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We present a detailed study of local and nonlocal correlations in the electronic structure of elemental transition
metals carried out by means of the quasiparticle self-consistent GW (QSGW) and dynamical mean field theory
(DMFT). Recent high resolution ARPES and Haas-van Alphen data of two typical transition metal systems (Fe
and Ni) are used as a case study. (i) We find that the properties of Fe are very well described by QSGW. Agreement
with cyclotron and very clean ARPES measurements is excellent, provided that final-state scattering is taken into
account. This establishes the exceptional reliability of QSGW also in metallic systems. (ii) Nonetheless QSGW
alone is not able to provide an adequate description of the Ni ARPES data due to strong local spin fluctuations.
We surmount this deficiency by combining nonlocal charge fluctuations in QSGW with local spin fluctuations in
DMFT QSGW+“magnetic DMFT”. (iii) Finally we show that the dynamics of the local fluctuations are actually
not crucial. The addition of an external static field can lead to similarly good results if nonlocal correlations are
included through QSGW.
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High-resolution spectroscopy is limited in transition met-25

als, in part because it is difficult to make sufficiently26

high quality samples. Fe and Ni are elements of which27

high quality films have been grown, and high-resolution28

angle-resolved photoemission spectroscopy (ARPES) per-29

formed [1]. These experiments provides a good reference to30

test the validity of different approximations of the electronic31

structure.32

There are also not many calculations of spectral func-33

tions in these materials. Fe has been studied in the local-34

density approximation (LDA) [2] and with corrections through35

dynamical-mean field theory (DMFT) [3]. It is not surprising36

that the LDA does not track the ARPES experiment well [4],37

but it has been found that LDA+DMFT also fails to properly38

account for ARPES data [3]. The GW approximation [5] is39

widely applied to many kinds of insulators, but how well it40

describes 3d transition metals is much less established.41

Through quasiparticle self-consistency (QSGW) one de-42

termines the noninteracting Green’s function G0 which is43

minimally distant from the true Green’s function G [6–8].44

Within QSGW many electronic properties are in excellent45

agreement with experiment [6], most notably the quasiparticle46

band structures. Moreover, at self-consistency the poles of47

QSGW G0(k,ω) coincide with the peaks in G(k,ω). This48

means that there is no many-body “mass renormalization”49

of the noninteracting Hamiltonian, which allows for a direct50

association of QSGW energy bands E(k) with peaks in the51

spectral function A(k,ω). Thus, QSGW provides an optimum52

framework to test the range of validity and the limitations to53

the GW approximation.54

In this Rapid Communication, we compare QSGW results 55

to various experimental data in elemental 3d materials in the 56

Fermi liquid (FL) regime, with a heavy focus on Fe because 57

of the high quality of ARPES [1] and de Haas-van Alphen 58

(dHvA) [9,10] data available. We will show that QSGW 59

and ARPES spectral functions agree to within experimental 60

resolution, with the proviso that the final state scattering 61

is properly accounted for in interpreting the experimental 62

data. By contrast, discrepancies appear in Ni—a classical 63

itinerant ferromagnet. This can be attributed to the lack of spin 64

fluctuations in GW diagrams. However we find out that there 65

is no need to include finite-energy spin fluctuations, instead 66

a static correction to the QSGW self-energy is sufficient to 67

correct for the size of the local moment. This findingopens 68

up an avenue to test the validity of a similar argument for 69

other transition metals. The LDA or LDA+DMFT should be 70

problematic, as nonlocality in the self-energy can be important 71

(see Supplemental Material). 72

I. FE IN THE FERMI LIQUID REGIME 73

Figure 1 compares the calculated QSGW band structure of 74

Fe to peaks in ARPES spectra of Ref. [1], along with some 75

inverse photoemission data [11]. While agreement appears 76

to be very good, there are some discrepancies, particularly 77

along the "-H line [see also Fig. 2(a)]. As noted earlier, the 78

QSGW band structure reflects the peaks of A(k,ω) with no 79

renormalizations from the ω or k dependence of #. 80

In the FL regime, ARPES spectra I (k,ω) are generally 81

thought to be a fairly direct measure of A(k,ω). But the two 82
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FIG. 1. Left: QSGW band structure of Fe (solid lines), LSDA

(gray dashed), k-point averaged QSGW (black dotted, see text),
ARPES spectra [1] (diamonds), and inverse photoemission spec-
tra [11] (squares). Right: Fermi surface. Symbols denote FS crossings
reported in Ref. [1]. Red and green depict majority and minority d

character, respectively.

are not identical even in the FL regime, independently of83

the precision of the experimental setup. Assuming a one-step84

model [12] for the photoemission process (initial and final85

state coupled through Fermi’s golden rule [12,13]) I (k,ω) can86

be written as87

I (k,ω) ∝
∫

dk⊥|Tf s |2|Mf i(k⊥)|2Af (k⊥)A(k,ω),

where Af (k⊥) = $k⊥/2π

($k⊥/2)2 + (k⊥ − k0
⊥)2

(1)

is the spectral function of the final state, broadened by scat-88

tering of the photoelectron as it approaches the surface [14].89

Tf s is the final-state surface transmission amplitude and Mf i90

the photoexcitation matrix element (taken to be constant and91
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FIG. 2. (a) The "-H line of Fig. 1 in high resolution. Labels
correspond to traditional assignments of Fermi surface pockets [1,9].
(b) Dashed line is QSGW spectral function A(k,ω) for various points
on the "-H line, with k = 0 and k = 1 denoting " and H. Solid
line is A(ω) modified according to Eq. (1). (c) The analog of (b)
at k = 0.77 × H where the IIM band crosses EF . EQP indicates the
QSGW QP level, and EARPES the experimental ARPES peak at 0.77H.
(d). dispersion in the QSGW IIM band on a line k⊥ + [0,0,0.77H]
normal to the film surface.

k independent [15]). Thus the final state is considered to 92

be a damped Bloch wave, taking the form of a Lorentzian 93

distribution centered in k0
⊥ and broadened by $k⊥ [14], 94

while the initial state is an undamped Bloch function with an 95

energy broadening $E, obtained through the QSGW spectral 96

function. This approximation is reasonable since in the FL 97

regime A(k,ω) is sharply peaked around the QP level. $k⊥ 98

is directly related to the inverse of the electron mean free 99

path. For photon energy in the range 100–130 eV, $k⊥ ≈ 100

0.2 Å−1 [16,17]. 101

The final-state scattering broadens I (ω), but it also can 102

shift the peak ω̄ in I (ω). The most significant discrepancy 103

between ARPES and QSGW is found in the Vm band, Fig. 2(a) 104

between k = 0 and 0.4 × H. Figure 2(b) shows A(k,ω) 105

calculated by QSGW, and the corresponding I (k,ω) calculated 106

from Eq. (1). Estimating the peak shift change from δω̄ = 107∫
dω ωI/

∫
dωI −

∫
dω ωA/

∫
dωA, we find δω̄ < 0.01 eV 108

at ", increasing to δω̄ ≈ 0.06 eV for k between 0.1H and 109

0.3H. δω̄ = 0.06 eV tallies closely with the discrepancy 110

between the Vm band and the measured ARPES peak for 111

0.1H < k < 0.3H. There is also a significant discrepancy in 112

the IIM band near k = 0.77 × H. Where it crosses EF , the 113

QSGW bands deviate from the ARPES peak by nearly 0.15 eV. 114

But ARPES simulated by Eq. (1) is much closer to experiment 115

[Fig. 2(c)]. This is understood from Fig. 2(d), which plots the 116

QSGW dispersion along a line $k⊥ normal to the film surface, 117

passing through [0,0,0.77H]. A measurement that includes 118

contributions from this line biases the ARPES peak in the 119

direction of EF since Eqp is minimum at k⊥=0. Thus we 120

attribute most of the discrepancy in the Fermi surface crossing 121

[red star in Fig. 1(b)] to an artifact of final-state scattering. 122

To better pin down the errors in QSGW, we turn to de 123

Haas-van Alphen (dHvA) measurements. Extremal areas of 124

the FS cross sections can be extracted to high precision from 125

dHvA and magnetoresistance experiments. Areas normal to 126

[110] and [111] are given in Table I, along with areas calculated 127

by QSGW. Figure 1 shows the QSGW Fermi surface, which 128

closely resembles the one inferred by Lonzarich (version 129

B) [19]. There is some ambiguity in resolving the small VIIIm 130

pocket at N because its tiny area is sensitive to computational 131

details. Discrepancies in the extremal areas are not very 132

meaningful: It is more sensible to determine the change $EF 133

in Fermi level needed to make the QSGW area agree with 134

dHvA measurements. This amounts to the average error in the 135

QSGW QP levels, assuming that the bands shift rigidly. This 136

assumption is well verified for all pockets, except for the small 137

VI one owing to strong electron-phonon coupling [20]. 138

Some limited cyclotron data for effective masses are also 139

available [18], which are expected to be more reliable than 140

ARPES data. It is seen that agreement is excellent (Table I, 141

bottom panel) except for the small VI pocket. We get a better 142

comparison by accounting for the electron-phonon coupling 143

with a simple model [20,21]. From the model, vF is renor- 144

malized by a factor 1+λ = 1.6, which reasonably accounts 145

for discrepancy between the QSGW and the cyclotron mass in 146

pocket VI. The other pockets are much larger [Fig. 1(b)], mak- 147

ing vF much larger on average and the renormalization smaller. 148

Such a perfect agreement with experiments could not 149

be possible without the accurate description of nonlocal 150

components in the QSGW self-energy. To prove this statement 151
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TABLE I. de Haas-van Alphen measurements of extremal areas A on the [110] and [111] Fermi surfaces, in Å−2. $EF is an estimate of
the error in the QP level (eV), as described in the text. Bottom panel: cyclotron mass, m∗/m = (!2/2πm) ∂A/∂E.

FS dHvA [110] dHvA [111]

pocket QSGW expt. [9] $EF QSGW expt. [9] $EF

I 3.355 3.3336 0.01 3.63 3.5342 0.04
II 3.694
III 0.2138 0.3190 0.05 0.1627 0.2579 0.06
IV 0.0897 0.1175 0.04 0.0846 0.1089 0.02
VI 0.3176 0.5559 − 0.13 0.2799 0.4986 − 0.14
VII 0.0148 0.0405 0.04

m*/m [110] m*/m [111]
QSGW LDA expt. [18] QSGW LDA expt. [18]

I 2.5 2.0 2.6
V − 1.7 − 1.2 − 1.7
VI 2.0 1.5 2.8

we computed the band structure with a local potential obtained152

from a k-point average of the QSGW self-energy. The result is153

reported as a dotted black curve in Fig. 1, to be compared with154

the pale gray lines of LSDA and the solid lines of QSGW.155

The k-averaged potential reproduces a band structure that156

is much closer to the LSDA one than to the QSGW results.157

This results in the overestimation of the binding energy,158

e.g., of most states close to Fermi (for instance at "), or in159

the range between −2 and −3 eV (see at ", P, and H). An160

additional verification that local physics is not relevant in the161

description of the quasiparticle structure of Fe can be found162

in the Supplemental Material [20].163

II. NI: AN ARCHETYPICAL ITINERANT MAGNET164

Less detailed information is available for other elemental165

transition metals. We have extracted some experimental band-166

widths and also the exchange splitting $Ex in the magnetic167

elements. Figure 3(a) shows that both seem to be very well168

described by QSGW, except that $Ex deviates strongly from169

experiment in Ni. QSGW significantly improves not only on170

the LSDA, but also on fully self-consistent GW [22] because of171

loss of spectral weight in fully self-consistent G that is avoided172

in QSGW [6].173

Figure 4(a) compares the QSGW band structure of Ni to174

ARPES data [23]. Agreement is excellent in the minority175
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FIG. 3. (a): d bandwidth (top panel) and exchange splitting $Ex

(bottom panel) in the 3d elemental metals. (b): Magnetic moment of
several compounds

channel, but $Ex is uniformly too large on the symmetry 176

lines shown. Also the band near −1 eV at L (consisting of s 177

character there) is traditionally assumed to be a continuation 178

of the d band denoted as white and green diamonds, but the 179

calculations show that at it is a continuation of the Ni s band. 180

The corresponding LSDA band (light dotted lines) crosses L 181

at EF −0.44 eV; also the d bands are much wider. 182

$Ex is about twice too large in both QSGW and the 183

LSDA, and for that reason spin wave frequencies are also too 184

large [24]. Spin fluctuations ⟨M2⟩ are important generally in 185

itinerant magnets but they are absent in both LSDA and QSGW. 186

One important property they have is to reduce the average 187

magnetic moment ⟨M⟩ and hence to quench $Ex [25,26]. 188

Figure 3(b) shows this trend quite clearly: Systems such as 189

Fe, Co, and NiO are very well described by QSGW, but M 190

is always overestimated in itinerant magnets such as FeAl, 191

Ni3Al, and Fe based superconductors such as BaFe2As2. Ni is 192

L

maj
min
avg

X L

L2’
3

1

12

X

1

5

Expt
QSGW
LDA

M Ex

FIG. 4. (left) Band structure of Ni in QSGW (solid lines) and
LDA (dotted) and ARPES data [23] (the circle at −1.3 eV was taken
from Ref. [27]). Red arrows highlight the discrepancy in the exchange
splitting $Ex at near L and X. (right) QSGW+LSDMFT bands (solid)
and QSGW+Beff (dashed). (inset) $Ex at L as a function of M

obtained by adding an external magnetic field to the QSGW or LSDA
potential (see text).

001100-3



RAPID COMMUNICATIONS

LORENZO SPONZA et al. PHYSICAL REVIEW B 00, 001100(R) (2017)

TABLE II. Magnetic moment M and exchange splitting $Ex for
the different levels of the theory (see text) against experiment.

M (Bhor) $Ex @ L (eV)

LSDA 0.62 0.71
QSGW 0.75 0.77
QSGW+DMFT 0.51 0.30a

QSGW+SLDMFT 0.53 0.30
QSGW+Beff 0.57 0.32
Experiment 0.57 0.31

aValue estimated from Maximum entropy analytic continuation.

also itinerant to some degree (unlike Fe, its average moment193

probably disappears as T →Tc), and its moment should be194

overestimated. This is found to be the case for QSGW, as195

Fig. 3(b) shows.196

Local spin fluctuations are well captured by localized197

nonperturbative approaches such as DMFT. We can reasonably198

expect that the addition of spin-flip diagrams to QSGW would199

be sufficient to incorporate these effects. A G0W0+DMFT200

study of ferromagnetic Ni can be found in Ref. [28], but the201

dependency of G0W0 on the starting point, together with all202

the advantages mentioned at the beginning, motivated us to203

devise a QSGW-based approach.204

Here we adopt an implementation merging QSGW with205

DMFT. We adapted Haule’s continuous time quantum Monte206

Carlo solver [29,30] with the projection and embedding207

schemes described in Ref. [31], and which are outlined in208

the Supplemental Material [20]. In this sense, this method is209

close to the one introduced by some of us in [32], but based210

on a different self-consistent scheme for the solution of the211

weakly correlated part.212

The fully consistent QSGW+DMFT calculation is com-213

posed by alternately repeated DMFT and QSGW loops. First214

the QSGW Green’s function is converged at fixed density,215

then it is projected on the Ni d orbitals and finally, within the216

DMFT loop, the local self-energy is obtained. Updating the217

total density with the locally corrected Green’s function and218

repeating the procedure leads to complete self-consistency.219

This method fully takes into account the dynamics of the local220

spin fluctuations included in the DMFT diagrams. Results are221

reported in Table II and they confirm that DMFT adds the222

correct local diagrams missing in the QSGW theory. Moreover223

by carefully continuing the resulting Green’s function on the224

real-frequency axis, we find an exchange splitting of ∼0.3 eV225

and a satellite at ∼5 eV [20].226

In order to investigate the importance of the dynamics in227

the local spin-spin channels, we carry out a QSGW+DMFT228

calculation by retaining only the static limit of the DMFT229

loop (we call it QSGW+“SLDMFT”). Once the DMFT loop230

converges, we take the zero frequency limit of the magnetic231

part of the DMFT self-energy and add it to the spin-averaged232

QSGW Hamiltonian [20]. As it is clearly shown in Table II233

and Fig. 4, this static Hamiltonian reproduces very accurately234

magnetic moment and details of the band structure. This235

is a strong indication that for Ni the dynamics of local236

spin fluctuations is not crucial. This will be the case if the237

quasiparticle picture is a reasonable description of Ni, even238

if QSGW alone does not contain enough physics to yield an 239

optimum quasiparticle approximation. 240

To verify this further, we model spin fluctuations by 241

carrying out the QSGW self-consistent cycle in the presence 242

of a magnetic field Beff , and tuning Beff to reduce M (see 243

inset, Fig. 4) Our key finding is that when Beff is tuned to 244

make M agree with experiment, $Ex does also, reproducing 245

ARPES spectra to high precision in the FL regime, as clearly 246

reported in Fig. 4 and Table II. Both the QSGW and LSDA 247

overestimate M for itinerant systems, but the latter also 248

underestimates it in local-moment systems [Fig. 3(b)]. In the 249

LSDA treatment of Ni, these effects cancel and render the 250

moment fortuitously good. When spin fluctuations are folded 251

in through Beff , the LSDA moment becomes too small. This 252

finding must be interpreted as a sign of the superior level 253

of internal consistency in the QSGW theory with respect to 254

LSDA. Without such a degree of consistency spin fluctuations 255

could not be approximated by a static field. 256

III. CONCLUSIONS 257

We have performed detailed QSGW calculations of the 258

electronic band structure of several 3d metallic compounds to 259

assess the reliability of this theory in the Fermi liquid regime 260

and the importance of the nonlocal terms in the self-energy. 261

—Fe: Through de Haas-van Alphen and cyclotron mea- 262

surements we established that QSGW QP levels at EF have 263

an error of ∼0.05 eV, and effective masses are well described. 264

Comparable precision is found below EF by comparing to 265

ARPES data, provided final state scattering is taken into 266

account. The QSGW d bandwidth falls in close agreement 267

with ARPES and is approximately 0.75 times that of the LDA 268

(Fig. 1). 269

If # is k-averaged to simulate a local self-energy, the QSGW 270

band structure changes significantly and resembles the LDA. 271

Thus nonlocality in the self-energy is important in transition 272

metals, and its absence explains why LDA+DMFT does not 273

yield good agreement with ARPES [3]. 274

—Ni: QSGW d bandwidths, the t2g-eg splitting, the s-d 275

alignment, are all in excellent agreement with experiment, 276

while ⟨M⟩ and $Ex are too large. However through the 277

addition of a uniform static external field QSGW can give 278

both in good agreement, indicating a high level of consistency 279

in the theory, contrary to LSDA in which it is not possible to 280

have both quantities correct at the same time. 281

To account for spin fluctuations in an ab initio framework, 282

we constructed a QSGW+DMFT implementation and we 283

utilized it at different degrees of approximations demonstrating 284

that in itinerant magnets as Ni (i) the dynamics of fluctuations 285

is irrelevant and (ii) their effect can be very well approximated 286

by a static field as long as the nonlocal correlation part is 287

treated accurately. 288
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[1] J. Schäfer, M. Hoinkis, E. Rotenberg, P. Blaha, and R. Claessen,
Phys. Rev. B 72, 155115 (2005).

[2] J. Callaway and C. S. Wang, Phys. Rev. B 16, 2095 (1977).
[3] J. Sánchez-Barriga, J. Fink, V. Boni, I. Di Marco, J. Braun,

J. Minár, A. Varykhalov, O. Rader, V. Bellini, F. Manghi,
H. Ebert, M. I. Katsnelson, A. I. Lichtenstein, O. Eriksson,
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A. Harasawa, S. Shin, A. Kakizaki, P. Nilsson, H. Starnberg
et al., Phys. Rev. Lett. 81, 4943 (1998).

[16] P. J. Feibelman and D. Eastman, Phys. Rev. B 10, 4932
(1974).

[17] S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal.
21, 165 (1994).

[18] A. V. Gold, L. Hodges, P. T. Panousis, and D. R. Stone, Intern.
J. Magn. 2, 357 (1971).

[19] G. G. Lonzarich, in Electrons at the Fermi Surface, edited by
M. Springford (Cambridge University Press, Cambridge, UK,
1980).

[20] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.xx.xxxxxx for further details on the
electron-phonon coupling model and on the QSGW+DMFT
implementation and application to Fe and Ni.

[21] N. W. Ashcroft and D. Mermin, Solid State Physics (Saunders
College Publishing, Philadelphia, USA, 1976).

[22] K. D. Belashchenko, V. P. Antropov, and N. E. Zein, Phys. Rev.
B 73, 073105 (2006).

[23] F. J. Himpsel, J. A. Knapp, and D. E. Eastman, Phys. Rev. B 19,
2919 (1979).

[24] K. Karlsson and F. Aryasetiawan, Phys. Rev. B 62, 3006 (2000).
[25] I. I. Mazin, D. J. Singh, and A. Aguayo, in Physics of Spin in

Solids: Materials, Methods and Applications, edited by Samed
Halilov (Kluwer Academic Publishers, Dordrecht, Netherlands,
2004).

[26] M. Shimizu, Rep. Prog. Phys. 44, 329 (1981).
[27] W. Eberhardt and E. W. Plummer, Phys. Rev. B 21, 3245 (1980).
[28] S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. Lett.

90, 086402 (2003). The main accomplishment of this work was
to reproduce within GW+DMFT the satellite at ∼ − 6 eV. This
is also captured by LDA+DMFT [3].

[29] K. Haule, C. H. Yee, and K. Kim, Phys. Rev. B 81, 195107
(2010).

[30] P. Werner, A. Comanac, L. de Medici, M. Troyer, and A. J.
Millis, Phys. Rev. Lett. 97, 076405 (2006).

[31] K. Haule, Phys. Rev. B 75, 155113 (2007).
[32] S. Choi, A. Kutepov, K. Haule, M. van Schilfgaarde, and G.

Kotliar, npj Quantum Mater. 1, 16001 (2016).

001100-5

https://doi.org/10.1103/PhysRevB.72.155115
https://doi.org/10.1103/PhysRevB.72.155115
https://doi.org/10.1103/PhysRevB.72.155115
https://doi.org/10.1103/PhysRevB.72.155115
https://doi.org/10.1103/PhysRevB.16.2095
https://doi.org/10.1103/PhysRevB.16.2095
https://doi.org/10.1103/PhysRevB.16.2095
https://doi.org/10.1103/PhysRevB.16.2095
https://doi.org/10.1103/PhysRevLett.103.267203
https://doi.org/10.1103/PhysRevLett.103.267203
https://doi.org/10.1103/PhysRevLett.103.267203
https://doi.org/10.1103/PhysRevLett.103.267203
https://doi.org/10.1088/1367-2630/12/1/013007
https://doi.org/10.1088/1367-2630/12/1/013007
https://doi.org/10.1088/1367-2630/12/1/013007
https://doi.org/10.1088/1367-2630/12/1/013007
https://doi.org/10.1088/0953-8984/11/42/201
https://doi.org/10.1088/0953-8984/11/42/201
https://doi.org/10.1088/0953-8984/11/42/201
https://doi.org/10.1088/0953-8984/11/42/201
https://doi.org/10.1103/PhysRevB.76.165106
https://doi.org/10.1103/PhysRevB.76.165106
https://doi.org/10.1103/PhysRevB.76.165106
https://doi.org/10.1103/PhysRevB.76.165106
http://github.com/tkotani/ecalj
http://arxiv.org/abs/arXiv:1406.0772
https://doi.org/10.1103/PhysRevB.8.3439
https://doi.org/10.1103/PhysRevB.8.3439
https://doi.org/10.1103/PhysRevB.8.3439
https://doi.org/10.1103/PhysRevB.8.3439
https://doi.org/10.1007/BF00655857
https://doi.org/10.1007/BF00655857
https://doi.org/10.1007/BF00655857
https://doi.org/10.1007/BF00655857
https://doi.org/10.1103/PhysRevB.43.1305
https://doi.org/10.1103/PhysRevB.43.1305
https://doi.org/10.1103/PhysRevB.43.1305
https://doi.org/10.1103/PhysRevB.43.1305
https://doi.org/10.1016/0039-6028(76)90355-1
https://doi.org/10.1016/0039-6028(76)90355-1
https://doi.org/10.1016/0039-6028(76)90355-1
https://doi.org/10.1016/0039-6028(76)90355-1
https://doi.org/10.1016/S0167-5729(97)00013-7
https://doi.org/10.1016/S0167-5729(97)00013-7
https://doi.org/10.1016/S0167-5729(97)00013-7
https://doi.org/10.1016/S0167-5729(97)00013-7
https://doi.org/10.1016/S0368-2048(03)00054-9
https://doi.org/10.1016/S0368-2048(03)00054-9
https://doi.org/10.1016/S0368-2048(03)00054-9
https://doi.org/10.1016/S0368-2048(03)00054-9
https://doi.org/10.1103/PhysRevLett.81.4943
https://doi.org/10.1103/PhysRevLett.81.4943
https://doi.org/10.1103/PhysRevLett.81.4943
https://doi.org/10.1103/PhysRevLett.81.4943
https://doi.org/10.1103/PhysRevB.10.4932
https://doi.org/10.1103/PhysRevB.10.4932
https://doi.org/10.1103/PhysRevB.10.4932
https://doi.org/10.1103/PhysRevB.10.4932
https://doi.org/10.1002/sia.740210302
https://doi.org/10.1002/sia.740210302
https://doi.org/10.1002/sia.740210302
https://doi.org/10.1002/sia.740210302
http://link.aps.org/supplemental/10.1103/PhysRevB.xx.xxxxxx
https://doi.org/10.1103/PhysRevB.73.073105
https://doi.org/10.1103/PhysRevB.73.073105
https://doi.org/10.1103/PhysRevB.73.073105
https://doi.org/10.1103/PhysRevB.73.073105
https://doi.org/10.1103/PhysRevB.19.2919
https://doi.org/10.1103/PhysRevB.19.2919
https://doi.org/10.1103/PhysRevB.19.2919
https://doi.org/10.1103/PhysRevB.19.2919
https://doi.org/10.1103/PhysRevB.62.3006
https://doi.org/10.1103/PhysRevB.62.3006
https://doi.org/10.1103/PhysRevB.62.3006
https://doi.org/10.1103/PhysRevB.62.3006
https://doi.org/10.1088/0034-4885/44/4/001
https://doi.org/10.1088/0034-4885/44/4/001
https://doi.org/10.1088/0034-4885/44/4/001
https://doi.org/10.1088/0034-4885/44/4/001
https://doi.org/10.1103/PhysRevB.21.3245
https://doi.org/10.1103/PhysRevB.21.3245
https://doi.org/10.1103/PhysRevB.21.3245
https://doi.org/10.1103/PhysRevB.21.3245
https://doi.org/10.1103/PhysRevLett.90.086402
https://doi.org/10.1103/PhysRevLett.90.086402
https://doi.org/10.1103/PhysRevLett.90.086402
https://doi.org/10.1103/PhysRevLett.90.086402
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevB.81.195107
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1038/npjquantmats.2016.1
https://doi.org/10.1038/npjquantmats.2016.1
https://doi.org/10.1038/npjquantmats.2016.1
https://doi.org/10.1038/npjquantmats.2016.1


Suppplementary material for

Self-energies in itinerant magnets: A focus on Fe and Ni

SURVEY ON THE QSGW THEORY

Quasiparticle self-consistency is a construction that de-
termines the noninteracting Green’s function G

0

that is
minimally distant from the true Green’s function G. A
measure of distance, or metric is necessary; a good choice
[1] results in an e↵ective static potential:

⌃̄xc =
1

2

X

ij

| ii
n

Re[⌃("i)] + Re[⌃("j)]ij

o

h j |. (1)

⌃ij(!) is the self-energy in the basis of single-particle
eigenstates | ii, which becomes iG

0

W in the GW ap-
proximation. Starting from a trial G

0

, e.g. the LDA,
⌃̄xc is determined through GW, which determines a new
G

0

. The cycle is repeated until self-consistency.
Recently Ismail-Beigi showed that Eq. 1 also minimizes

the gradient of the Klein functional, |�F |2, where F is
evaluated in the subspace of all possible static ⌃̄xc [2].

Another key property of Eq. 1 is that, at self-
consistency, the poles of G

0

(k,!) coincide with the peaks
in G(k,!) . Therefore the band structure generated
by V xc coincides with the peaks of the specral function
A(k,!). This is significant, because it means there is no
many-body “mass renormalization” of the noninteract-
ing hamiltonian. In other words, the attribution of mass
renormalization to correlation e↵ects, a concept widely
used in the literature [3], is ill-defined: it depends on an
arbitrary reference, e.g. the LDA. The absence of mass
renormalization is a very useful property: we can directly
associate QSGW energy bands E(k) with peaks in the
spectral function A(k,!).

ELECTRON-PHONON RENORMALIZATION OF
EFFECTIVE MASSES

In comparing the areas of electron pockets in the Fermi
surface of Fe, we pointed out the small discrepancy be-
tween measured and simulated values. As a measure of
the discrepancy we provide the rigid shift of the Fermi
energy that would lead the computed area to equate the
measured one (see Table II in main text). This measure is
justified under the assumption that QSGW shift rigidly,
which is actually not the case for pocket VI, for which
the agreement is poorer.

According to a Thomas-Fermi model of screening [4],
the elecron-phonon interaction renormalizes vF by a fac-
tor 1+�. Band VI is roughly spherical, enabling us to
evaluate � analytically:

� =
e2

h̄vF



1

2
ln

k2TF

k2TF + k2F
+

kF
kTF

arctan
kF
kTF

�

(2)

Estimating kF=1.71 Å�1 from the Fe electron density,
this leads to a renormalization factor of 1.6.
Remembering that vF / 1/m⇤, we can compare this

factor with the ratio m⇤
QSGW

/m⇤
exp

= 1.4, which is close
to the estimated contribution from the electron-phonon
interaction.

COMPUTATIONAL DETAILS

QSGW

For the high resolution needed here, computational
conditions had to be carefully controlled.
In both QSGW calculations of Fe and Ni, a k mesh

of 12⇥12⇥12 divisions was found to be su�cient for
calculating ⌃. The one-body part was evaluated on a
24⇥24⇥24 mesh.
Fe 3p and 4d states were included through local or-

bitals: omitting these and treating 3p as core levels [1]
can shift QP levels by as much as 0.1 eV in the FL regime.
Other parameters [1], such as broadening the pole in G
in constructing ⌃=iGW , the basis of eigenfunction prod-
ucts, and the energy cuto↵ for the o↵-diagonal parts of
⌃, were also carefully monitored. When set to tight tol-
erances QP levels near EF were stable to a resolution
of 0.05 eV. QP levels are calculated including spin-orbit
coupling (SOC), though it is omitted in the calculation
of ⌃. The e↵ect of SOC on ⌃ was found to make small
changes to ⌃̄xc.
Similar parameters were used in the QSGW calcula-

tion for Ni.

Our QSGW+DMFT implementation

Concerning the QSGW+DMFT calculation on Ni, we
projected the lattice problem on the Ni d orbitals fol-
lowing the prescription of Haule [5]. We compute higher
level diagrams locally using the hybridization expansion
version of the numerically exact continuous time QMC
method [6, 7].
In order to single out the correlated subspace, a proce-

dure of projection/embedding which was originally intro-
duced in [5] in the LAPW basis of the Wien2k package,
is developed in the Full-Potential Linear Mu�n-Tin Or-
bitals (FP-LMTO) basis [8]. This projector maps the
full space Green’s function Gijk (with band and k-point
label {ijk}) to the local Green’s function Gloc

LL0 defined
only on the correlated subspace. The compact index
L := {⌧, R,�, `,m}, collects information on the atom



2

type ⌧ , site R, spin coordinate �, and angular momen-
tum components ` and m. The projection operation can
be cast in the following form:

Gloc

LL0 =
X

k,ij

UL
ik Gijk U

L0

jk

†
with UL

ik /
X

u

AL
ik�

u
R` ,

where the coe�cients AL
ik account for localization inside

the sphere, while �u
R` gives an estimate of correlations

relative to the specific orbital component `. More specif-
ically AL

ik are linear combinations of spherical harmonics
Y`m and the QSGW quasiparticle eigenfunctions in the
FP-LMTO basis. The terms �u

R` are radial integral of
the kind h'u

R`|'R`i where the index u in 'u
R` indicates

the possibility of selecting the radial solution 'R` of the
Schrödinger equation inside the MTO, its energy deriva-
tive '̇R`, and its local orbitals contributions 'z

R` [1]. By
means of these definitions we ensure that the localized or-
bitals are centred on the correlated atom corresponding
to the mu�n-tin site R.

The transformation matrices U have been orthonor-
malised in such a way that

P

ik U
L
ikU

L0

ik

†
= �LL0 .

The local Green’s function is defined on a grid of Mat-
subara frequencies i!n = i⇡(2n+1)/� and it is employed
to calculate the hybridization function of the system,
which feeds the CTQMC impurity solver. The result
of the impurity solver is the local impurity self-energy
⌃loc

LL0(i!n) also defined on the Matsubara axis. In or-
der to update the full Green’s function Gijk with this
local self-energy, so to iterate the DMFT loop to self-
consistency, an embedding procedure is needed. Because
of the specific properties of the transformation U , the em-
bedding procedure ⌃loc

ijk(i!n) =
P

LL0 U
L†
ik ⌃loc

LL0(i!n)UL0

jk
can be operated by means of the same matrices, even
though this is not a general requirement of the theory [5].

The charge double-counting contribution has been in-
cluded by means of the standard formula

Edc = U(n� 1/2)� J(n/2� 1/2)

where n is the nominal occupancy of the 3d shell.

Analytical continuation through Maximum entropy

The output of the DMFT loop is the impurity self-
energy ⌃loc

LL0(i!) and the corresponding impurity Green’s
function GLL0(i!). At self-consistency they correspond
to the local self-energy and local Green’s function of the
correlated subset (d-electrons of the metal in this case).

Though, since the CTQMC solver works in the Mat-
subara’s frequency space extrapolations to zero-energy or
some kind of analytical continuation has to be employed
to extract physically meaningful quantities.

We evaluated the scattering rate from the intercept at
! = 0 of a forth-order polynomial obtained from a fit of
Im⌃loc

LL0(i!) in the vicinity of ! = 0. The coe�cient C
1

of

the linear term is then related to the quasiparticle weight
Z = 1/(1+C

1

). The intercept being �/Z where � is the
scattering rate, we have been able to evaluate � between
10�3 and 10�4 for both Fe and Ni, corresponding to a
coherent charge-scattering regime.
The spectral function of the correlated subset can be

obtained by continuing on the real-frequency axis the
quantity A(i!) = �ImGLL0(i!)/⇡. In order to do that,
we utilised a statistical technique based on the Maxi-
mum Entropy Method [9]. As model function we used
the magnetic QSGW spectral function of the d orbitals.
The resulting spectral function A(!) contains all the

e↵ects of the dynamical local response including features
beyond the quasiparticle peaks, as satellites at higher en-
ergy. This is indeed the case for Fe, reported in Figures 2.

Applications to Ni

In our application to Ni, the projectors used for the Ni
3d are constructed from 5 bands below EF and 3 bands
above EF , which correspond to a window of ⇠±10 eV.
By choosing a wide energy window, U becomes nearly
static [10]. The corresponding on-site Coulomb parame-
ters were chosen to be U=10 eV and J=0.9 eV, as calcu-
lated by constrained RPA [10]. The Matsubara frequency
grid is defined over 2000 points with an inverse temper-
ature � = 50 eV�1.
In the case of Ni we applied the method at two di↵erent

degrees of approximation.

Standard procedure: We first perform a full QSGW
loop. Then we extract the spin-averaged Green’s
function from which the local hybridization func-
tion �(i!n) is obtained. The DMFT solver uses
�(i!n), U and J to produce the local self-energy
⌃loc

LL0(i!n). By keeping the QSGW part of the
Green’s function fixed, the calculation of the self-
energy is repeated until convergence of the mag-
netic moment (DMFT loop). Then a new density
⇢(r) is recomputed summing over all Matsubara’s
frenquencies according to

⇢(r) =
X

k,l

(

1

�

+1
X

n=�1

 R
lk(r, i!n) L⇤

lk (r, i!n)

i!n + µ� "lk(i!n)

)

, (3)

where  X
lk(r, i!n) are the right (X = R) and left

(X = L) eigenfunctions of the DMFT Hamiltonian
Hk(i!n) with corresponding eigenvalues "lk(i!n).
A new QSGW loop is then converged by keep-
ing the density fixed, that produces a new QSGW
Green’s function. The output is used to initialise a
new DMFT loop and so on until QSGW self-energy
and DMFT updated density are self-consistent.

The number of iterations in each DMFT loop
varies between 10 and 20, and the number of
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FIG. 1: Spin-resolved DOS of Ni 3d states obtained
from Maximum entropy method.

random moves per iteration are roughly 1010.
This method is basically the equivalent of state-
of-the-art DMFT implementations in the frame-
work of DFT+DMFT. We believe it is superior to
other G

0

W
0

+DMFT implementations because of
the possibility to close the full self-consistent loop
and because of the higher quality of the low-level
theory chosen. This calculation allowed us to com-
pute the spin-resolved density of state of local Ni 3d
orbitals through Maximum entropy method, here
reported in Figure 1, from which we were able to
estimate the QSGW+DMFT exchange splitting to
0.30 eV (cfr. Table II in the main text).

QSGW+SLDMFT: From the converged DMFT self-
energy, we first extrapolate the static limit of
⌃loc

LL0(i!n), then we embed it into the lattice prob-
lem and we keep only its symmetrized real part

⌃̄loc

ijk = Re
⇥

⌃loc

ijk(0) + ⌃loc

jik(0)
⇤

/2. (4)

This is done for the spin-up and spin-down chan-
nels separately. We finally retain only the spin-flip
component ⌃

2

= ⌃̄loc� (⌃̄loc

" + ⌃̄loc

# )/2 and we add

it to the charge component ⌃
1

= (⌃̄xc

" + ⌃̄xc

# )/2
computed at QSGW level. This procedure allowed
us to prevent counting twice the magnetic contri-
butions to the self-energy.

Applications to Fe

To further confirm that the local momentum is not
relevant in the description of Fe, we applied the fully dy-
namical QSGW+DMFT approach also to Fe. The pa-
rameters U = 5 eV and J = 0.8 eV used are the same as
in[11], where they have been derived from GW within the

same projection scheme. Four valence and four conduc-
tion bands have been used to project onto the correlated
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FIG. 2: Total DOS of Fe 3d states obtained from
Maximum entropy method.

system. The resulting magnetic moment M=2.20 Bohr,
as the QSGW prediction, confirming that local correc-
tions are absolutely negligible in Fe.
We extract the scattering rate � from the intercept

and the linear term of a forth-order polynomial fitting
Im⌃(!) in the vicinity of ! = 0 as explained above. We
find that Fe has extremely coherent charge scattering.
We also present the analytically continued ImG(i!)/⇡
for Fe reported in Figure 2.
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