowledge). For HP-CERTI [START_REF] Adelantado | HP-CERTI: Towards a high Performance, high Availability Open Source RTI for Composable Simulations[END_REF], we used the billiard program CERTI that can go as fast as HLA allows but all billard federates are time-stepped federates (using TAR). Therefore, for next-event federated tests and especially NMP, we had to develop a new test program. This open-source benchmark is available here https://sourceforge.isae.fr/projects/benchmark_hla. The idea behind is to allow the user to multiply the number of federates. The user can call a federate playing with multiple parameters:

• The DataSizeByte is the size in bytes of the data sent per the federate in an UAV call;

• The lookahead is the contract for conservative time advance as explained before;

• The timestep is the maximum for the time stamp of federate next update;

• The starttime is the starting logical time of federate;

• The endtime is the overall ending logical time for the simulation; Considering that t f ed is the current federate localtime, the benchmark federate main loop is build around the following actions:

1) Choose a random time t uav between t f ed + lookahead and t f ed + timestep, mathematically: t uav ∈]t f ed + lookahead; t f ed + timestep] 2) Produce an updateAttributeValues() event with this timestamp: UAV(t uav); 3) Ask to advance in logical time by nextMessageRequest() to the end of simulation logical time: NMR(endtime); 4) wait for the timeAdvanceGrant() (TAG agreement) with evokeCallbacks service.

All federates in the benchmark are both regulators and constrained federates for the time advance services. To ensure a proper initialization of the whole federation (starting all the federates), we use synchronization point services to get an initial trigger and launch all the federates and the "same" time. The creator of the federation (the one which got a successful createFederationExecution()) will register the total execution time on its local cpu clock (which is a reference to the wall clock time). We can compare then the actual times of execution for the federation to go until the logical endtime. This generic implementation allow to easily execute and compare different configurations.

Results

We include in this part some of our first experimental results obtained by running our benchmark under different configurations. Table 1 shows the results obtained between original NM algorithm (using select()) and our NMP algorithm using the different implemented polling methods (select(), poll() and epoll()). The benchmark has been executed on a single computer equipped with an i7-4810MQ (octo-core processor @2.80GHz with 16 GB RAM memory). The configuration of the benchmark is the following:

• DataSizeByte = 1000 (bytes) • lookahead = 0.01 • timestep = 1.0 • starttime = 0.0 • endtime =

Conclusion and Perspectives

In this paper, we have presented a detailed analysis of HLA time management services implemented in CERTI. We highlighted some possible improvements for these services in CERTI, implemented as well as experimented these solutions. Current CERTI 4.0 performances are very good for our real-time and/or high performance simulations applications. We are still continuing our effort to increase the high-performance and real-time properties of CERTI and thereby to ensure better responsiveness of all HLA services it offers. In this sense, we are currently working on a new version of the original CERTI HLA inter-federations bridge [START_REF] Brhole | Design and Implementation of a HLA Inter-federation Bridge[END_REF] which will also be released as an open-source software this fall. We plan to use this new bridge to build more complex architecture with multiples RTIG processes running as Software Based Ethernet routers. All the results presented are reproducible because all software parts we used in this article are release as open-source (GPL, LGPL). Indeed, the current CERTI ecosystem is very complete and contain a lot of test cases and applications. In addition, we have also released an open-source of our flight simulator called OpenSDSE [START_REF] Chaudron | Real-time distributed simulations in an HLA framework: Application to aircraft simulation[END_REF] available here https://sourceforge.isae.fr/projects/opensdse. To resume, CERTI 4.0 is built on a solid experience with HLA, supports a lot of existing applications and is ready for any new user.

Figure 1 .

 1 Figure 1. CERTI Architecture illustration

Figure 3 .

 3 Figure 3. NMR/TAG message exchanges illustration for event-driven federates

Figure 4 .

 4 Figure 4. NMR/TAG message exchanges illustration for NMP protocol (event-driven federates)

Figure 5 .

 5 Figure 5. UAV/NMR/TAG message exchanges illustration for NMP protocol (event-driven federates)

Figure 6 .

 6 Figure 6. Deployment of CERTI federation over classical Ethernet architecture

Figure 7 .

 7 Figure 7. Deployment of CERTI federation over classical Ethernet architecture

Table 1 .

 1 Measurements of the different polling methods on a single hostTable2shows the results obtained between original NM algorithm (using select()) under the two architectures described before: (1) the standard Ethernet switch and (2) the software based central RTIG architecture. The benchmark parameter assignment is identical to the one described before.

	1000.0				
	Methods	4 federates 8 federates
		(seconds)	(seconds)
	Null Message (select)		9, 44		37, 67
	Null Message Prime (select)	3, 24		11, 65
	Null Message Prime (poll)	2, 70		11, 23
	Null Message Prime (epoll)	2, 53		11, 98
	Methods	4 federates 8 federates 12 federates 16 federates
		(seconds)	(seconds)	(seconds)	(seconds)
	Null Message (Classic Ethernet switch)	32, 43	48, 11		72, 87	111, 46
	Null Message (Architecture central RTIG)	25, 21	41, 37		65, 75	104, 81

Table 2 .

 2 Measurements of standard NM algorithm on different architectures

French acronym for Plate-forme pour la Recherche en Ingnierie des Systmes Embarqus.

Acknowledgment

The authors would like to thank Clément Vannier from SCALIAN for his great work on parts of the CERTI 4.0 extensions.