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Abstract. We study the propagation of elastic waves in the time-harmonic regime in a waveguide
which is unbounded in one direction and bounded in the two other (transverse) directions. We
assume that the waveguide is thin in one of these transverse directions, which leads us to consider a
Kirchhoff-Love plate model in a locally perturbed 2D strip. For time harmonic scattering problems
in unbounded domains, well-posedness does not hold in a classical setting and it is necessary to pre-
scribe the behaviour of the solution at infinity. This is challenging for the model that we consider
and constitutes our main contribution. Two types of boundary conditions are considered: either the
strip is simply supported or the strip is clamped. The two boundary conditions are treated with two
different methods. For the simply supported problem, the analysis is based on a result of Hilbert
basis in the transverse section. For the clamped problem, this property does not hold. Instead
we adopt the Kondratiev’s approach, based on the use of the Fourier transform in the unbounded
direction, together with techniques of weighted Sobolev spaces with detached asymptotics. After
introducing radiation conditions, the corresponding scattering problems are shown to be well-posed
in the Fredholm sense. We also show that the solutions are the physical (outgoing) solutions in the
sense of the limiting absorption principle.

Key words. Waveguide, Kirchhoff-Love model, thin plate, radiation conditions, modal decom-
position.

1 Introduction
The Kirchhoff-Love model for thin elastic plates has now a quite long history and is of practical
use in the field of mechanical engineering. From the mathematical and the numerical point of view,
there is a considerable amount of contributions concerning the static case. In this field, we can for
example refer to the monographs [7, 9, 6, 17]. Many authors have also analyzed the behaviour of
Kirchhoff-Love plates in the dynamic case, at least in the time domain. Here, we can refer for ex-
ample to [22, 1]. In particular, the various models for plate problems in the time domain are derived
and justified in [22]. However, the number of contributions concerning time-harmonic problems for
infinite Kirchhoff-Love plates at non zero frequencies seems much smaller. From the theoretical
point of view, the scattering solutions in the restricted case of purely radial inhomogeneities are
analytically computed in [37], while well-posedness in the presence of a potential is rigorously estab-
lished in [42] for a large enough frequency. From the numerical point of view, some finite element
computations with the help of Perfectly Matched Layers can be found in [11]. Let us also mention
the studies concerning the so-called platonic crystals [10, 16, 40, 39, 15] (by analogy with photonic,
phononic or plasmonic crystals). In these works, the authors investigate the propagation of time
harmonic waves in waveguides which consist of rigid pins embedded within an elastic Kirchhoff plate.
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Our paper focuses on a two dimensional waveguide which is infinite in one direction and bounded
in the perpendicular direction: it will be referred to as the strip in the following. We consider the
Kirchhoff-Love model in such strip. We acknowledge that the Kirchhoff-Love model is the simplest
possible one to describe plates – see for instance [22] where various models for plate problems are
derived and justified. However, to the best of our knowledge, well-posedness of time-harmonic prob-
lems in a strip for such model has not been investigated up to now. This study can be considered
as a first step for the analysis of richer plate models.

The standard Helmholtz equation in a waveguide has been extensively studied (see for example
[23, 14, 13, 4, 5]). Let us remind the reader of the main results for this simpler case. In the classical
functional framework (L2), existence of a solution may fail (the physical solution may propagate
towards infinity without attenuation). If we extend the framework to only locally L2 functions, in
turn uniqueness may fail. To cope with this problem, one has additionally to prescribe the behaviour
of the solution at infinity imposing so-called radiation conditions. These radiation conditions are
expressed thanks to a modal decomposition which is obtained by using the self-adjointness of the
Laplace transverse operator, so that the corresponding eigenfunctions form a Hilbert basis. Some
Dirichlet to Neumann operators, enclosing the radiation conditions, can then be introduced to re-
duce the problem to one set in a bounded domain. Finally, well-posedness in the Fredholm sense
can be proved (see [26] for more details on the Fredholm theory). More precisely, if uniqueness holds
(which arises except for a countable set of frequencies, which corresponds in part to the trapped
modes, see for example [8, 25]) then existence holds as well. The solution is said to be physical
if it satisfies the limiting absorption principle: it is the limit, in a certain sense, of the solutions
to the Helmholtz equation in the presence of a damping term, when this damping term tends to zero.

In the present paper, for the strip governed by the Kirchhoff-Love model, we introduce radia-
tion conditions and prove that the corresponding scattering problem is of Fredholm type, both in
the case of a clamped strip and in the case of a simply supported strip. Let us mention that some
analysis of modal solutions in a strip for various boundary conditions have already been conducted
(see for example [36, 18]). But a rigorous existence and uniqueness analysis of the scattering prob-
lem, whatever the boundary conditions, seems not to exist.

In our article, we propose two angles of attack, depending on the boundary condition. In the
case of the simply supported strip, we benefit from the factorization of the transverse underlying
differential operator to decompose any scattering solution in terms of the modes of the waveguide.
Then we prescribe the radiation conditions with the help of these modes and introduce Dirichlet-
to-Neumann operators – based on these radiation conditions – in order to reduce the analysis to
the one of a problem set in a bounded domain. Such strategy also offers a method to compute the
solution numerically. However this approach is not applicable to the case of a clamped strip, see
Section 5.1 for more details. For this problem, we shall obtain the result of modal decomposition
needed to express the radiation conditions at infinity using a different approach due to Kondratiev
[19] (see also [24, 32, 20, 21]). It consists in applying the Fourier transform in the unbounded di-
rection. Then working in weighted Sobolev spaces and using the residue theorem, we shall get our
decomposition. In a second step, in order to impose radiation conditions, we shall integrate it to
the functional space in which we look for the solution. To proceed, we shall work with spaces with
detached asymptotics introduced in [31] (see also the reviews [29, 28]). Let us mention that the
methodology we follow to study the clamped problem could be used also to deal with the simply
supported problem. We would obtain completely similar results. The goal of the present paper is
first to investigate problems of thin plates in unbounded strips, as mentioned above, but also to
show that when the result of Hilbert basis in the transverse section is not available, we can still
use an alternative route. We hope that the successive presentation of the two methods will help
the reader to get familiar with the second approach which may be less known and which requires
a slightly longer analysis. For application of the technique to other situations, one may consult
[34, 3, 30, 2, 33]. In [27, 35], periodic problems are also considered.
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The outline of the article is as follows. First, we describe the setting of our problems in Sec-
tion 2. Then in Section 3, we compute the modal exponents both for the simply supported and
clamped cases. The results of these computations are summarized in Proposition 3.2 and Propo-
sition 3.6. In Section 4, we detail the analysis for the simply supported problem. Section 5 is
dedicated to the study of the clamped problem. Note that Sections 4 and 5 can be read quite
independently from Section 3. Finally, we justify the selection of the outgoing modes in Section
6 before giving some short concluding remarks in Section 7. The main results of this article are
Theorem 4.2 (Fredholmness in the simply supported case) and Theorem 5.4 (Fredholmness in the
clamped case).

2 Setting of the problem

Ω

O

D

x

y

Figure 1: Domains Ω (left) and D (right).

We consider a waveguide Ω = {(x, y) ∈ R×(0; 1)}, the boundary of which is denoted ∂Ω. Let O ⊂ Ω
be a C 1,1 domain such that O ⊂ Ω. We define D := Ω \ O (see Figure 1). We assume that the
domain D is occupied by a thin elastic plate described with the help of the Kirchhoff-Love model
in the purely bending case. We will consider two kinds of boundary conditions on ∂Ω: the plate is
either simply supported by ∂Ω or clamped on ∂Ω, while O is a hole within it. In our analysis, we
will study the following source term problem: find u in D such that

∆2u− k4u = f in D
u = Cu = 0 on ∂Ω

Mu = Nu = 0 on ∂O
u satisfies (RC).

(1)

Let us describe this system. From the physical point of view, the first equation of (1) comes from
the equation of the motion of the strip

D∆2u+ ρh
∂2u

∂t2
= p

in the time harmonic regime. Here, we have D = Eh3/12(1− ν2), where E is the Young’s modulus,
ν ∈ [0; 1) is the Poisson’s ratio and h is the thickness of the strip. Moreover, ρ refers to the density
per unit of volume and p corresponds to the pressure applied to the strip. Hence the wavenumber
k is defined by k4 = ρhω2/D and the volume source f by p/D.

In the third equation of (1), M and N are the boundary differential operators defined by

Mu = ν∆u+ (1− ν)M0u, Nu = − ∂

∂n
∆u− (1− ν) ∂

∂s
N0u, (2)

where n = (nx, ny) is the outward unit normal to ∂D and s = (−ny, nx). Above, we use the notation

∂

∂n
:= nx

∂

∂x
+ ny

∂

∂y
,

∂

∂s
:= −ny

∂

∂x
+ nx

∂

∂y
.

Moreover, in (2), the operators M0 and N0 are respectively defined by

M0u = ∂2u

∂x2n
2
x + 2 ∂2u

∂x∂y
nxny + ∂2u

∂y2n
2
y, N0u = ∂2u

∂x∂y
(n2
x − n2

y)−
(
∂2u

∂x2 −
∂2u

∂y2

)
nxny.
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In order to interpret the boundary conditions in (1), we recall that D×Mu is the bending moment
while D ×Nu is the transverse force. The boundary condition Mu = 0 and Nu = 0 on ∂O corre-
sponds to a free obstacle, that is a hole.

Concerning the boundary condition on ∂Ω (i.e. the second equation of (1)), we shall consider
the following two cases.

i) When C = M , we have u = 0 and Mu = 0 on ∂Ω. This corresponds to the simply supported
strip.

ii) When C = ∂n, we have u = 0 and ∂nu = 0 on ∂Ω. This corresponds to the clamped strip.

It should be noted that simplified expressions of Mu and Nu on straight parts of the boundary are

Mu = ∂2u

∂n2 + ν
∂2u

∂s2 , Nu = −
(
∂3u

∂n3 + (2− ν) ∂3u

∂n∂s2

)
. (3)

This implies that in the case of a simply supported strip, the boundary condition can by simplified
as u = 0 and ∂nnu = 0 on ∂Ω, or equivalently u = 0 and ∆u = 0 on ∂Ω.

Finally, (RC) stands for the radiation conditions which will be specified later on, for the sim-
ply supported and the clamped cases.

The goal of the present article is to study the well-posedness of Problem (1). For k larger than a
given threshold, in order to obtain well-posedness for (1), we will have to impose radiation conditions
to prescribe the behaviour of the solution at infinity. To proceed, we will show that every function
satisfying the first two equations of (1) decomposes on what we call the modes of the waveguide.
These modes are computed in the next section, for the simply supported case and then the clamped
case. Later on, they will be helpful to define the radiation conditions.

3 Computation of modal exponents

The modes of the waveguide are defined as the functions of the form u(x, y) = eλxϕ(y), where
λ ∈ C and where ϕ is a function to determine, which satisfy the equations ∆2u − k4u = 0 in Ω
(the reference strip without the obstacle) and u = Cu = 0 on ∂Ω. In this section, we compute the
modal exponents, that is the values of λ ∈ C such that u(x, y) = eλxϕ(y) is a mode. The results of
the computations are summarized in Proposition 3.1 and Proposition 3.3. The reader who wishes
to skip details can proceed directly to Sections 4 and 5.

Setting I := (0; 1), one finds that u(x, y) = eλxϕ(y) is a mode if and only if, the pair (λ, ϕ) ∈
C×H2(I) \ {0} solves, depending on the problem considered,

i)
{

(λ2 + dyy)2ϕ− k4ϕ = 0 in I
ϕ = dyyϕ = 0 on ∂I ii)

{
(λ2 + dyy)2ϕ− k4ϕ = 0 in I

ϕ = dyϕ = 0 on ∂I. (4)

The first problem is related to the simply supported plate while the second one is related to the
clamped plate.

Defining the Hilbert spaces H1
0(I) := {ψ ∈ H1(I) |ψ = 0 on ∂I} and H2

0(I) := {ψ ∈ H2(I) |ψ =
dyψ = 0 on ∂I}, the variational formulations of these two spectral problems write

i) Find (λ, ϕ) ∈ C×H1
0(I) ∩H2(I) \ {0} such that∫

I
(λ2ϕ+ dyyϕ)(λ2ψ + dyyψ)− k4ϕψ dy = 0, ∀ψ ∈ H1

0(I) ∩H2(I). (5)
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ii) Find (λ, ϕ) ∈ C×H2
0(I) \ {0} such that∫

I
(λ2ϕ+ dyyϕ)(λ2ψ + dyyψ)− k4ϕψ dy = 0, ∀ψ ∈ H2

0(I). (6)

Denoting (H1
0(I)∩H2(I))∗ (resp. H−2(I)) the topological dual space of H1

0(I)∩H2(I) (resp. H2
0(I)),

the underlying fourth-order differential operator L (λ) appearing in the analysis of (5), (6) is,
alternatively:

i) L (λ) : H1
0(I) ∩H2(I) → (H1

0(I) ∩H2(I))∗
ϕ 7→ L (λ)ϕ = (λ2 + dyy)2ϕ− k4ϕ

or
ii) L (λ) : H2

0(I) → H−2(I)
ϕ 7→ L (λ)ϕ = (λ2 + dyy)2ϕ− k4ϕ.

(7)

For any of the two spectral problems, if (λ, ϕ) is a solution then λ is called an eigenvalue of the
symbol L while ϕ is called an eigenfunction of L . We denote Λ the set of all eigenvalues of L .
This set will be referred to as the set of modal exponents. Let us now solve these two spectral
problems. We begin with the first one which, by using a factorization of the operator L (λ) and the
very special nature of the boundary condition, is much simpler.

In this article, the complex square root will be chosen so that for z = ρeiν , with ρ ≥ 0 and
ν ∈ [0; 2π), we have

√
z = √ρeiν/2. In particular, we always have =mz ≥ 0.

3.1 Modal exponents in the simply supported case

In order to solve (4)-(i), or equivalently (5), first we introduce the eigenvalues µn and eigenfunctions
θn of the auxiliary spectral problem: find (µ, θ) ∈ C×H1(I) \ {0} such that{

dyyθ + µ θ = 0 in I
θ = 0 on ∂I. (8)

A straightforward computation leads to µp = π2p2 and θp(y) =
√

2 sin(πpy) for p ∈ N∗ := {1, 2, . . . }.
Let us remark that the µp form a positive and increasing sequence of real numbers that tends to
+∞ while the family (θp) forms a complete orthonormal basis of L2(I).

Proposition 3.1. Assume that k > 0. Then the set of modal exponents Λ for (4)-(i) is given by

Λ = {±iηp, p ∈ N∗} ∪ {±γp, p ∈ N∗} with ηp :=
√
k2 − π2p2 and γp :=

√
k2 + π2p2. (9)

Proof. Let us consider some solution (λ, ϕ) to the spectral problem (4)-(i) and let us define

ϕ̃ := (λ2 + dyy)ϕ− k2ϕ, ϕ̌ := (λ2 + dyy)ϕ+ k2ϕ.

Using that dyyϕ = 0 on ∂I, we observe that ϕ̃ and ϕ̌ satisfy the following problems:{
(λ2 + dyy)ϕ̃+ k2ϕ̃ = 0 in I

ϕ̃ = 0 on ∂I and
{

(λ2 + dyy)ϕ̌− k2ϕ̌ = 0 in I
ϕ̌ = 0 on ∂I.

Introducing the solutions (µp, θp) to Problem (8), we only have two possibilities: either λ2 = µp−k2,
ϕ̃ = C̃θp, ϕ̌ = 0 for some p ∈ N∗, C̃ ∈ C, or λ2 = µp + k2, ϕ̌ = Čθp, ϕ̃ = 0 for some p ∈ N∗, Č ∈ C.
Conversely, for any value λ such that either λ2 = µp − k2 or λ2 = µp + k2, by choosing ϕ = θp, one
finds that (λ, ϕ) is an eigenpair of (4)-(i).
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Now let us focus our attention on the set Λ ∩ Ri. The reason is that if λ ∈ Λ ∩ Ri \ {0} and
ϕ corresponds to a non zero element of ker L (λ), then the so-called mode (x, y) 7→ eλxϕ(y) is
propagating. Such modes play a particular role in the definition of the radiation conditions and the
well-posedness of the initial problem. Let us first remark from Proposition 3.1 that 0 ∈ Λ if and
only if there exists n ∈ N∗ such that k = nπ. These particular values are the so-called threshold
wavenumbers. We have the following proposition, the proof of which is straightforward. We denote
b·c the floor function.

Proposition 3.2. For k ∈ (0;π), we have Λ ∩ Ri = ∅. For k ≥ π, we have

Λ ∩ Ri = {±iηp, p = 1, · · · , bk/πc} .

This implies card (Λ ∩ Ri) = 2n when k ∈ (nπ; (n+ 1)π), n ∈ N∗ and card (Λ ∩ Ri) = 2n− 1 when
k = nπ, n ∈ N∗.

3.2 Modal exponents in the clamped case

In this paragraph, we solve (4)-(ii), or equivalently (6). We assume that k > 0 is given. We remark
that for λ ∈ C such that λ4 6= k4, the linearly independent functions a1, a2 such that

a1(y) =
sin(
√
λ2 + k2y)

√
λ2 + k2

−
sin(
√
λ2 − k2y)

√
λ2 − k2

, a2(y) = cos(
√
λ2 + k2y)− cos(

√
λ2 − k2y) (10)

satisfy the first equation of (4)-(ii) as well as the boundary conditions ϕ(0) = dyϕ(0) = 0. On the
other hand, for λ ∈ C such that λ4 = k4, the linearly independent functions b1, b2 defined by

b1(y) =
sin(
√

2λy)
√

2λ
− y, b2(y) = cos(

√
2λy)− 1. (11)

are solutions of the first equation of (4)-(ii) satisfying ϕ(0) = dyϕ(0) = 0. In the analysis below,
we will meet the following two sets

K :=
{ π
√

2
√
m2 − n2, with m, n ∈ N∗, m > n, such that m− n is even

}
(12)

Λpart :=
{ π
√

2
√
m2 + n2, with m, n ∈ N∗, m > n, such that m− n is even

}
. (13)

In the proposition below, we give a characterization of the set of modal exponents Λ for the clamped
problem. We remind the reader that the geometric multiplicity of an eigenvalue λ of L is by
definition equal to dim ker L (λ).

Proposition 3.3. Assume that k > 0. Let Λ refer here to the set of modal exponents for (4)-(ii).
1) The number λ ∈ C such that λ4 6= k4 belongs to Λ if and only if λ satisfies√λ2 + k2

λ2 − k2 +

√
λ2 − k2

λ2 + k2

 sin(
√
λ2 + k2) sin(

√
λ2 − k2) = 2− 2 cos(

√
λ2 + k2) cos(

√
λ2 − k2). (14)

Moreover, if k /∈ K (see definition (12) above), then for all λ ∈ Λ, we have ker L (λ) = span(ϕ0)
(geometric multiplicity equal to one) with ϕ0(y) = A1 a1(y) +A2 a2(y). Here (A1, A2)> is an eigen-
vector of the matrix A(λ) defined in (16).
If k ∈ K , then for λ ∈ Λpart ∩ Λ (see (13)), we have ker L (λ) = span(a1, a2) (geometric multi-
plicity equal to two). For λ ∈ Λ \Λpart, we have ker L (λ) = span(ϕ0) (geometric multiplicity equal
to one) with ϕ0(y) = A1 a1(y)+A2 a2(y) (again here (A1, A2)> is an eigenvector of the matrix A(λ)).

2) The number λ ∈ C such that λ4 = k4 belongs to Λ if and only if λ satisfies
√

2λ sin(
√

2λ) = 2− 2 cos(
√

2λ). (15)
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In that case, we have ker L (λ) = span(ϕ0) (geometric multiplicity equal to one) with ϕ0(y) =
B1 b1(y) +B2 b2(y). Here (B1, B2)> is an eigenvector of the matrix B(λ) defined in (17).

Proof. 1) First we study the eigenvalues λ ∈ C of L such that λ4 6= k4. As

dim
{
ϕ, (λ2 + dyy)2ϕ− k4ϕ = 0, ϕ(0) = ϕ′(0) = 0

}
= 2,

if ϕ satisfies L (λ)ϕ = 0 then there are constants A1, A2 ∈ C such that ϕ(y) = A1 a1(y) +A2 a2(y)
where a1, a2 are defined in (10). Writing the two boundary conditions at y = 1, we obtain that ϕ
is a non-zero function satisfying L (λ)ϕ = 0 if and only if the matrix

A(λ) :=
(
a1(1) a2(1)
a′1(1) a′2(1)

)
(16)

has a non trivial kernel. An explicit computation shows that detA(λ) = 0 if and only if (14) holds.
Moreover, one sees that the geometric multiplicity of λ coincides with dim kerA(λ). Clearly, if
λ ∈ Λ, then dim kerA(λ) = 1 except if A(λ) = 0 (in this case dim kerA(λ) = 2). Assume that
A(λ) = 0. Then in particular, we must have a1(1) = a′2(1) = 0. Using expressions (10), this implies
sin(
√
λ2 + k2) = sin(

√
λ2 − k2) = 0 leading to k = π

√
m2 − n2/

√
2 and λ = π

√
m2 + n2/

√
2, where

m, n ∈ N∗ are such that m > n. The additional constrain a2(1) = a′1(1) = 0 imposes that m, n
must have same parity. This leads to the definition of the set K in (12) and to the statement of
the proposition.
2) Then we study the eigenvalues λ ∈ C of L such that λ4 = k4. If ϕ satisfies L (λ)ϕ = 0 then
there are constants B1, B2 ∈ C such that ϕ(y) = B1 b1(y)+B2 b2(y) where b1, b2 are defined in (11).
Writing the two boundary conditions at y = 1, we obtain that ϕ is a non-zero function satisfying
L (λ)ϕ = 0 if and only if the matrix

B(λ) :=
(
b1(1) b2(1)
b′1(1) b′2(1)

)
(17)

has a non trivial kernel. An explicit computation shows that detB(λ) = 0 if and only (15) holds.
Moreover, one can check that one has always B(λ) 6= 0. As a consequence, if λ is an eigenvalue of
L such that λ4 = k4, then dim ker L (λ) = 1.

In the remaining part of the paragraph, we focus our attention on the set Λ∩Ri, in other words on
the propagating modes.
From (6), we remark that if λ belongs to Λ, then −λ is also an element of Λ. Therefore, it is sufficient
to study Λ ∩ [0; +i∞). In the proof of Lemma 5.1 below, we will see that Λ ∩ [ik; +i∞) = ∅. As a
consequence, we can look for λ ∈ Λ writing as λ = iτk with τ ∈ [0; 1). From (14), we see that we
must have hk(τ) = 0 with

hk(τ) =

√1− τ2

1 + τ2 −

√
1 + τ2

1− τ2

 sin(k
√

1− τ2) sinh(k
√

1 + τ2)

−(2− 2 cos(k
√

1− τ2) cosh(k
√

1 + τ2)).

(18)

In Corollary 5.1, we show that such dispersion relation is satisfied only by a finite number of
τ ∈ [0, 1). From Proposition 3.3, we know that if λ belongs to Λ∩Ri, then its geometric multiplicity
is equal to one. In the following, we will also need to know the algebraic multiplicity of λ (see the
definition e.g. in [20, §5.1.1]).

Proposition 3.4. Assume that k > 0 is given. If λ ∈ Λ ∩ Ri \ {0}, then its algebraic multiplicity
is equal to one. If λ = 0 ∈ Λ then its algebraic multiplicity is equal to two.
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Proof. We remind the reader that for λ ∈ C, we denote L (λ) : H2
0(I)→ H−2(I) the operator such

that L (λ)ϕ = d4
yϕ + 2λ2d2

yϕ + (λ4 − k4)ϕ. Assume that λ0 ∈ Λ. Then there is ϕ0 6≡ 0 such that
L (λ0)ϕ0 = 0. Assume that the algebraic multiplicity of λ0 is larger than one. By definition, this
means that there is ϕ1 ∈ H2

0(I), with ϕ1 6≡ 0, such that

L (λ0)ϕ1 +
dL

dλ
|λ=λ0 ϕ0 = 0 ⇔ 4λ0(d2

yϕ0 + λ2
0ϕ0) = −L (λ0)ϕ1. (19)

Multiplying by ϕ0 the identities of (19) and integrating by parts, we obtain

4λ0(‖dyϕ0‖2L2(I) − λ
2
0‖ϕ0‖2L2(I)) = −〈L (λ0)ϕ1, ϕ0〉I = −〈L (λ0)ϕ0, ϕ1〉I . (20)

where 〈·, ·〉I stands for the bilinear duality pairing between H−2(I) and H2
0(I). Assume that

λ0 ∈ Λ ∩ Ri \ {0}. Then we have L (λ0)ϕ0 = L (λ0)ϕ0 = 0. Therefore, since identity (20) leads to
ϕ0 ≡ 0. This is absurd and shows that the algebraic multiplicity of the elements of Λ ∩ Ri \ {0} is
equal to one.

Now, let us focus on the algebraic multiplicity of λ0 = 0, assuming that λ0 = 0 belongs to Λ.
From Equation (19), by taking ϕ1 = ϕ0, we see that its algebraic multiplicity is at least two.
Assume that it is larger than two. Then there is ϕ2 ∈ H2

0(I), with ϕ2 6≡ 0, such that

L (0)ϕ2 +
dL

dλ
|λ=0 ϕ1 +

d2L

dλ2 |λ=0 ϕ0 = 0 ⇔ 4 d2
yϕ0 = −L (0)ϕ2. (21)

Multiplying by ϕ0 the identities of (21) and integrating by parts, this implies

4‖dyϕ0‖2L2(I) = 〈L (0)ϕ0, ϕ2〉I = 〈L (0)ϕ0, ϕ2〉I = 0.

Thus, we obtain a contradiction and we can conclude that if λ0 = 0 is an eigenvalue of L , then its
algebraic multiplicity is equal to two.

Remark 3.1. We specify the algebraic multiplicity of modal exponents in the previous proposition
because it will be required in the proof of Proposition 5.1 (where the Residue theorem is implicitly
used).

In the following, for a given k > 0, we will need to know the cardinal of the set Λ ∩Ri. From (18),
we find that 0 belongs to Λ if k > 0 is such that

hk(0) = 0 ⇔ cos(k) cosh(k) = 1. (22)

The set of k > 0 such that (22) holds (threshold wavenumbers) forms an increasing unbounded
sequence

0 < k1 < k2 < · · · < kn < . . . such that kn ∼
n→+∞

π/2 + nπ. (23)

Taking λ = 0 in (4)-(ii), we observe that k4
n corresponds to the nth eigenvalue of the problem{

d4
yϕ− µϕ = 0 in I
ϕ = dyϕ = 0 on ∂I. (24)

In the proposition below, we prove that for all n ∈ N∗, the threshold wavenumbers kn for the
clamped strip are larger than the threshold wavenumbers nπ for the simply supported strip.

Proposition 3.5. For all n ∈ N∗, we have kn ≥ nπ.

Proof. By the min-max principle, the nth eigenvalue of the problem (24) is given by

µn := min
Vn∈Vn(H2

0(I))
max
ϕ∈Vn

‖dyyϕ‖2L2(I)
‖ϕ‖2L2(I)

,
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where Vn(H) denotes the set of all n dimensional subspaces of H. Since H2
0(I) ⊂ H1

0(I) ∩H2(I), we
have

µn ≥ µ̃n := min
Vn∈Vn(H1

0(I)∩H2(I))
max
ϕ∈Vn

‖dyyϕ‖2L2(I)
‖ϕ‖2L2(I)

.

We observe that µ̃n coincides with the nth eigenvalue of the problem{
d4
yϕ− µ̃ ϕ = 0 in I
ϕ = dyyϕ = 0 on ∂I,

that is µ̃n = n4π4. We end up with kn = (µn)1/4 ≥ nπ for all n ≥ 1.

The approximated values of the first kn are given in Figure 2.

kn π/2 + nπ

n = 1 4.730040745 4.712388981

n = 2 7.853204624 7.853981635

n = 3 10.99560784 10.99557429

n = 4 14.13716549 14.13716694

n = 5 17.27875966 17.27875960

Figure 2: Approximated values of the first kn.

Proposition 3.6. For k ∈ (0; k1) ⇔ k4 < µ1 where µ1 is the first eigenvalue of Problem (24),
we have Λ ∩ Ri = ∅. For k ∈ (kn; kn+1), n ∈ N∗, we have card (Λ ∩ Ri) = 2P where P is the
number of zeros of the function hk(·) defined in (18) on (0; 1). For k = kn, n ∈ N∗, we have
card (Λ ∩ Ri) = 2P − 1 where P is the number of zeros of the function hk(·) on (0; 1).

Remark 3.2. Numerically, it seems that P = n as in the simply supported case.

4 Well-posedness in the simply supported case

In this section, we suppose that k is not a threshold wavenumber, i.e. k /∈ Nπ.

4.1 Construction of Dirichlet-to-Neumann operators

In order to study Problem (1) in the case when C = M , let us first consider the following system
of equations set in the reference strip (without hole):{

∆2u− k4u = 0 in Ω
u = ∆u = 0 on ∂Ω. (25)

We remind the reader that since ∂Ω is made of straight lines, we have u = Mu = 0 on ∂Ω ⇔
u = ∆u = 0 on ∂Ω (see (3)). In (25), we do not prescribe any behaviour at infinity. As a
consequence, this problem can have non zeros solutions. Let us compute them. Noting (again) that
∆2 − k4 = (∆− k2)(∆ + k2) and defining

ũ := (∆− k2)u, ǔ := (∆ + k2)u, (26)

we see that ũ, ǔ solve the problems{
∆ũ+ k2ũ = 0 in Ω

ũ = 0 on ∂Ω and
{

∆ǔ− k2ǔ = 0 in Ω
ǔ = 0 on ∂Ω.

9



Using that the family (θp) of the eigenfunctions of Problem (8) forms a Hilbert basis of L2(I), we
can decompose ũ, ǔ as

ũ(x, y) =
+∞∑
p=1

ũp(x)θp(y), ǔ(x, y) =
+∞∑
p=1

ǔp(x)θp(y).

Then we find that the ũp, ǔp satisfy

dxxũp + (k2 − µp)ũp = 0 and dxxǔp − (k2 + µp)ǔp = 0 in R.

Since k /∈ Nπ, we obtain that ũ, ǔ are given by

ũ(x, y) =
+∞∑
p=1

(
ape

iηpx + bpe
−iηpx

)
θp(x) and ǔ(x, y) =

+∞∑
p=1

(
cpe
−γpx + dpe

γpx
)
θp(u),

where ηp, γp are defined in (9) and where ap, bp, cp, dp are complex numbers. Observing that u =
(ǔ− ũ)/2k2 (see (26)), we deduce that the general form of the solutions to Problem (25) is

u(x, y) =
+∞∑
p=1

(
ape

iηpx + bpe
−iηpx + cpe

−γpx + dpe
γpx
)
θp(y), (27)

with new complex numbers ap, bp, cp, dp.

Remark 4.1. We see that (27) is an expansion on the modes eλxϕ(y) computed in §3.1 (here λ
belongs to Λ, the set of modal exponents given in Proposition 3.1, and ϕ ∈ ker L (λ)). Note that
this strong result of modal decomposition has been obtained thanks to the fact that the family (θp)
forms a Hilbert basis of L2(I).

For k ∈ (0;π) all the modes appearing in (27) are exponentially growing at one end of Ω and
exponentially decaying at the other end. In this case, we shall look for solutions to (1) which are
exponentially decaying at infinity. For k ∈ (nπ; (n + 1)π) with n ∈ N∗, the modes e±iηpx θp(y),
p = 1, . . . , n, are propagating while the other ones are exponentially growing at one end of Ω and
exponentially decaying at the other end.

In the sequel, we will say that

u is rightgoing iff
for some L > 0 and some complex numbers a+

p , b
+
p ,

u(x, y) =
+∞∑
p=1

(
a+
p e

+iηpx + b+p e
−γpx

)
θp(y) for x ≥ L, (28)

u is leftgoing iff
for some L > 0 and some complex numbers a−p , b−p ,

u(x, y) =
+∞∑
p=1

(
a−p e

−iηpx + b−p e
γpx
)
θp(y) for x ≤ −L, (29)

u is outgoing iff u is rightgoing and leftgoing. (RC)

This terminology will be justified in Section 6. Equivalently, a function u satisfies the radiation
conditions or is outgoing.

Now, we introduce adapted Dirichlet-to-Neumann (DtN) operators in order to enclose this outgoing
behaviour. On the transverse sections Σ±L := {±L}×(0; 1), we define for j ∈ {−3/2,−1/2, 1/2, 3/2},
the spaces

Hj(Σ±L) = {u|Σ±L |u ∈ Hj({±L} × R)}, H̃j(Σ±L) = {u ∈ Hj({±L} × R) | supp(u) ∈ Σ±L}.
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It is well-known (see [26]) that (Hj(Σ±L))∗ = H̃−j(Σ±L). We define the two operators

T± : H̃3/2(Σ±L)×H1/2(Σ±L)→ H−3/2(Σ±L)× H̃−1/2(Σ±L)

by

T±

(
g±
h±

)
=
(
Nu±|Σ±L

Mu±|Σ±L

)
,

where u+ (resp. u−) is rightgoing as defined in (28) (resp. leftgoing as defined in (29)), satisfies
(25) and is such that (u+, ∂xu+)|ΣL = (g+, h+) on ΣL (resp. (u−,−∂xu−)|Σ−L = (g−, h−) on Σ−L).
Let us give an explicit definition of u± leading to an explicit expression for T±. We detail the
computation for T+. Since ∂n = ∂x and ∂s = ∂y on ΣL, we have

Mu+ = ∂2u+
∂x2 + ν

∂2u+
∂y2 , Nu+ = −∂

3u+
∂x3 − (2− ν) ∂

3u+
∂x ∂y2 on ΣL.

Decomposition (RC) and the fact that u+ is rightgoing imply the following expansion for u+

u+(x, y) =
+∞∑
p=1

(
ape

iηp(x−L) + bpe
−γp(x−L)

)
θp(y). (30)

Hence we have

u+|ΣL =
+∞∑
p=1

(ap + bp)θp(y) and ∂u+
∂x

∣∣∣∣
ΣL

=
+∞∑
p=1

(iηpap − γpbp)θp(y).

By using the decompositions

g+ = u+|ΣL =
+∞∑
p=1

g+
p θp, h+ = ∂u+

∂x

∣∣∣∣
ΣL

=
+∞∑
p=1

h+
p θp,

we obtain g+
p = ap + bp and h+

p = iηpap − γpbp for all p ∈ N∗. Inverting this system gives(
ap
bp

)
= 1
γp + iηp

(
γp 1
iηp −1

)(
g+
p

h+
p

)
. (31)

From the above expressions of Mu and Nu, is follows that
Mu+|ΣL =

+∞∑
p=1

(−η2
pap + γ2

pbp)θp(y)− ν
+∞∑
p=1

(µpap + µpbp)θp(y),

Nu+|ΣL = −
+∞∑
p=1

(−iη3
pap − γ3

pbp)θp(y) + (2− ν)
+∞∑
p=1

(iµpηpap − µpγpbp)θp(y).

We hence have(
Nu+|ΣL
Mu+|ΣL

)
=

+∞∑
p=1

(
iη3
p + i(2− ν)µpηp γ3

p − (2− ν)µpγp
−(η2

p + νµp) γ2
p − νµp

)(
ap
bp

)
θp.

We are now in position to obtain the expression of T+:

T+

(
g+
h+

)
=

+∞∑
p=1

Tp

(
g+
p

h+
p

)
θp,

where the 2 by 2 matrices Tp are given by

Tp = 1
γp + iηp

(
iη3
p + i(2− ν)µpηp γ3

p − (2− ν)µpγp
−(η2

p + νµp) γ2
p − νµp

)(
γp 1
iηp −1

)
.

11



Using (9), we deduce that

Tp =
(
iγpηp(γp − iηp) iγpηp − νµp
iγpηp − νµp −(γp − iηp)

)
. (32)

Concerning T−, we prove similarly that for

g− = u−|Σ−L
=

+∞∑
p=1

g−p θp, h− = −∂u−
∂x

∣∣∣∣
Σ−L

=
+∞∑
p=1

h−p θp,

we have

T−

(
g−
h−

)
=

+∞∑
p=1

Tp

(
g−p
h−p

)
θp,

where the matrix Tp is defined by (32). This concludes the construction of the Dirichlet-to-Neumann
operators T± which enclose the outgoing behaviour for Problem (1) with C = M as x → ±∞. In
the following, we explain how to use these operators to reduce the analysis of (1) to a bounded
domain and establish Fredholmness.

4.2 Source term problem in the reference strip with radiation conditions

ΩL

Σ−L ΣL

ΓL

ΓL

O

DL

Σ−L ΣL

ΓL

ΓL

x

y

Figure 3: Domains ΩL (left) and DL (right).

Before addressing Problem (1) for C = M with a hole, let us consider the simpler problem in the
reference strip Ω without hole. For some compactly supported function f ∈ L2(Ω), this problem
states: find u in H2

loc(Ω) such that
∆2u− k4u = f in Ω
u = Mu = 0 on ∂Ω
u satisfies (RC).

(33)

Here H2
loc(Ω) denotes the set of distributions u in Ω such that ϕ(x)u(x, y) ∈ H2(Ω), for all ϕ ∈

C∞0 (R). Again, we assume that k ∈ (nπ; (n+ 1)π) for some n ∈ N.

For k ∈ (0;π), the radiation conditions (RC) imply that the solution is exponentially decaying
at ±∞. In this case, the analysis is a bit simpler. We can prove the following proposition.

Proposition 4.1. When k ∈ (0;π), for all f ∈ (H1
0(Ω) ∩H2(Ω))∗, the problem{

∆2u− k4u = f in Ω
u = Mu = 0 on ∂Ω

admits a unique solution in H1
0(Ω) ∩H2(Ω).

Proof. Using the integration by parts formula given in Lemma 4.1 and the Lax-Milgram theorem,
one finds that proving the well-posedness of the problem amounts to showing the coercivity in
H1

0(Ω) ∩H2(Ω) of the sesquilinear form given by

a(u, v) =
∫

Ω
ν∆u∆v dxdy +

∫
Ω

(1− ν)
(
∂2u

∂x2
∂2v

∂x2 + 2 ∂2u

∂x∂y

∂2v

∂x∂y
+ ∂2u

∂y2
∂2v

∂y2

)
dxdy −

∫
Ω
k4uv dxdy.
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We can easily check that

∀u ∈ H1
0(Ω) ∩H2(Ω),

∫
Ω

∂2u

∂x∂y

∂2u

∂x∂y
dxdy =

∫
Ω

∂2u

∂x2
∂2u

∂y2 dxdy =
∫

Ω

∂2u

∂y2
∂2u

∂x2 dxdy (34)

where we have used that u ∈ H1
0(Ω) so ∂xu = 0 on ∂Ω and that νx = 0 on ∂Ω. This implies that

∫
Ω

∣∣∣∣∣∂2u

∂x2

∣∣∣∣∣
2

+ 2
∣∣∣∣∣ ∂2u

∂x∂y

∣∣∣∣∣
2

+
∣∣∣∣∣∂2u

∂y2

∣∣∣∣∣
2

dxdy =
∫

Ω
|∆u|2 dxdy. (35)

By using successively (35) and the Poincaré inequality ‖u‖2L2(Ω) ≤ π−4‖∂yyu‖2L2(Ω) for all u ∈
H1

0(Ω) ∩H2(Ω), we can write

a(u, u) =
∫

Ω
|∆u|2 dxdy −

∫
Ω
k4|u|2 dxdy

≥
∫

Ω
|∆u|2 dxdy − (k/π)4

∫
Ω
|∂yyu|2 dxdy ≥ (1− (k/π)4)

∫
Ω
|∆u|2 dxdy

≥ α

∫
Ω

(|∆u|2 + |u|2) dxdy.

for some α > 0 since k ∈ (0, π). The identity (35) can be rewritten |u|2H2(Ω) = ‖∆u‖2L2(Ω). Moreover,
we have

‖∇u‖2L2(Ω) = −
∫

Ω
∆uu dxdy ≤ (1/2)(‖∆u‖2L2(Ω) + ‖u‖2L2(Ω)).

Thus, for k ∈ (0;π), there exists α̃ > 0 such that a(u, u) ≥ α̃ ‖u‖2H2(Ω), for all u ∈ H1
0(Ω)∩H2(Ω).

Now, for general k /∈ Nπ, we use the DtN operators we have constructed in the previous paragraph
to derive a problem equivalent to (33) set in a bounded domain ΩL := (−L;L)× (0; 1). Here L > 0
is chosen so that we have supp(f) ⊂ (−L;L)× [0; 1]. In what follows, we set ΓL := ∂ΩL\(ΣL∪Σ−L)
(see Figure 3 left). Classical operations allow one to check that Problem (33) is equivalent to find
u ∈ H2(ΩL) such that 

∆2u− k4u = f in ΩL

u = Mu = 0 on ΓL(
Nu
Mu

)
= T±

(
u
∂nu

)
on Σ±L.

(36)

Let us give an equivalent variational formulation to Problem (36). Define the Hilbert space VL :=
{u ∈ H2(ΩL) |u = 0 on ΓL}. We have the following integration by parts formula:

Lemma 4.1. For all u ∈ VL ∩H4(ΩL) and for all v ∈ VL∫
ΩL

∆2u v dxdy = a(u, v)−
∫

ΓL
(Mu)∂v

∂n
ds−

∫
Σ±L

(
(Nu)v + (Mu)∂v

∂n

)
ds,

where

a(u, v) =
∫

ΩL
ν∆u∆v dxdy +

∫
ΩL

(1− ν)
(
∂2u

∂x2
∂2v

∂x2 + 2 ∂2u

∂x∂y

∂2v

∂x∂y
+ ∂2u

∂y2
∂2v

∂y2

)
dxdy. (37)

The above integration by parts formula is still valid for u ∈ VL such that ∆2u ∈ L2(ΩL) provided we
interpret the integrals with the help of suitable duality brackets. In particular it is true if (Mu)|ΓL ∈
H̃−1/2(ΓL), (Mu)|Σ±L ∈ H̃−1/2(Σ±L) and (Nu)|Σ±L ∈ H−3/2(Σ±L). In this case the integral on
ΓL has to be understood in the sense of duality pairing between H̃−1/2(ΓL) and H1/2(ΓL) while
the integrals on Σ±L have the sense of duality pairing on the one hand between H−3/2(Σ±L) and
H̃3/2(Σ±L) and on the other hand between H̃−1/2(Σ±L) and H1/2(Σ±L).
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Remark 4.2. The integration by parts formula given in Lemma 4.1 is justified in [17] for C 1,1

domains. Note that our domain ΩL is not C 1,1 but is polygonal, which is why we need compatibility
conditions at corners (see for example [12]). Here, due do the chosen spaces for the traces of u on
the different edges, such compatibility conditions are satisfied.

By Lemma 4.1, Problem (36) is equivalent to the following variational formulation: find u ∈ VL

such that for all v ∈ VL,
a(u, v)− k4(u, v)L2(ΩL) − t(u, v) = `(v), (38)

where
t(u, v) =

∫
Σ±L

T±

(
u
∂nu

)
·
(

v
∂nv

)
dσ and `(v) =

∫
ΩL
f v dxdy. (39)

Define the linear and bounded operator Aout : VL → V∗L such that

〈Aoutu, v〉ΩL = a(u, v)− k4(u, v)L2(ΩL) − t(u, v), ∀(u, v) ∈ VL ×VL. (40)

Here 〈·, ·〉ΩL refers to the bilinear duality pairing between V∗L and VL.

Let us prove that the operator Aout defined in (40) is Fredholm of index 0. We first need the
following Poincaré type lemma.

Lemma 4.2. There exists c0 > 0 such that for all v ∈ VL,

|v|H2(ΩL) ≥ c0 ‖v‖H2(ΩL),

where | · |H2(ΩL) and ‖ · ‖H2(ΩL) stand for the semi-norm and the norm in H2(ΩL), respectively.

Proof. By contradiction, assume that for all n ∈ N∗, there exists some vn ∈ VL such that

|vn|H2(ΩL) ≤
1
n
‖vn‖H2(ΩL).

Setting un = vn/‖vn‖H2(ΩL), we obtain that

|un|H2(ΩL) ≤
1
n

and ‖un‖H2(ΩL) = 1.

We conclude that there exists some subsequence of (un), still denoted (un), such that

un ⇀ u in H2(ΩL) and un → u in H1(ΩL).

Hence, (un) is a Cauchy sequence in H2(ΩL), that is (un) converges to some w ∈ H2(ΩL), which
coincides with u. Then un → u in H2(ΩL), which then satisfies |u|H2(ΩL) = 0. In other words,
all the second derivatives of u vanish. Therefore, we get u(x, y) = ax + by + c for some constants
a, b, c. From the boundary condition in the space VL, we have u(x, 0) = 0 and u(x, 1) = 0 for all
x ∈ (−L;L), hence a = b = c = 0, that is u = 0. We obtain a contradiction with ‖u‖H2(ΩL) = 1.

We also need the following lemma.

Lemma 4.3. There exists c1 > 0 such that for all u ∈ VL,

− Re t(u, u) ≥ −c2
1‖u‖2L2(Σ±L). (41)

Proof. Let u be an element of VL. Using the obvious decompositions t = t+ + t− and (u, ∂xu) =∑
p(gp, hp)θp on Σ+L, we find

t+(u, u) =
+∞∑
p=1

Tp

(
gp
hp

)
· (gp, hp)

=
+∞∑
p=1

{
iγpηp(γp − iηp)|gp|2 − (γp − iηp)|hp|2 + 2(iγpηp − νµp)Re(gphp)

}
.
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Assume that k ∈ (nπ; (n + 1)π) with n ∈ N∗ (the case k ∈ (0;π), simpler to study, is left to the
reader). Since ηp =

√
k2 − π2p2 (see (9)), we observe that for p = 1, . . . , n, the number ηp is purely

real, while for p ≥ n+ 1, we have ηp = iβp with βp =
√
π2p2 − k2 ∈ R. Hence

t+(u, u) =
n∑
p=1

{
iγpηp(γp − iηp)|gp|2 − (γp − iηp)|hp|2 + 2(iγpηp − νµp)Re(gphp)

}
−

∑
p≥n+1

{
γpβp(γp + βp)|gp|2 + (γp + βp)|hp|2 + 2(γpβp + νµp)Re(gphp)

}
.

We show that

− Re t+(u, u) =
n∑
p=1

up +
+∞∑

p=n+1
vp. (42)

where  up := −γpη2
p|gp|2 + γp|hp|2 + 2νµpRe(gphp)

vp := γpβp(γp + βp)|gp|2 + (γp + βp)|hp|2 + 2(γpβp + νµp)Re(gphp)
.

Since we have 2νµpRe(gphp) ≥ −γp|hp|2 − γ−1
p ν2µ2

p|g2
p|, we deduce up ≥ −(γpη2

p + γ−1
p ν2µ2

p)|gp|2.
Therefore, for p = 1, . . . , n, we obtain

up ≥ −c2
1|gp|2 (43)

for some constant c1 > 0. On the other hand, we can write

vp = (γp + βp)(γpβp|gp|2 + |hp|2 + 2cpRe(gphp)) with cp := (γpβp + νµp)/(γp + βp).

This gives vp ≥ (γp + βp)(γpβp|gp|2 + |hp|2 − c2
p|gp|2 − |hp|2) = (γp + βp)(γpβp − c2

p)|gp|2. Using the
fact that γ2

p = k2 + µp, β2
p = µp − k2 and ν ∈ [0; 1), we find

cp ≤
γpβp + µp
γp + βp

=
γpβp + (γ2

p + β2
p)/2

γp + βp
= 1

2(γp + βp).

Hence, we get γpβp − c2
p ≥ γpβp − 1

4(γp + βp)2 = −1
4(γp − βp)2, and so

vp ≥ −
1
4(γp + βp)(γp − βp)2|gp|2 = − k4

γp + βp
|gp|2 ≥ −k3|gp|2.

where the last inequality is due to γp > k and βp > 0. As a consequence, there is a constant c1 > 0
such that for p ≥ n+ 1, there holds

vp ≥ −c2
1|gp|2. (44)

Using (43) and (44) in (42), we get −Re t+(u, u) ≥ −c2
1
∑∞
p=1 |gp|2 = −c1‖u‖2L2(ΣL). Working

analogously with −Re t−(u, u), we obtain the desired result (41).

Let us now state the main result of this section.

Theorem 4.1. Assume that k ∈ (nπ; (n + 1)π) with n ∈ N. The operator Aout defined in (40) is
an isomorphism. As a consequence, for any compactly supported function f ∈ L2(Ω), Problem (33)
has a unique solution in H2

loc(Ω).

Proof. Let us decompose the operator Aout defined in (40) as

Aout = A0 +Ac

with
{
〈A0u, v〉ΩL = a(u, v)− t(u, v) + c2

1(u, v)L2(Σ±L)

〈Acu, v〉ΩL = −k4(u, v)L2(ΩL) − c2
1(u, v)L2(Σ±L ),

∀u, v ∈ VL.

From Lemma 4.2 and Lemma 4.3, we have, for all u ∈ VL,

Re〈A0u, u〉ΩL ≥ a(u, u) ≥ (1− ν)|u|2H2(ΩL) ≥ c
2
0(1− ν)‖u‖2H2(ΩL).
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Due to Lax-Milgram theorem, the operator A0 is an isomorphism. Since the operator Ac is com-
pact, we conclude that the operator Aout is Fredholm of index 0. In particular, injectivity implies
surjectivity. It remains to prove injectivity. By definition of the operator Aout and since we have
equivalence between problems (33) and (36), any element u of ker Aout satisfies Problem (33) with
f = 0, that is in particular Problem (25). The solutions to that problem are given by (27). The
radiation conditions (RC) eventually imply that u = 0.

4.3 Source term problem in the perturbed strip with radiation conditions

Let us now address the source term Problem (1) (with a hole) when C = M . We remind the reader
that this problem states, for a compactly supported function f ∈ L2(D), find u in H2

loc(D) such that
∆2u− k4u = f in D
u = Mu = 0 on ∂Ω

Mu = Nu = 0 on ∂O
u satisfies (RC).

(45)

Again, we assume that k ∈ (nπ; (n+ 1)π) with n ∈ N (note that when k ∈ (0;π), using the result of
Proposition 4.1, one can prove Fredholmness of (45) in {u ∈ H2(D) |u = 0 on ∂Ω}). We define the
domain DL := {(x, y) ∈ D | |x| < L} where L is chosen large enough so that both the hole O and f
are supported in DL (see Figure 3 right). We use the DtN operators T± defined in §4.1. Problem
(45) is equivalent to finding u ∈ H2(DL) such that

∆2u− k4u = f in DL

u = Mu = 0 on ΓL
Mu = Nu = 0 on ∂O(

Nu
Mu

)
= T±

(
u
∂nu

)
on Σ±L.

(46)

We now introduce a variational formulation of (46) exactly as we did in the reference strip. First
we define the Hilbert space WL := {u ∈ H2(DL) |u = 0 on ΓL}. Problem (46) is equivalent to the
variational formulation: find u ∈WL such that for all v ∈WL,

b(u, v)− k4(u, v)L2(DL) − t(u, v) = m(v). (47)

Here t is defined in (39) while the sesquilinear (resp. antilinear) form b (resp. m) is the analogous
of a (resp. `) defined in (37) (resp. (39)) with ΩL replaced by DL. Define the linear and bounded
operator Bout : WL →W∗L such that

〈Boutu, v〉DL = b(u, v)− k4(u, v)L2(DL) − t(u, v), ∀(u, v) ∈WL ×WL. (48)

Here 〈·, ·〉DL refers to the bilinear duality pairing between W∗L and WL. Working as in the proof
of Theorem 4.1 (in Lemma 4.2, replace the space VL by WL) and using the Fredholm theory, we
obtain the main result of this section.

Theorem 4.2. Assume that k ∈ (nπ; (n + 1)π) with n ∈ N. The operator Bout defined in (48) is
Fredholm of index zero. As a consequence,
a) If kerBout = {0}, then Bout is an isomorphism.
b) If kerBout = span(z1, . . . , zd) for some d ≥ 1, then the equation Boutu = F ∈ W∗L admits a
solution (defined up to an element of kerBout) if and only if F satisfies the compatibility conditions
〈F, zj〉DL = 0 for j = 1, . . . , d.

Remark 4.3. From Theorem 4.2, we deduce that if Problem (45) for f = 0 has only the zero
solution in H2

loc(D), then Problem (45) has a unique solution in H2
loc(D) for any f ∈ L2(D) which

is compactly supported.
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Remark 4.4. Assume that u ∈ H2
loc(D) satisfies Problem (45) with f = 0. Then u is a trapped

mode, in the sense that u ∈ H2(D). Indeed, if m = 0, setting v = u in (47), we obtain

Im t(u, u) = 0.

Using the decomposition (u, ∂xu) =
∑+∞
p=1(g±p , h±p )θp on Σ±L, we find

Im t(u, u) =
∑
µ=±

n∑
p=1

ηp(γ2
p |gµp |2 + |hµp |2 + 2γpRe(gµph

µ
p )) =

∑
µ=±

n∑
p=1

ηp|γpgµp + hµp |2.

We deduce that γpg±p +h±p = 0 for p = 1, . . . , n. Then working as in (31), we find that the coefficients
a±p in (RC) satisfy a±p = 0 for p = 1, . . . , n (the projection on the propagating modes is null). We
infer that u is exponentially decaying for |x| > L. As a consequence, u belongs to H2(D).

4.4 Scattering problem in the perturbed strip with radiation conditions

Finally, we use the results of the previous paragraph to study the following scattering problem: find
the total field u such that 

∆2u− k4u = 0 in D
u = Mu = 0 on ∂Ω

Mu = Nu = 0 on ∂O
u− ui satisfies (RC)

(49)

where ui is an incident field which solves{
∆2ui − k4ui = 0 in Ω

ui = Cui = 0 on ∂Ω.

In the following, we take k ∈ (nπ; (n+ 1)π) with n ∈ N∗ and ui ∈ {w±p | p = 1, . . . , n}, where w±p is
the propagating mode such that

w±p (x, y) = (2ηp)−1/2e±iηpxθp(y) = η−1/2
p e±i

√
k2−π2p2x sin(πpy). (50)

The normalization in (50) is chosen so that the scattering matrix below is unitary.

Theorem 4.3. Assume that k ∈ (nπ; (n + 1)π) with n ∈ N∗. Then for ui = w±p , p = 1, . . . , n,
Problem (49) admits a solution u±p . This solution is uniquely defined if and only if trapped modes
are absent at the wavenumber k.

Proof. Let ζ be a smooth cut-off function which depends only on x, which vanishes in a neighborhood
of the hole O, and which is equal to one for |x| ≥ L − ε for some small given ε > 0. Theorem 4.2
guarantees that there is a function v ∈ H2

loc(D) which solves the problem
∆2v − k4v = f in D
v = Mv = 0 on ∂Ω

Mv = Nv = 0 on ∂O
v satisfies (RC).

(51)

with f := −(∆2(ζui)− k4(ζui)). Indeed, first we observe that f belongs to L2(D) and is compactly
supported. Now, if trapped modes are absent at the given wavenumber k, Bout is an isomorphism
and the existence of v is clear. If kerBout = span(z1, . . . , zd) for some d ≥ 1, one observes that for
j = 1, . . . , d, we have∫

DL

f zj dxdy = −
∫
DL

(∆2(ζui)− k4(ζui)) zj dxdy

= −
∫

Σ±L

(
(Nui)zj + (Mui)

∂zj
∂n

)
ds+

∫
Σ±L

(
uiNzj + ∂ui

∂n
Mzj

)
ds

−
∫
DL

ζui(∆2zj − k4zj) dxdy = 0.
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To obtain the second identity, we used twice the integration by parts formula of Lemma 4.1 (observe
that ζ vanishes in a neighbourhood of O, ζ depends only on x so that the integrals on ΓL vanish
and finally ζ is equal to 1 in the neighborhood of Σ±L). To obtain the third equality, we used the
formulas (3), the orthonormality of the family (θp) in L2(I) and the fact that the trapped modes zj
satisfy (51) with f = 0 and do not decompose on the propagating modes (see Remark 4.4). Once
we have the guarantee that v is well-defined, we can set u := v + ζui. One can verify that u is a
solution to problem (49).

For p = 1, . . . , n, denote Ψp the solution of (49) for ui = w−p and Ψn+p the solution for ui = w+
p .

Introduce χ± ∈ C∞(R2) a cut-off function equal to one for ±x ≥ 2L and to zero for ±x ≤ L, for a
given L > 0. Decompose the Ψp as

Ψp = χ+w−p + χ+
n∑

m=1
spmw

+
m + χ−

n∑
m=1

sp n+mw
−
m + Ψ̃p,

Ψn+p = χ−w+
p + χ+

n∑
m=1

sn+pmw
+
m + χ−

n∑
m=1

sn+p n+mw
−
m + Ψ̃n+p,

where the Ψ̃p, p = 1, . . . , 2n, are functions which are exponentially decaying at infinity and where
the spm, 1 ≤ p,m ≤ 2n, are complex numbers. Define the scattering matrix

S := (spm)1≤p,m≤2n ∈ C2n×2n. (52)

Theorem 4.4. For all k ∈ (nπ; (n + 1)π), n ∈ N∗, the scattering matrix (52) is uniquely defined
(even in presence of trapped modes), unitary (SS> = Id2n×2n) and symmetric (S> = S).

Proof. If trapped modes are absent at the wavenumber k, the Ψp’s are uniquely defined and the
scattering matrix as well. In the presence of trapped modes, assume that Problem (49) admits two
solutions u1 and u2 for a given ui ∈ {w±p | p = 1, . . . , n}. Then u1 − u2 is a trapped mode which,
according to Remark 4.4, do not decompose on the propagating modes. This is enough to show
that S is uniquely defined. The unitarity and the symmetry of S will be established in the clamped
case (see Theorem 5.3). The proof is exactly the same here.

5 Well-posedness in the clamped case
In this section, we suppose that k is not a threshold wavenumber, i.e. k 6= kn for n ∈ N, where kn
is defined in (23).

5.1 Preliminaries

In this section, our goal is to study Problem (1) with clamped boundary conditions. To proceed,
first we shall work on the problem set in the reference strip, without hole:{

∆2u− k4u = f in Ω
u = ∂nu = 0 on ∂Ω,

(53)

where f is a given source term in a space to determine. In order to define radiation conditions at
infinity, we will have to establish a modal decomposition for the solutions of (53) with f = 0 similar
to (27) for the simply supported case. Expansion (27) was derived thanks to a result of Hilbert
basis (see Remark 4.1). For the clamped problem, we do not know if the family of eigenfunctions of
the symbol L defined in (7) forms a Hilbert basis of L2(I). As a consequence, as mentioned in the
introduction, we will establish the modal decomposition with a different strategy based on the joint
use of the Fourier-Laplace transform in the unbounded direction, of weighted Sobolev spaces defined
in Section 5.1.1 and of the residue theorem. The foundation of the theory is due to Kondratiev [19].
For a modern presentation of the technique, one may consult the monographs [32, 20, 21]. To help
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the reader, below we try to give enough details to get a self-consistent presentation of the approach.
Again, we emphasize that the method we develop in this section to study the clamped problem can
also be used to consider the simply supported problem.

5.1.1 The weighted Sobolev spaces

For β ∈ R, define the space W̊2
β(Ω) as the completion of C∞0 (Ω) for the norm

‖v‖W2
β

(Ω) =
( ∑
α, γ∈N, α+γ≤2

‖eβx∂αx ∂γy v‖2L2(Ω)

)1/2
. (54)

Observe that for β = 0, we have W2
0(Ω) = H2

0(Ω) where H2
0(Ω) stands for the usual Sobolev space.

We denote W̊2
β(Ω)∗ the topological dual space of W̊2

β(Ω) endowed with the norm

‖f‖W̊2
β

(Ω)∗ = sup
v∈W̊2

β
(Ω)\{0}

|〈f, v〉Ω|
‖v‖W2

β
(Ω)
.

Here 〈·, ·〉Ω refers to the bilinear duality pairing between W̊2
β(Ω)∗ and W̊2

β(Ω). For β ∈ R, define
the linear and bounded operator Aβ : W̊2

β(Ω)→ W̊2
−β(Ω)∗ such that

〈Aβu, v〉Ω =
∫

Ω
∆u∆v − k4u v dxdy, ∀(u, v) ∈ W̊2

β(Ω)× W̊2
−β(Ω). (55)

Define the partial Fourier-Laplace transform Lx→λ with respect to the variable x such that, for
λ ∈ C,

v̂(λ, ·) = (Lx→λv)(λ, ·) :=
∫ +∞

−∞
e−λxv(x, ·) dx.

It is an isomorphism between

W2
β(Ω) and Ŵ2

β :=
{
v̂ ∈ L2(`−β,H2

0(I)),
∫
`−β

‖v̂(λ, ·)‖2H2(I,|λ|) dλ < +∞
}

where `−β = {λ = −β + is, s ∈ R}, for all β ∈ R and where

‖ϕ‖H2(I, |λ|) :=
( ∑
α, γ∈N, α+γ≤2

‖|λ|α∂γyϕ‖2L2(I)

)1/2
, ∀ϕ ∈ H2

0(I). (56)

Note that for a fixed λ, the norms ‖ · ‖H2(I, |λ|) and ‖ · ‖H2(I) are equivalent on H2
0(I). However the

constants of equivalence depend on |λ|.

We have also the Plancherel formula

‖v‖2W2
β

(Ω) = 1
2πi

∫
`−β

‖v̂(λ, ·)‖2H2(I,|λ|) dλ := ‖v̂‖2Ŵ2
β

, (57)

and the inverse L−1
x→λ is given by

∀v̂ ∈ Ŵ2
β,

(
L−1
x→λv̂

)
(x, ·) = 1

2πi

∫
`−β

eλx v̂(λ, ·) dλ.

Let us denote Ŵ2∗
β the topological dual space of Ŵ2

β which can be characterized as

Ŵ2∗
β =

{
ĝ ∈ L2(`β,H−2(I)),

∫
`β

‖ĝ(λ, ·)‖2H−2(I,|λ|) dλ < +∞
}
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where
‖g‖H−2(I, |λ|) := sup

ϕ∈H2
0(Ω)\{0}

|〈g, ϕ〉I |
‖ϕ‖H2(I, |λ|)

, ∀g ∈ H−2(I), (58)

〈·, ·〉I being the duality product between H−2(I) and H2
0(I). The partial Laplace Fourier Transform

Lx→λ can be defined by duality for functions in W̊2
β(Ω)∗ as

∀f ∈ W̊2
β(Ω)∗, v̂ ∈ Ŵ2

β, 〈Lx→λf, v̂〉Ω̂ := 〈f,L−1
x→λv̂〉Ω

where 〈·, ·〉Ω refers to the bilinear duality pairing between W̊2
β(Ω)∗ and W̊2

β(Ω) and 〈·, ·〉Ω̂ refers to
the one between Ŵ2∗

β and Ŵ2
β. Finally, we have also a Plancherel formula

‖f‖2W̊2
β

(Ω)∗ = 1
2πi

∫
`β

‖f̂(λ, ·)‖2H−2(I,|λ|) dλ. (59)

We can now apply Lx→λ to the equation Aβu = f , one is led to study the symbol L (λ) : H2(I, |λ|)→
H−2(I, |λ|) for λ ∈ −β + iR, defined in (7) and such that

〈L (λ)ϕ,ψ〉I =
∫
I
(λ2ϕ+ dyyϕ)(λ2ψ + dyyψ)− k4ϕψ dy, ∀ϕ, ψ ∈ H2

0(I). (60)

In the following, we shall denote (·, ·)I the usual inner product of L2(I). Studying the properties of
the symbol L (·) defined in (60) leads to consider 1D problems set on I depending on a complex
parameter λ.

5.1.2 Properties of the symbol

In this paragraph, we study the properties of the symbol L (·) defined in (60). For a fixed λ, as the
norms ‖·‖H2(I, |λ|) and ‖·‖H2(I) are equivalent on H2

0(I), it suffices to study L (·) as an operator from
H2

0(I) in H−2(I) and establish estimates in the λ dependent norms of H2(I, |λ|) and H−2(I, |λ|).

Lemma 5.1. There is τ0 > 0 such that for λ = iτ with |τ | ≥ τ0, L (λ) : H2
0(I) → H−2(I) is an

isomorphism.

Proof. For λ = iτ , we have

〈L (iτ)ϕ,ψ〉I =
∫
I
dyyϕdyyψ + 2τ2dyϕdyψ + τ4ϕψ − k4ϕψ dy. (61)

Therefore, the result is a consequence of the Lax-Milgram theorem (take τ0 = k).

We remind the reader that we say that λ ∈ C is an eigenvalue of L if there is a non-zero ϕ ∈ H2
0(I)

such that L (λ)ϕ = 0. We denote Λ the set of eigenvalues of L . From Lemma 5.1, according to
the analytic Fredholm theorem, we deduce the following result.

Corollary 5.1. For all λ ∈ C, L (λ) : H2
0(I) → H−2(I) is an isomorphism if and only if λ is not

an eigenvalue of L . The set of eigenvalues of L is discrete and does not have any accumulation
point in C.

In order to apply the inverse Fourier-Laplace transform, we need estimates for L (λ)−1 on lines
{λ ∈ C | <e λ = β}, β ∈ R, in the parameter dependent norms (56), (58).

Lemma 5.2. There are real positive constants ρ, δ such that for all λ ∈ C satisfying

|λ| > ρ and |<e λ| < δ |=mλ|

(see Figure 4), L (λ) : H2
0(I) → H−2(I) is an isomorphism. Moreover, if ϕ ∈ H2

0(I) satisfies
L (λ)ϕ = g ∈ H−2(I), then there holds

‖ϕ‖H2(I, |λ|) ≤ C ‖g‖H−2(I, |λ|), (62)

where C > 0 is independent of g and λ.
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ρ

<e λ = δ=mλ

<e λ = −δ=mλ

<e λ

=mλ

Figure 4: Lemma 5.2 ensures that the eigenvalues of L are located in an infinite bow tie of the
complex plane.

Proof. Lemma 5.1 together with identity (61) ensure that (62) holds for λ ∈ iR with |λ| ≥ 2k.
Now let us consider the case λ /∈ iR. We write λ as λ = ±i|λ|eiψ with ψ ∈ (−π/2;π/2). Set
λ̃ = ±i|λ|. Since |λ̃| = |λ|, by definition of the parameter dependent norm (56), for ϕ ∈ H2

0(I), we
have ‖ϕ‖H2(I, |λ|) = ‖ϕ‖H2(I, |λ̃|). Define g̃ = L (λ̃)ϕ. Assume that |λ| ≥ k. In that case, according
to the first step of the proof, we have

‖ϕ‖H2(I, |λ|) = ‖ϕ‖H2(I, |λ̃|) ≤ C ‖g̃‖H−2(I, |λ̃|). (63)

Here and in what follows, C > 0 is a constant which can change from one line to another but which
is independent of λ, ϕ. Now we can write

‖g̃‖H−2(I, |λ̃|) = ‖g̃‖H−2(I, |λ|) ≤ ‖g‖H−2(I, |λ|) + ‖g̃ − g‖H−2(I, |λ|).

A direct calculation gives, for all ψ ∈ H2
0(I),

〈g̃ − g, ψ〉I = 〈L (λ̃)ϕ−L (λ)ϕ,ψ〉I = (λ̃2 − λ2)
( ∫

I
ϕ(λ2ψ + 2dyyψ) dy +

∫
I
ϕ(λ̃2ψ) dy

)
.

We deduce that

‖g̃ − g‖H−2(I, |λ|) ≤ C |λ̃2 − λ2| ‖ϕ‖L2(I) ≤ C |e2iψ − 1| ‖ϕ‖H2(I, |λ|). (64)

Thus for all ς > 0, there is δ small enough so that one has ‖g̃ − g‖H−2(I, |λ|) ≤ ς ‖ϕ‖H2(I, |λ|) for all
λ = ±i|λ|eiψ such that |ψ| < δ. Gathering the latter estimate, (63) and (64) leads to

‖ϕ‖H2(I, |λ|) ≤ C ‖g‖H−2(I, |λ|) + C ς ‖ϕ‖H2(I, |λ|).

Taking ς sufficiently small (ς = 1/(2C) for example), finally we obtain (62).

From this lemma, we deduce the following result.

Theorem 5.1. Let β ∈ R be such that L has no eigenvalue on the line <e λ = −β. Then the
operator Aβ : W̊2

β(Ω)→ W̊2
−β(Ω)∗ defined in (55) is an isomorphism.

Remark 5.1. Proposition 3.6 guarantees that for k ∈ (0; k1) (k1 is the first positive threshold
defined in (23)), we have Λ ∩ Ri = ∅. From Theorem 5.1, we deduce that when k ∈ (0; k1), the
operator A0 is an isomorphism from H2

0(Ω) to H−2(Ω).

Proof. Assume that L has no eigenvalue on the line <e λ = −β. Let us first suppose that u ∈ W̊2
β(Ω)

is such that Aβu = 0. Applying the partial Fourier-Laplace transform with respect to x, we obtain

L (λ)û(λ, ·) = 0, ∀λ ∈ C.

From Corollary 5.1, we deduce that for all λ ∈ `−β, û(λ, ·) = 0. From the properties of the inverse
Fourier-Laplace transform, we deduce that u ≡ 0. This shows that Aβ is injective.
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We prove now that Aβ is onto. Let f ∈ W̊2
−β(Ω)∗. Lemma 5.2 guarantees that for λ ∈ C such

that <e λ = −β and |=mλ| ≥ νβ, we have the estimate

‖L (λ)−1f̂(λ, ·)‖H2(I, |λ|) ≤ C ‖f̂(λ, ·)‖H−2(I, |λ|), (65)

where C > 0 is independent of λ and νβ depends only β. For λ ∈ [−β − iνβ;−β + iνβ], the
operator L (λ) is invertible according to Corollary 5.1. The continuity of λ 7→ L (λ)−1, ensured by
the analytic Fredholm theorem, guarantees that Estimate (65) also holds for λ in the compact set
[−β − iνβ;−β + iνβ]. Therefore (65) is valid for all λ such that <e λ = −β with a constant C > 0
independent of λ.
By definition

f ∈ W̊2
−β(Ω)∗ ⇒ 1

2πi

∫
`−β

‖f̂(λ, ·)‖2H−2(I,|λ|) dλ < +∞.

We deduce that
u(x, ·) = 1

2πi

∫
`−β

eλxL (λ)−1f̂(λ, ·) dλ ∈ W̊2
β(Ω) (66)

is solution of Aβu = f with, by the Plancherel formulas (57) and (59), ‖u‖W̊2
β

(Ω) ≤ C‖f‖W̊2
−β(Ω)∗ .

5.2 Source term problem in the reference strip with radiation conditions

For k < k1 (k1 is the first positive threshold defined in (23)), as noticed in Remark 5.1, Problem (53)
is well posed in H2

0(Ω) in particular for locally supported L2 source term. For k > k1, the problem is
not well posed in this setting. Indeed, since in that case L has an eigenvalue on the line <e λ = 0,
one can show that the range of A0 is not closed. For β 6= 0, the solution to Problem (53) defined
via the operator Aβ is a priori exponentially growing as x → +∞ or as x → −∞. The results
of the previous section do not provide a solution which is physically acceptable. In what follows,
we explain how to impose radiation conditions at infinity to construct a solution to Problem (53)
which decomposes as the sum of outgoing propagating modes (defined later) plus an exponentially
decaying remainder.

In order to measure exponentially growing or decaying behaviours as |x| → ±∞, for β ∈ R, introduce
the weighted Sobolev space W̊2

β(Ω) defined as the completion of C∞0 (Ω) for the norm

‖v‖W2
β

(Ω) =
( ∑
α, γ∈N, α+γ≤2

‖e−β|x|∂αx ∂γy v‖2L2(Ω)

)1/2
.

Remark the absolute value in the weight e−β|x|. Due to this absolute value, observe that

β1 ≤ β2 ⇒ W̊2
β1(Ω) ⊂ W̊2

β2(Ω). (67)

Note that this property is not true for the spaces W̊2
β(Ω) introduced in (54). Observe also that we

have W̊2
0(Ω) = H2

0(Ω). Let 〈·, ·〉Ω stand for the bilinear duality pairing between W̊2
β(Ω)∗ and W̊2

β(Ω),
where W̊2

β(Ω)∗ is the topological dual space of W̊2
β(Ω) endowed with the norm

‖f‖
W̊2
β

(Ω)∗ = sup
v∈W̊2

β
(Ω)\{0}

|〈f, v〉Ω|
‖v‖W2

β
(Ω)
. (68)

Due to (67), we have
β1 ≤ β2 ⇒ W̊2

β2(Ω)∗ ⊂ W̊2
β1(Ω)∗. (69)

For n ∈ N∗, pick k ∈ (kn; kn+1), the threshold wavenumbers kn being defined in (23), and choose
β > 0, once for all, small enough such that {λ ∈ Λ | − β ≤ <e λ ≤ β} = Λ ∩ Ri \ {0}. According to

22



Corollary 5.1 and Lemma 5.2, we know that such a β exists. We denote η1 < · · · < ηP the positive
real numbers (belonging to (0; k) according to the proof of Lemma 5.1) such that

Λ ∩ Ri = {±iηp}Pp=1. (70)

For p = 1, . . . , P , we define the propagating modes w±p as

w±p (x, y) = e±iηpxϕp(y), (71)

where ϕp is a non zero element of ker L (iηp). Observe that we have (∆2−k4)w±p = 0. We normalize
the ϕp so that

4 ηp
∫
I
|dyϕp(y)|2 + η2

p|ϕp(y)|2 dy = 1. (72)

This special choice for the normalization will appear naturally in (80). In the next step of the
analysis, we shall use the following decomposition result. It can be proved exactly in the same
manner as Theorem 5.4.2 of [20] working with the residue theorem on formula (66) which is a result
of the use of the Fourier transform in the unbounded direction. The proof of Proposition 5.1 uses
the fact that all modal exponents have an algebraic multiplicity of 1, since the wavenumber is not a
threshold wavenumber (see Proposition 3.4). In this statement and in what follows, χ± ∈ C∞(R2)
is a cut-off function equal to one for ±x ≥ 2L and to zero for ±x ≤ L, for a given L > 0.

Proposition 5.1. Assume that k ∈ (kn; kn+1), n ∈ N∗, the threshold wavenumbers kn being defined
in (23). Assume that u ∈ W̊2

β(Ω) is such that (∆2 − k4)u ∈ W̊2
β(Ω)∗ ⊂ W̊2

−β(Ω)∗. Then there holds
the following representation

u = χ+
P∑
p=1

(a+
p w

+
p + a−p w

−
p ) + χ−

P∑
p=1

(b−p w−p + b+p w
+
p ) + ũ, (73)

with coefficients a±p , b±p ∈ C and ũ ∈ W̊2
−β(Ω).

Remark 5.2. Observe that Formula (73) for the clamped problem is the equivalent of (27) for the
simply supported problem. But again we emphasize that the tools to derive the two decompositions
are different (see the discussion at the beginning of the section).

In the sequel, we will say that for any u ∈ W̊2
β(Ω),

u is outgoing iff u = χ+
P∑
p=1

apw
+
p + χ−

P∑
p=1

bpw
−
p + ũ, (RC)

with coefficients ap, bp ∈ C and ũ ∈ W̊2
−β(Ω). We introduce the space with detached asymptotic

(see, e.g., the reviews [29, 28]) Wout(Ω) that consists of functions in W̊2
β(Ω) that satisfies (RC). The

space Wout(Ω) is a Hilbert space for the inner product naturally associated with the norm

‖u‖Wout(Ω) =
( P∑
p=1
|ap|2 +

P∑
p=1
|bp|2 + ‖ũ‖2W2

−β(Ω)

)1/2
.

For u ∈Wout ⊂ W̊2
β(Ω), the map φ 7→ a(u, φ) with

a(u, φ) =
∫

Ω
∆u∆φ− k4uφ dxdy

is well-defined in W̊2
−β(Ω). Although u /∈ W̊2

−β(Ω) in general when u ∈Wout, we will extend it as a
map in W̊2

β(Ω). For φ ∈ C∞0 (Ω), applying Green’s formula yields

a(u, φ) =
P∑
p=1

ap

∫
Ω

(∆∆− k4Id)(χ+w+
p )φdxdy + bp

∫
Ω

(∆∆− k4Id)(χ−w−p )φdxdy + a(ũ, φ). (74)
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Since the support of (∆∆ − k4Id)(χ±w±p ) is compact, p = 1, . . . , P , we deduce that there is a
constant C > 0 independent of φ ∈ C∞0 (Ω) such that

|a(u, φ)| ≤ C ‖u‖Wout(Ω)‖φ‖W2
β

(Ω). (75)

By density of C∞0 (Ω) in W̊2
β(Ω), we deduce that φ 7→ a(u, φ) can be uniquely extended as a contin-

uous map in W̊2
β(Ω). This discussion allows us to define the linear operator A out such that

A out : Wout(Ω) −→ W̊2
β(Ω)∗

u = χ+
P∑
p=1

apw
+
p + χ−

P∑
p=1

bpw
−
p + ũ 7−→ A outu

(76)

where A outu is the unique element of W̊2
β(Ω)∗ such that 〈A outu, φ〉Ω = a(u, φ) for all φ ∈ C∞0 (Ω).

We deduce from (74) that for v ∈ W̊2
β(Ω), we have

〈A outu, v〉Ω =
P∑
p=1

ap

∫
Ω

(∆∆− k4Id)(χ+w+
p ) v dxdy + bp

∫
Ω

(∆∆− k4Id)(χ−w−p ) v dxdy + a(ũ, v).

Theorem 5.2. Assume that k ∈ (kn; kn+1), n ∈ N∗, the threshold wavenumbers kn being defined in
(23). The operator A out defined in (76) is an isomorphism.

Remark 5.3. Let us reformulate Theorem 5.2 in order to compare it with Theorem 4.1. For
f ∈ W̊2

β(Ω)∗, Problem (53) has a unique solution u in Wout(Ω). In particular, for all β > 0, any
compactly supported function f ∈ L2(Ω) belongs to W̊2

β(Ω)∗ while the solution u ∈Wout(Ω) belongs
to H2

loc(Ω) and satisfies the radiation conditions. Note that the result of Theorem 5.2 is slightly
stronger than the one of Theorem 4.1 concerning the assumptions for the source term. Indeed the
functions of W̊2

β(Ω)∗ do not need to be compactly supported.

In order to prove Theorem 5.2, we need to establish an intermediate result. Define W†(Ω) the space
of functions v of W̊2

β(Ω) that admit the representation

v = χ+
P∑
p=1

(a+
p w

+
p + a−p w

−
p ) + χ−

P∑
p=1

(b−p w−p + b+p w
+
p ) + ṽ, (77)

with coefficients a±p , b±p ∈ C and ṽ ∈ W̊2
−β(Ω). Define also the symplectic (sesquilinear and anti-

hermitian) form qΩ(·, ·) such that for all u, v ∈W†(Ω), we have

qΩ(u, v) = 〈(∆2 − k4)u, v〉Ω − 〈(∆2 − k4)v, u〉Ω. (78)

Note that for u, v ∈ W†(Ω), the maps (∆2 − k4)u, (∆2 − k4)v are defined as elements of W̊2
β(Ω)∗

using an extension similar to what has been done above. As a consequence, we have

qΩ(u, v) =
∑
±

P∑
p=1

a±p (u)
∫

Ω
(∆∆− k4Id)(χ+w±p ) v dxdy + b±p (u)

∫
Ω

(∆∆− k4Id)(χ−w±p ) v dxdy

−
∑
±

P∑
p=1

a±p (v)
∫

Ω
u (∆∆− k4Id)(χ+w±p ) dxdy + b±p (v)

∫
Ω
u (∆∆− k4Id)(χ−w±p ) dxdy

+a(ũ, v)− a(u, ṽ).

Here a±p (u), b±p (u) (resp. a±p (v), b±p (v) ) refer to the constants appearing in (77) in the decomposition
of u (resp. v). In the next proposition, we show some biorthogonality relations for the modes with
respect to the form qΩ(·, ·). The proof is a computation, it can be skipped without altering the
understanding.
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Proposition 5.2. Assume that k ∈ (kn; kn+1), n ∈ N∗, the threshold wavenumbers kn being defined
in (23). For ν, µ ∈ {+,−}, j, l ∈ {+,−} and m, p ∈ {1, . . . , P}, for all ũ, ṽ ∈ W̊2

−β(Ω), we have

qΩ(χνwjm + ũ, χµwlp + ṽ) = −ij ν δν, µ δj, l δm, p.

Proof. First, integrating by parts, we find that qΩ(χνwjm + ũ, χµwlp + ṽ) = qΩ(χνwjm, χµwlp) for
all ũ, ṽ ∈ W̊2

−β(Ω). On the other hand, observing that (∆∆ − k4)wjm = 0 for all j ∈ {+,−},
m ∈ {1, . . . , P}, and that χ± = 1 for ±x ≥ 2L, we can write

qΩ(χνwjm, χµwlp) =
∫

ΩH
∆∆(χνwjm)χµwlp − χνwjm ∆∆(χµwlp) dxdy, ∀H ≥ 2L.

Here we use the notation ΩH := {(x, y) ∈ Ω | |x| ≤ H}. Integrating by parts, we get

qΩ(χνwjm, χµwlp) = δν, µ

∫
ΣH

∂n∆wjmwlp − wjm ∂n∆wlp dy

−δν, µ
∫

ΣH
∆wjm ∂nwlp − ∂nwjm ∆wlp dy, ∀H ≥ 2L,

with ΣH := {−H} × (0; 1) ∪ {H} × (0; 1) and ∂n = ±∂x at x = ±H. We deduce

qΩ(χνwjm, χµwlp) = δν, µ e
iν(jηm−lηp)H J, ∀H ≥ 2L, (79)

where the quantity J is independent of H ≥ 2L. Since qΩ(χνwjm, χµwlp) is also independent of
H ≥ 2L, we must have qΩ(χνwjm, χµwlp) = 0 if jηm − lηp 6= 0⇔ [j 6= l or m 6= p]. To conclude the
proof, it remains to study the case ν = µ, j = l and m = p. Writing more precisely the quantity J
in (79), we find

qΩ(χνwjm, χνwjm) = −4ij ν ηm
∫
I
|dyϕm(y)|2 + η2

m|ϕm(y)|2 dy = −ij ν. (80)

To obtain the second equality in (80), we used (72).

Proof of Theorem 5.2. From (75), we see that the operator A out defined in (76) is continuous. On
the other hand, if

u = χ+
P∑
p=1

apw
+
p + χ−

P∑
p=1

bpw
−
p + ũ

belongs to ker A out, then qΩ(u, u) = 0. From Proposition 5.2, this implies

i
P∑
p=1
|ap|2 + i

P∑
p=1
|bp|2 = 0.

We deduce that u = ũ ∈ W̊2
−β(Ω) and so u is in kerA−β and in kerAβ which are both reduced

to {0} (Theorem 5.1 together with the fact that L has no eigenvalue on the lines <e λ = ±β).
Therefore, A out is injective. To conclude the proof, it remains to show that A out is onto. Consider
f ∈ W̊2

β(Ω)∗ ⊂ W̊2
−β(Ω)∗. Since Aβ is onto (Theorem 5.1), there is some v ∈ W̊2

β(Ω) ⊂ W̊2
β(Ω) such

that Aβv = f . According to Proposition 5.1, v admits the following decomposition

v = χ+
P∑
p=1

(a+
p w

+
p + a−p w

−
p ) + χ−

P∑
p=1

(b−p w−p + b+p w
+
p ) + ũ,

with coefficients a±p , b±p ∈ C and ũ ∈ W̊2
−β(Ω). Set

u := v −
P∑
p=1

a−p w
−
p −

P∑
p=1

b+p w
+
p .

One can see that u belongs to the space Wout(Ω). On the other hand, observing that the w±p satisfy
(∆2 − k4)w±p = 0, we obtain A outu = f . This shows that A out is onto. �
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5.3 Problems in the perturbed strip with radiation conditions

We previously saw that for the simply supported strip, the unperturbed and perturbed cases where
handled quite similarly. In the case of the clamped strip, the perturbed case is significantly more
difficult than the unperturbed one, in the sense that additional arguments have to be introduced.
Let us come back to the original Problem (1) with a hole O in the clamped case:

∆2u− k4u = f in D
u = ∂nu = 0 on ∂Ω

Mu = Nu = 0 on ∂O,

(81)

where f will be specified later on. To set ideas, we assume in this paragraph that L is chosen so
that O ⊂ (−L;L)× (0; 1). Problem (81) leads to consider the variational equality

b(u, v) = m(v), ∀v ∈ {φ|D |φ ∈ C∞0 (Ω)},

with b(u, v) =
∫

Ω
ν∆u∆v + (1− ν)

(
∂2u

∂x2
∂2v

∂x2 + 2 ∂2u

∂x∂y

∂2v

∂x∂y
+ ∂2u

∂y2
∂2v

∂y2

)
− k4u v dxdy

m(v) = 〈f, v〉Ω.

Observe that the functions of {φ|D |φ ∈ C∞0 (Ω)} do not necessarily vanish on ∂O. Now, we
introduce notation similar to the one of the two previous paragraphs in the geometry D instead of
Ω. For β ∈ R, define the weighted Sobolev space W̊2

β(D) as the completion of {φ|D |φ ∈ C∞0 (Ω)}
for the norm

‖v‖W2
β

(D) =
( ∑
α, γ∈N, α+γ≤2

‖e−β|x|∂αx ∂γy v‖2L2(D)

)1/2
.

Again, remark the absolute value in the weight e−β|x|. We denote W̊2
β(D)∗ the topological dual

space of W̊2
β(D) endowed with the norm (68), Ω being replaced by D. We define the linear and

bounded operator Bβ : W̊2
β(D)→ W̊2

−β(D)∗ such that

〈Bβu, v〉D = b(u, v), ∀(u, v) ∈ W̊2
β(D)× W̊2

−β(D). (82)

One can easily prove that B∗β = B−β.

As in the previous section, for n ∈ N∗, pick k ∈ (kn; kn+1). In what follows, the weight β > 0
is chosen small once for all enough such that {λ ∈ Λ | − β ≤ <e λ ≤ β} = Λ ∩ Ri \ {0}. Using
again the notation introduced in (70), (71) for the w±p , we define the space Wout(D) that consists
of functions v ∈ W̊2

β(D) that admit the representation

v = χ+
P∑
p=1

apw
+
p + χ−

P∑
p=1

bpw
−
p + ṽ,

with coefficients ap, bp ∈ C and ṽ ∈ W̊2
−β(D). We remind the reader that χ± ∈ C∞(R2) is a cut-off

function equal to one for ±x ≥ 2L and to zero for ±x ≤ L. The space Wout(D) is a Hilbert space
for the inner product naturally associated with the norm

‖v‖Wout(D) =
( P∑
p=1
|ap|2 +

P∑
p=1
|bp|2 + ‖ṽ‖2W2

−β(D)

)1/2
.

Working as we did in (76) for A out, we define the linear operator Bout such that

Bout : Wout(D) −→ W̊2
β(D)∗

u = χ+
P∑
p=1

apw
+
p + χ−

P∑
p=1

bpw
−
p + ũ 7−→ Boutu

(83)

26



where Boutu is defined as the functional such that for all v ∈ W̊2
β(D)

〈Boutu, v〉D =
P∑
p=1

ap

∫
D

(∆∆− k4Id)(χ+w+
p )v dxdy+

P∑
p=1

bp

∫
D

(∆∆− k4Id)(χ−w−p )v dxdy+ b(ũ, v).

As in the previous section, in order to prove our main theorem for Bout, we need to establish
intermediate results. Let us define W†(D) the space of functions v of W̊2

β(D) that admit the
representation

v = χ+
P∑
p=1

(a+
p w

+
p + a−p w

−
p ) + χ−

P∑
p=1

(b−p w−p + b+p w
+
p ) + ṽ,

with coefficients a±p , b±p ∈ C and ṽ ∈ W̊2
−β(D). Let us introduce also the symplectic form qD(·, ·)

such that for all u, v ∈W†(D),

qD(u, v) = 〈Bβu, v〉D − 〈Bβv, u〉D. (84)

Here Bβu and Bβv must be regarded as elements of W̊2
β(D)∗ defined using the extension by conti-

nuity process presented in (75). Working exactly as in the proof of Proposition 5.2, one can establish
the following result.

Proposition 5.3. Assume that k ∈ (kn; kn+1), n ∈ N∗, the threshold wavenumbers kn being defined
in (23). For ν, µ ∈ {+,−}, j, l ∈ {+,−} and m, p ∈ {1, . . . , P}, for all ũ, ṽ ∈ W̊2

−β(D), we have

qD(χνwjm + ũ, χµwlp + ṽ) = −ij ν δν, µ δj, l δm, p.

The following theorem is the equivalent of Theorems 4.3 and 4.4 in the simply supported case. In
other words, it solves the corresponding scattering problems. Moreover, such theorem is used in the
proof of the main result of this section, that is Theorem 5.4. We postpone the proof of Theorem
5.3 to the end of this section.

Theorem 5.3. Assume that k ∈ (kn; kn+1), n ∈ N∗, the threshold wavenumbers kn being defined in
(23).
1) The operators B±β are of Fredholm type.
2) Moreover, we have dim ker Bβ−dim ker B−β = 2P and there are functions Ψ1, . . . ,Ψ2P ∈ ker Bβ

admitting the decomposition, for p = 1, . . . , P ,

Ψp = χ+w−p + χ+
P∑

m=1
spmw

+
m + χ−

P∑
m=1

spP+mw
−
m + Ψ̃p,

ΨP+p = χ−w+
p + χ+

P∑
m=1

sP+pmw
+
m + χ−

P∑
m=1

sP+pP+mw
−
m + Ψ̃P+p.

(85)

Here, the Ψ̃p, p = 1, . . . , 2P , belong to W̊2
−β(D) and the scattering matrix S := (spm)1≤p,m≤2P ∈

C2P×2P is uniquely defined, unitary (SS> = Id2P×2P ) and symmetric (S> = S).

Now we state the main result of the section, which is the equivalent of Theorem 4.2 in the simply
supported case.

Theorem 5.4. Assume that k ∈ (kn; kn+1), n ∈ N∗, the threshold wavenumbers kn being defined in
(23).
1) The operator Bout defined in (83) is Fredholm of index zero and ker Bout = ker B−β. As a
consequence,
a) If ker B−β = {0}, then Bout is an isomorphism.
b) If ker B−β = span(z1, . . . , zd) for some d ≥ 1, then the equation Boutu = f ∈ W̊2

β(D)∗ admits a
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solution (defined up to an element of ker B−β) if and only if f satisfies the compatibility conditions
〈f, zj〉D = 0 for j = 1, . . . , d.

2) If u ∈Wout(D) is such that Boutu = f ∈ W̊2
β(D)∗, then we have

u− χ+
P∑
p=1

cpw
+
p − χ−

P∑
p=1

cp+P w
−
p ∈ W̊2

−β(D) with cp = i〈f,Ψp〉D, p = 1, . . . , 2P,

the Ψp ∈ ker Bβ being defined in (85).

Remark 5.4. When k ∈ (0; k1), using the result of Remark 5.1, one can prove that Fredholmness of
(81) holds in {u ∈ H2(D) |u = ∂nu = 0 on ∂Ω}. In particular, we do not need to impose radiation
conditions.

Remark 5.5. From Theorem 5.4, we deduce that if Problem (81) for f = 0 has only the zero solution
in W̊2

−β(D), then for any f ∈ W̊2
β(D)∗, Problem (81) has a unique solution u in Wout(D). In order

to make the connection with the result of Theorem 4.2, observe that any compactly supported function
f ∈ L2(D) belongs to W̊2

β(D)∗ while the solution u ∈ Wout(D) belongs to H2
loc(D) and satisfies the

radiation conditions. Notice also that the equality ker Bout = ker B−β is the equivalent of the result
established in Remark 4.4. It says that the elements of the kernel of the problem, if they exist, are
exponentially decaying at infinity. In other words, they are trapped modes.

Proof of Theorem 5.4. 1) i) First we show that ker Bout = ker B−β. Clearly we have

ker B−β ⊂ ker Bout.

It is then sufficient to establish that ker Bout ⊂ ker B−β. Assume that

u = χ+
P∑
p=1

apw
+
p + χ−

P∑
p=1

bpw
−
p + ũ

belongs to ker Bout. Then one has qD(u, u) = 0. Using Proposition 5.3, this implies

i
P∑
p=1
|ap|2 + i

P∑
p=1
|bp|2 = 0

and shows that u ∈ ker B−β.

ii) Now, let us prove that Bout has a closed range and that dim coker Bout = dim ker B−β. Theorem
5.3 ensures that B−β is a Fredholm operator. Therefore ker B−β is of finite dimension. Assume
that ker B−β = span(z1, . . . , zd) where the functions z1, . . . , zd are linearly independent. The case
ker B−β = {0}, simpler to study, is left to the reader. Consider some f ∈ W̊2

β(D)∗ satisfying the
compatibility conditions 〈f, zj〉D = 0 for j = 1, . . . , d. This is equivalent to f ∈ (ker B−β)⊥. Since
Bβ = B∗−β and since the range of Bβ is closed (because Bβ is of Fredholm type), this is also
equivalent to the fact that f belongs to the range of Bβ. Then there is some v ∈ W̊2

β(D) such that
Bβv = f . Moreover, multiplying v by a well suited cut-off function and using Proposition 5.1, one
obtains that v admits the decomposition

v = χ+
P∑
p=1

(a+
p w

+
p + a−p w

−
p ) + χ−

P∑
p=1

(b−p w−p + b+p w
+
p ) + ũ,

with coefficients a±p , b±p ∈ C and ũ ∈ W̊2
−β(D). Set

u := v −
P∑
p=1

a−p Ψp −
P∑
p=1

b+p ΨP+p.
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One observes that u belongs to the space Wout(D). Besides, since the Ψp are in ker Bβ, we obtain
Boutu = Bβv = f . This shows on the one hand that the range of Bβ is included in the one of Bout.
Since Wout(D) ⊂ W̊2

β(D) the two ranges coincide and then the range of Bout is closed. This shows
on the other hand that dim coker Bout ≤ d = dim ker B−β. Now assume by contradiction that
dim coker Bout < d. In that case, we can find f = Boutu with u ∈Wout(D) such that 〈f, zj〉D 6= 0
for some j ∈ {1, . . . , d}. Then we have 〈Boutu, zj〉D = 〈Bβu, zj〉D = 〈B−βzj , u〉D = 0 which con-
tradicts the fact that 〈f, zj〉D 6= 0. Thus there holds dim coker Bout = d = dim ker Bout so that
ind Bout = dim ker Bout − dim coker Bout = 0.

Finally, we show statement 2). For f ∈ W̊2
β(D)∗ (satisfying the compatibility conditions if ker B−β 6=

{0}), consider

u = χ+
P∑
p=1

cpw
+
p + χ−

P∑
p=1

cp+P w
−
p + ũ ∈Wout(D)

a solution to the equation Boutu = f . Then for p = 1, . . . , 2P , using Theorem 5.3, we find
〈f,Ψp〉D = qD(u,Ψp) = −i cp. This leads to the desired result. �

We conclude this section by giving the proof of Theorem 5.3.

ω1 ω2 ω3

O

L 2L−L−2L

Figure 5: Partition of unity used in the proof of Theorem 5.3.

Proof of Theorem 5.3. 1) First we show that B±β are Fredholm operators. Since B−β is the adjoint
of B+β, it is sufficient to establish the result for B+β. The strategy is the following. In order to
prove that Bβ is a Fredholm operator, the first step consists in proving that range Bβ is closed
and ker Bβ is finite-dimensional. This will be a consequence of inequality (86) and Lemma 7.1 in
appendix. The second step consists in proving that coker Bβ is finite-dimensional, which will be a
consequence of the existence of a right regularizer of Bβ and of [26, Lem. 2.23].
Define the domains

ω1 := (−∞;−L)× (0; 1) ω2 := {(x, y) ∈ D | |x| < 2L} ω3 := (+L; +∞)× (0; 1)

(see Figure 5). For ν = 1, . . . , 3, let ζν and ψν be C∞ functions (with support in D) satisfying the
conditions

supp ζν ⊂ supp ψν ⊂ ων , ζνψν = ζν ,
3∑

ν=1
ζν = 1 in D.

Note in particular that ζ2 = ζ3 = 0 for x ≤ −L, ζ1 = ζ3 = 0 for |x| ≤ L and ζ1 = ζ2 = 0 for
x ≥ L. Define the space H2

�(ω2) := {ϕ ∈ H2(ω2) |ϕ = ∂nϕ = 0 on ∂ω2 \ ∂O} endowed with the
inner product of H2(ω2). Introduce the unique linear continuous operator B� : H2

�(ω2) → H2
�(ω2)∗

such that for all u, v ∈ H2
�(ω2),

〈B�u, v〉ω2
=
∫
ω2
ν∆u∆v + (1− ν)

(
∂2u

∂x2
∂2v

∂x2 + 2 ∂2u

∂x∂y

∂2v

∂x∂y
+ ∂2u

∂y2
∂2v

∂y2

)
dxdy.

According to Lemma 4.2, we know that for ν ∈ [0; 1), the operator B� is an isomorphism.

Let us prove the following a priori estimate:

‖u‖W2
β

(D) ≤ C (‖Bβu‖W̊2
−β(D)∗ + ‖u‖H1(ω2)), ∀u ∈ W̊2

β(D). (86)
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For u ∈ W̊2
β(D), noticing that Bβ(ζ1u) = A−β(ζ1u) and Bβ(ζ3u) = Aβ(ζ3u) because the supports

of ζ1u, ζ3u do not meet ∂O, we can write

‖u‖W2
β

(D) ≤ C (‖ζ1u‖W2
−β(Ω) + ‖ζ2u‖H2(ω2) + ‖ζ3u‖W2

β
(Ω))

≤ C (‖A−β(ζ1u)‖W2
β

(Ω)∗ + ‖B�(ζ2u)‖H2
�(ω2)∗ + ‖Aβ(ζ3u)‖W2

−β(Ω)∗)
≤ C (‖Bβ(ζ1u)‖

W̊2
−β(D)∗ + ‖Bβ(ζ2u)‖

W̊2
−β(D)∗ + ‖Bβ(ζ3u)‖

W̊2
−β(D)∗)

≤ C (
∑3
j=1 ‖ζjBβu‖W̊2

−β(D)∗ + ‖[Bβ, ζj ]u‖W̊2
−β(D)∗)

≤ C (‖Bβu‖W̊2
−β(D)∗ +

∑3
j=1 ‖[Bβ, ζj ]u‖W̊2

−β(D)∗).

(87)

Here we use the notation [Bβ, ζj ]u = Bβ(ζju)− ζjBβu. Now, let us establish the estimate

‖[Bβ, ζ1]u‖
W̊2

−β(D)∗ ≤ C‖u‖H1(ω2). (88)

An algebraic computation using the fact that the support of ζ1 does not meet ∂O shows that for
φ ∈ {φ|D |φ ∈ C∞0 (Ω)}, we have

〈[Bβ, ζ1]u, φ〉D =
∫
D

(u∆ζ1 + 2∇u · ∇ζ1)∆φ−∆u(φ∆ζ1 + 2∇φ · ∇ζ1) dxdy.

Integrating by parts in the term involving ∆u, we obtain |〈[Bβ, ζ1]u, φ〉D| ≤ C‖u‖H1(ω2)‖φ‖W2
−β(D)

where C > 0 is independent of u. Taking the suprememum over {φ|D |φ ∈ C∞0 (Ω)} leads to (88).
Dealing with the terms [Bβ, ζ2]u and [Bβ, ζ3]u of (87) in a similar manner, we obtain the a priori
estimate (86). Finally, observing that the map u 7→ u|ω2 from W̊2

β(D) to H1(ω2) is compact (because
ω2 is bounded), one deduces from Lemma 7.1 in Appendix that range Bβ is closed and ker Bβ has
finite dimension.

Now, let us build a right regularizer (also called a right parametrix), i.e. an operator R such that
BβR − Id is a compact operator of W̊2

−β(D)∗. According to [26, Lem. 2.23], this will prove that
coker Bβ is finite-dimensional. Define the operator

R := ζ1 (A−β)−1 (ψ1 ·) + ζ2 (B�)−1 (ψ2 ·) + ζ3 (Aβ)−1 (ψ3 ·).

For all f ∈ W̊2
−β(D)∗, one finds

Bβ(Rf) = Bβ (ζ1 (A−β)−1 (ψ1f)) + Bβ (ζ2 (B�)−1 (ψ2f)) + Bβ (ζ3 (Aβ)−1 (ψ3f))
= A−β (ζ1 (A−β)−1 (ψ1f)) + B� (ζ2 (B�)−1 (ψ2f)) +Aβ (ζ3 (Aβ)−1 (ψ3f))
=

∑3
j=1 ζjf + [A−β, ζ1] (A−β)−1(ψ1f) + [B�, ζ2] (B�)−1(ψ2f) + [Aβ, ζ3] (Aβ)−1(ψ3f).

One can prove working as in (88) that [A−β, ζ1], [B�, ζ2] and [Aβ, ζ3] are compact as operators from
W̊2
β(D) to W̊2

−β(D)∗. Thus, R is indeed a right regularizer and coker Bβ is finite-dimensional. This
concludes the proof that Bβ is a Fredholm operator.

2) Now, we focus our attention on the indices of B±β. Since Bβ is the adjoint of B−β, we have

ind Bβ = −ind B−β. (89)

On the other hand, [32, Chap. 4, Prop. 3.1, p. 110] guarantees that the quantity ind Bβ − ind B−β
is equal to twice (because of the two outlets at infinity) the sum of the algebraic multiplicities of
the eigenvalues of L located in the strip −β < λ < β. From Propositions 3.6, 3.4 and 3.3, we infer
that

ind Bβ − ind B−β = 4P. (90)

Gathering (89) and (90), we obtain ind Bβ = −ind B−β = 2P . In particular, since dim coker Bβ =
dim ker B−β (again we use the fact that B∗β = B−β), we get dim ker Bβ − dim ker B−β = 2P .
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Let v1, . . . , v2P be functions of ker Bβ which are linearly independent modulo W̊2
−β(D). Moreover

multiplying the vp by cut-off functions and using Proposition 5.1, one finds for p = 1, . . . , P , the
function vp decomposes as

vp = χ+
P∑

m=1
(apmw+

m + bpmw
−
m) + χ−

P∑
m=1

(apP+mw
−
m + bpP+mw

+
m) + ṽp,

vP+p = χ+
P∑

m=1
(aP+pmw

+
m + bP+pmw

−
m) + χ−

P∑
m=1

(aP+pP+mw
−
m + bP+pP+mw

+
m) + ṽP+p,

with coefficients apm, bpm ∈ C and ṽp ∈ W̊2
−β(D). Let us show that the matrix B := (bpm)1≤m,p≤2P ∈

C2P×2P is invertible. If it is not, then there is a non zero U in kerB>. Define the function
v =

∑2P
p=1 Up vp ∈ ker Bβ. Since

∑2P
m=1 bpm Up = 0 for m = 1, . . . , 2P , we find that v belongs

to Wout(D). Computing qD(v, v) as in the Step 2 of the proof of Theorem 5.4, one deduces that
v ∈ W̊2

−β(D) and so v ∈ ker B−β. But this is impossible because U 6= 0 and the v1, . . . , v2P are lin-
early independent modulo W̊2

−β(D). Thus the matrix B is invertible of inverse B−1 := (b̂p j)1≤p,j≤2P .
Then we construct the functions Ψp introduced in (85) setting Ψp =

∑2P
j=1 b̂p jvj , p = 1, . . . , 2P .

Besides, using Proposition 5.3 and the fact that the Ψp defined in (85) belong to ker Bβ, we find
for m, p ∈ {1, . . . , 2P}

0 = qD(Ψm,Ψp) = i
(
δm, p −

2P∑
j=1

smj sj p
)
.

Thus we deduce SS> = Id2P×2P . In other words, S is unitary. Using again Proposition 5.3, we also
find, for m 6= p,

0 = qD(Ψm,Ψp) = i(smp − spm).

From this, we infer that S is symmetric. �

6 Selection of the outgoing modes

For each type of boundary conditions on the edges of the strip (simply supported or clamped), we
defined the outgoing solution, the interesting one from a physical point of view, as the solution
decomposing on the propagating modes w±p (and not w∓p ), p = 1, . . . , P , as x → ±∞. This choice
was arbitrary. In particular, let us mention that a functional framework where we impose to the
solution to decompose on the propagating modes w∓p , p = 1, . . . , P , as x → ±∞ also leads to a
Fredholm operator of index zero. In this section, we explain why our choice is physically relevant in
the case of the clamped strip (the case of the simply supported strip would be treated similarly). To
proceed, we come back to the time dependent equation from which the harmonic Problem (53) has
been derived. We prove that the waves associated with the propagating modes w±p have a positive
group velocity as x → ±∞. In other words, these waves propagate energy to ±∞. Positive (resp.
negative) group velocity is known as the usual criterion to discriminate what are the outgoing modes
as x → +∞ (resp. x → −∞). In order to justify that this choice is pertinent, in a second step we
prove that it leads to select the solution with satisfies the so-called limiting absorption principle.
The idea of this limiting absorption principle consists in adding some small loss (dissipation) to the
medium. In this case, we can establish that Problem (53) (with k replaced by a complex k to take
into account dissipation) admits a unique solution in W̊2

0(Ω) ⊂ H2(Ω) (to simplify, we shall work
in Ω but everything is similar for Problem (81) in D). This solution decomposes as the sum of a
slowly exponentially decaying part plus a rapidly exponentially decaying component as x → ±∞.
The decay of the slowly exponentially decaying part is characterized by the position in the complex
plane of the eigenvalues of the symbol of the operator with dissipation. What we will do is to
study the limit of this complex eigenvalues to check that they converge to the ones which have been
selected for the problem without absorption (the iηp, p = 1, . . . , P ).
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6.1 Group velocities

In this paragraph, we compute the group velocities of the waves associated to the propagating modes
w±p , p = 1, . . . , P , defined in (71). Let us start from the equation of the motion of the plate given
by

ρh
∂2W

∂t2
+D∆2W = 0 ⇔

∂2W

∂t2
+ c2∆2W = 0 with c :=

√
D

ρh
. (91)

Looking for waves with the time harmonic dependence in e−iωt (this is a convention) leads us to
set W±p (x, y, t) := w±p (x, y) e−iωt = ei(±ηpx−ωt)ϕp(y). Plugging W±p in (91), we obtain the already
known equation for w±p :

−ω2w±p + c2∆2w±p = 0 ⇔ ∆2w±p − k4w±p = 0 with k2 := ω/c.

By definition, the group velocity of the waves W±p (x, y, t) = ei(ηx−ωt)ϕp(y) with η = ±ηp, is given
by

vg(W±p ) = ∂ω

∂η
|η=±ηp = 2ck∂k

∂η
|η=±ηp . (92)

In order to compute vg(W±p ), we differentiate the relation L (iη) = ∂4
yϕ− 2η2∂2

yϕ+ (η4 − k4)ϕ = 0
(see the definition (7) of operator L ) with respect to η ∈ R to obtain

L (iη)(∂ϕ
∂η

)− 4η(∂2
yϕ− η2ϕ)− 4k3∂k

∂η
ϕ = 0.

Taking η = ±ηp, multiplying by ϕ and integrating by parts, we deduce that

± 4ηp
∫
I
|∂yϕp(y)|2 + η2

p|ϕp(y)|2 dy = 4k3∂k

∂η
|η=±ηp

∫
I
|ϕp(y)|2 dy. (93)

Gathering (92), (93) and using the normalisation (72), we find

vg(W±p ) = ±2c
4ηp

∫
I
|∂yϕp(y)|2 + η2

p|ϕp(y)|2 dy

4k2
∫
I
|ϕp(y)|2 dy

=
± 2c

4k2
∫
I
|ϕp(y)|2 dy

.

This shows that from a physical point of view, W+
p (resp. W−p ) is the outgoing wave as x → +∞

(resp. x → −∞). As a consequence, in time harmonic regime, we have to look for a solution
which decomposes on the propagating modes w±p as x → ±∞. This explains our choice in (76).
Let us translate this into a criterion for the symplectic form qΩ(·, ·) defined in (78). For ν = ±,
computation (80) gives

iqΩ(χνw±p , χνw±p ) = ±4 νηp
∫
I
|∂yϕp(y)|2 + η2

p|ϕp(y)|2 dy = νvg(W±p )
4k2

∫
I
|ϕp(y)|2 dy

2c .

Therefore at infinity (x→ ±∞), we have to select the propagating modes providing a positive value
for the form iqΩ(wp, wp). Finally, note that if we define the phase velocity

vφ(W±p ) = ω

±ηp
,

we obtain the identities

vφ(W±p ) vg(W±p ) = 2c2
4ηp

∫
I
|∂yϕp(y)|2 + η2

p|ϕp(y)|2 dy

4
∫
I
|ϕp(y)|2 dy

=
2c2

4
∫
I
|ϕp(y)|2 dy

.

In particular for this problem, we see that the group and phase velocities of the waves have the
same sign.
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6.2 Limiting absorption principle

In this paragraph, we add small dissipation, modelled by a parameter γ, to the system. This
dissipation ensures that the problem is well-posed in a usual setting. Then we make γ tend to zero.
This process allows us to define the physical solution and we will show that this solution is the
same as the one selected via the group velocity. As a first step, we have to explain how to take into
account dissipation in the time harmonic Problem (53). To proceed, again we start from the time
dependent problem. Consider the damped equation

∂2W γ

∂t2
+ γ

∂W γ

∂t
+ c2∆2W γ = 0 in Ω (94)

with the boundary conditions W γ = ∂nW
γ = 0 on (0; +∞)× ∂Ω and appropriate initial conditions

(compactly supported in space). Multiplying by ∂tW γ and integrating in Ω, we obtain the energy
balance

dE(t)
dt

= −
∫

Ω
γ

(
∂W γ

∂t

)2

dxdy with E(t) =
∫

Ω

1
2

(
∂W γ

∂t

)2

+ c2 |∆W γ |2 dxdy.

Therefore, we see that γ must be chosen positive so that the term involving γ in (94) corresponds to
some dissipation (loss of energy). Applying the Fourier transform with respect to the time variable
defined by

wγ(x, y, ω) :=
∫ +∞

−∞
e−iωtW γ(x, y, t) dt

(note the convention of a time harmonic regime in e−iωt), we are led to study the equation

−ω2wγ− iγ wγ +c2∆2wγ = 0 ⇔ ∆2wγ− (kγ)4wγ = 0 with (kγ)4 := k4 + iγ/c2. (95)

As a consequence, taking into account dissipation of the system boils down to add a positive
imaginary part to k4 (observe that a convention of a time harmonic regime in eiωt leads to add a
negative imaginary part to k4). Due to the imaginary part of kγ , using the Lax-Milgram theorem,
one can prove that Problem (95) supplemented with the same boundary conditions as in (81)
admits a unique solution wγ ∈ W̊2

0(Ω) ⊂ H2(Ω). On the other hand, all the analysis presented in
the previous sections for Problem (53) can be adapted to consider this new problem with k replaced
by kγ . In particular, as in (60), we can define a symbol associated with this problem named L γ . We
let Λγ refer to the set of eigenvalues of L γ . We denote iηγp , p = 1, . . . , P , the P elements of Λγ which
have the largest negative real part. These elements are uniquely defined for γ small enough and get
closer and closer to Ri as γ → 0+. We assume that they are ordered so that 0 ≤ |ηγ1 | ≤ · · · ≤ |η

γ
P |.

Using a result similar to the one of Proposition 5.1, we obtain the decomposition

wγ(x, y) = χ+(x, y)
P∑
p=1

aγp e
+iηγpxϕγp(y) + χ−(x, y)

P∑
p=1

bγp e
−iηγpxϕγp(y) + w̃γ(x, y)

where aγp , bγp are complex numbers, ϕγp is a non zero element of ker L γ(iηγp ) and w̃γ is rapidly
exponentially decaying as x → ±∞. Note that wγ is exponentially decaying at x → ±∞ because
<e (iηγp ) < 0. The question we are interested in is as follows. Does the limit of iηγp as γ → 0+ is
equal to iηp or to −iηp? To answer this question, we compute

∂(iηγp )
∂γ
|γ=0 = −

1
4c2k3

∂ηγp
∂kγ
|γ=0. (96)

We start from the equation
∂4
yϕ− 2η2∂2

yϕ+ (η4 − k4)ϕ = 0.

We differentiate it with respect to k to obtain

L (iη)(∂ϕ
∂k

)− 4∂η
dk
η (∂2

yϕ− η2ϕ)− 4k3ϕ = 0.
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Taking γ = 0, multiplying by ϕ and integrating by parts, we deduce by denoting η0
p = limγ→0+ ηγp

that

4η0
p

∂ηγp
∂kγ
|γ=0

∫
I
|∂yϕp(y)|2 + η2

p|ϕp(y)|2 dy = 4k3
∫
I
|ϕp(y)|2 dy. (97)

Since by definition of ηγp , there holds
∂(iηγp )
∂γ
|γ=0 < 0, we deduce from (96) and (97) that η0

p > 0.

Therefore indeed we have η0
p = ηp and the picture is as illustrated in Figure 6: the limiting absorption

principle leads us to call outgoing modes the modes w±p as x → ±∞. This is coherent with what
we got from considerations based on the group velocity in the previous paragraph.

+iηp

−iηp

<e λ

=mλ+iηγp when γ → 0+

−iηγp when γ → 0+

Figure 6: Schematic view of the behaviour of the eigenvalues of the symbol L γ as the dissipation
γ tends to zero.

7 Concluding remarks
In this article, we proved the well-posedness in the Fredholm sense of time harmonic problems set
in an unbounded strip for a thin plate model. We considered two types of boundary conditions:
either the strip is simply supported or the strip is clamped. To show these results, we used two
different strategies, both relying on some modal decomposition. In the simply supported case, a
strong result of Hilbert basis for the eigenfunctions of the symbol of the transverse problem (5)
allowed us to easily obtain the modal decomposition. For the clamped problem, this result is not
freely available and instead we worked with the Fourier transform in the unbounded direction, with
weighted Sobolev spaces and with the residue theorem (Kondratiev approach). The second approach
is more systematic than the first one. For example, it would allow one to deal with waveguides of the
form Ω = R× ω, where ω is a bounded domain of Rd−1, d ≥ 2. Its main drawback maybe is that it
leads to an analysis which is slightly longer than the one we get with the first method. In this work,
we have considered a setting with a hole in the waveguide. We could also have considered other
types of perturbations (change of material, local perturbation of the geometry,...). Our article does
not address the question of uniqueness of the solution. Can one find conditions on the geometry and
on the wavenumber k so that trapped modes are absent? Can one show the existence of settings
where trapped modes exist? These are interesting questions to study. A natural direction after
this analysis would be to investigate how to approximate the solutions. For the simply supported
case, the fact that we know explicitly the Dirichlet-to-Neumann operator allows one to adapt the
methods used to deal with the Helmholtz problem. In the clamped case, another technique must
be found. Could the technique of Perfectly Matched Layers be used and justified?

Appendix

In this appendix, we state a result established in [41] which is an extension of the well-known Peetre’s
lemma [38] (see also [43]), that is particularly useful to prove that an operator is of Fredholm type.
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Lemma 7.1. Let (X, ‖ ‖X), (Y, ‖ ‖Y) and (Z, ‖ ‖Z) be three Banach spaces. Let K : X → Z be a
linear compact map and B : X → Y be a continuous linear map. Suppose that there exists C > 0
such that

‖x‖X ≤ C
(
‖Bx‖Y + ‖Kx‖Z

)
, ∀x ∈ X. (98)

Then dim kerB <∞ and rangeB is closed in Y.
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[24] V. G. Maz’ya and B. A. Plamenevskĭı. On the coefficients in the asymptotics of solutions of
elliptic boundary value problems with conical points. Math. Nachr., 76:29–60, 1977. Engl.
transl. Amer. Math. Soc. Transl. 123:57–89, 1984.

[25] M. McIver, C. M. Linton, P. McIver, J. Zhang, and R. Porter. Embedded trapped modes for
obstacles in two-dimensional waveguides. Quart. J. Mech. Appl. Math., 54(2):273–293, 2001.

[26] W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge University
Press, Cambridge, 2000.

[27] S. A. Nazarov. Elliptic boundary value problems with periodic coefficients in a cylinder. Izv.
Math., 18(1):89–98, 1982.

[28] S. A. Nazarov. The polynomial property of self-adjoint elliptic boundary-value problems and
an algebraic description of their attributes. Russ. Math. Surv., 54(5):947–1014, 1999.

[29] S. A. Nazarov. Properties of spectra of boundary value problems in cylindrical and quasicylin-
drical domains. In Sobolev spaces in mathematics II, pages 261–309. Springer, 2009.

[30] S. A. Nazarov. The Mandelstam energy radiation conditions and the Umov-Poynting vector in
elastic waveguides. J. Math. Sci., 195(5):676–729, 2013.
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