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Filtering and uncertainty propagation methods for model-based prognosis of1

fatigue crack growth in unidirectional fiber-reinforced composites2

Elinirina I. Robinson1 Julien Marzat2, and Tarek Raı̈ssi3.3

ABSTRACT4

Prognosis aims at calculating the remaining useful life (RUL) of a system by estimating its5

current health state and then predicting its future behavior. In this paper, the prediction of fatigue6

crack growth in structural elements made of unidirectional fiber-reinforced composites is consid-7

ered. Model uncertainty and measurement uncertainty are included, but future loading uncertainty8

is taken into account as well. Both cases of constant amplitude loading and variable amplitude9

loading (block loading) are treated. The analytical model that describes the fatigue crack growth10

is highly nonlinear and contains fixed model parameters that depend on material and loading pa-11

rameters that may vary or not depending on the applied load. Thus, because of its ability to handle12

uncertainties, high nonlinearities and to perform joint parameter-state estimation, a particle filter is13

used. In a first part, fatigue crack growth prognosis under constant amplitude loading is realized.14

The loading parameters are constant and known a priori, while the model parameters are jointly15

estimated along with the crack length. Then, in a second part, fatigue crack growth prognosis16

under variable amplitude loading is performed. This time, the loading parameters are unknown17

and change abruptly at unknown time steps in accordance with the applied variable block loading.18

A two-sided cumulative sum (CUSUM) algorithm is implemented to detect abrupt load variations19

and help the particle filter to adapt and learn new loading parameters values. With the combina-20

tion of these two techniques, the prognosis module could be informed of the sudden crack length21

increase, and will correct the predicted remaining useful life. In both case studies, real data from22
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fatigue tests on unidirectional fiber-reinforced titanium matrix composites is used.23

Keywords: Model-based prognosis, particle filter, uncertainty propagation, fatigue crack growth,24

fiber bridging, composite materials, variable amplitude loading.25

INTRODUCTION26

Critical systems such as an aircraft or a spacecraft are made of complex components whose27

malfunction and failure could have unacceptable impacts on the users safety, the mission success28

and the costs related to maintenance operations. To address these safety and cost issues, a progno-29

sis module should be integrated to these systems in order to continuously assess their state of health30

and estimate their remaining useful life (RUL). There are various prognosis approaches, but the31

most common classification divides them into three main categories (Liu et al. 2009): knowledge-32

based prognosis, data-driven prognosis and model-based prognosis. Each of these approaches has33

its advantages and drawbacks, and the choice of the method to use depends on the application do-34

main and the information available about the system. The knowledge-based approaches (Biagetti35

2004) make use of degradation rules that have been developed and refined by experts based on his-36

torical and empirical failure data. These kind of methods are easy to implement, but frequent up-37

dates are needed as new forms of faults that are not yet listed can occur. In data-driven approaches38

(Si et al. 2011), features from operating data such as current, temperature, or vibration signals are39

extracted, then statistical and machine learning techniques are employed to estimate and forecast40

the evolution of the degradation state. Data-driven approaches have the ability to transform high-41

dimensional noisy data into lower-dimensional information for prognosis decisions. However,42

they are highly-dependent on the quantity and quality of operational data and therefore require a43

significant storage space. The third category gathers the model-based prognosis approaches (Luo44

et al. 2003) where mathematical models of system behavior and degradation evolution are used.45

Although these approaches can be difficult to set up since an accurate degradation model is seldom46

available, they can outperform knowledge-based and data-driven methods. Indeed, the capacity47

of model-based techniques to adapt the model to the evolution of the system degradation ensures48

an accurate prognosis if more information on the degradation become available. In this paper,49
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emphasis is placed on the model-based prognosis techniques. The main challenge while devel-50

oping a prognosis method is to include a measure of the uncertainty associated to predicted RUL51

values in order to enable risk-based decisions (Baraldi et al. 2013), (Sankararaman and Goebel52

2013). Therefore, greater attention has been paid to the integration of uncertainty quantification in53

prognosis algorithms (Orchard et al. 2008). Uncertainty quantification consists in finding the dif-54

ferent uncertainty sources, incorporating them into the algorithms, and finally propagating them to55

quantify uncertainty in the predicted RUL. The main types of uncertainty that inevitably influence56

RUL prediction are measurement uncertainty, modeling uncertainty and future loading uncertainty57

(Gu et al. 2007). Measurement uncertainty is due to sensor inaccuracy, modeling uncertainty is58

characterized by the difference between the degradation model and its real behavior, and future59

loading uncertainty is caused by various environmental factors that could possibly affect the evo-60

lution of the degradation. Usually, model-based prognosis methods represent the uncertainty in a61

probabilistic framework (Saha and Goebel 2008).62

Many model-based prognosis methods that take uncertainty into account have been developed63

in the literature and were applied to various problems. For instance, (Daigle and Goebel 2011)64

have applied a particle filtering-based prognosis approach for pneumatic valves, in (Fan et al. 2015)65

the particle filter algorithm was implemented to predict the lumen maintenance life of LED light66

sources. A method combining relevance vector machine (RVM) and particle filtering was used for67

battery health prognosis in (Saha et al. 2009). In this paper, the focus is placed on an application of68

particular interest which is the crack growth prognosis. Indeed, this is a common issue for critical69

systems as fatigue damage occurs when a structure is subject to repeatedly applied loads. Even if70

the applied stress values are relatively low, the fact that they are cyclically applied tends to weaken71

the material and cause its failure. In order to avoid catastrophic events, the crack propagation must72

be carefully monitored in order to constantly evaluate the remaining useful life of the considered73

structure. In the literature, the problem of crack growth prognosis was treated for different models74

and with various methods. A hybrid data-driven and model-based approach based on RVM and75

model fitting was implemented in (Zio and Di Maio 2012) and applied to an academic fatigue76

3



crack growth process based on the Paris’ law. Using the same test case, the crack growth prognosis77

was solved with a particle-filter based algorithm in (Zio and Peloni 2011). (Corbetta et al. 2015)78

proposed a particle filter sequentially updated via a Metropolis-Hastings (MH) algorithm for crack79

growth prognosis on helicopter fuselage panels. A machine learning approach based on artificial80

neural networks was used to estimate the stress intensity factor (SIF) range, which is required to81

calculate the crack growth at each cycle. In (Zárate et al. 2012), the SIF range was modeled by a82

polynomial equation with stochastic coefficients that were computed through Bayesian inference.83

The future crack length was then predicted using a Markov Chain Monte Carlo algorithm. The84

ability of these methods to predict the RUL of components subject to fatigue crack growth under85

measurement and modeling uncertainty has been proved through numerical examples. However,86

they have assumed known values of current and future loading, which is not the case in real life87

scenario.88

In order to address the estimation of the loading amplitude, other researchers have introduced89

crack growth prognosis methods based on structural health monitoring data. The main idea is to90

use real-time monitoring data to build models that characterize fatigue loading history, and then91

based on these models, the future loading can be predicted. In (Ling and Mahadevan 2012), both92

flight parameters data related to acceleration and mass and data recorded from strain gauges were93

used to estimate and predict loading sequence through an autoregressive integrated moving average94

(ARIMA) modeling method and a Bayesian approach for the update process. The evaluation of the95

SIF range required for the crack growth calculation was made with a Gaussian process surrogate96

model that was previously trained with data from a finite element analysis. In (Pais and Kim97

2015), usage monitoring data from an aircraft (acceleration, airspeed, angle of attack, fuel quantity98

and Mach number) were converted into a stress time history which was then transformed into a99

cyclic stress history via a rain-flow counting algorithm. The resulting cyclic stress history was100

used to consider the effects of variable amplitude loading in the determination of the crack growth101

direction. However, it was suggested that it could be used as the input into a prognosis method.102

What these proposed methodologies have in common is that real-time monitoring data related to103
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the loading or flight parameters are required to build a model that characterizes the stress history.104

Moreover, a finite element model was needed for the calculation of the SIF range or to train its105

surrogate model. The main drawback of such an approach is that the learning phase can be time106

consuming and a significant amount of data is required.107

In this paper, fatigue crack growth prognosis in fiber-reinforced titanium matrix composites108

based on real data from fatigue tests performed at ONERA/DMAS is performed. The considered109

real test case is an interesting application as fiber reinforced composites are gaining importance for110

use in structural elements. Indeed, the components last longer because composite materials have a111

high strength and are corrosion-resistant. The reader may refer to (Awad et al. 2012) to have more112

details about the use of fiber composite structures in civil engineering. In the literature, fatigue113

damage prognosis in composite materials with a known value of the applied stress was treated in114

(Chiachio et al. 2013). As composites where a densification of micro-cracks was observed under115

fatigue loadings were under study, the calculation of the SIF range was not suitable anymore and116

the micro-cracking energy release rate range ∆G was used instead. A modified Paris’law relat-117

ing ∆G and the crack density ρ was considered and the goal was to predict the saturation time of118

matrix micro-cracks and the onset of the consequent damage modes using a particle filter. The119

proposed methodology was applied to carbon-fiber-reinforced polymer (CFRP) cross-ply lami-120

nates and lamb wave signals recorded with piezoelectric sensors were used to estimate internal121

micro-crack density.122

However, in the present work, fatigue crack growth prognosis in composite materials with long123

unidirectional fibers subjected to Mode I loading is examined. In such a case, a long matrix crack124

propagates perpendicular to the fiber direction (Movchan and Willis 1996), and the SIF range ∆K125

is used to characterize the evolution of the crack length. It is assumed that only crack length126

measurements are available, and no finite element model is used. Indeed, the effort was focused127

on the derivation of an analytical model of the SIF range. The obtained model contains model128

parameters that depend on material properties but also loading parameters that depend on external129

applied loads. Therefore, fatigue crack growth prognosis under known value of applied load is130
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first considered in order to estimate the model parameters. For this purpose, a joint parameter-state131

estimation is performed with a particle filter because of its ability to handle uncertainties and the132

high nonlinearities of the SIF range model. The use of an extended Kalman filter (EKF) to solve133

the same fatigue crack growth prognosis problem was also investigated as it is easy to implement134

and requires lower computational time (Wang et al. 2017). The results were compared to those135

obtained with the particle filter using prognosis metrics. In a second study, the problem of fatigue136

crack growth prognosis under unknown constant and then unknown variable amplitude loading is137

addressed. Variable amplitude loading can be divided into three categories (Laseure et al. 2015):138

random loading, block loading and simple loading. In this work, block loading is considered,139

which means that loading parameters vary stepwise in time. Thus, using the model parameters140

estimated in the first study, the joint estimation of the crack length and of the unknown loading141

parameters was performed with a particle filter. However, if a significant abrupt load variation142

happens, the particle filter is not able to track the abrupt change in loading parameters values.143

To solve this problem, a detection algorithm, namely the two-sided cumulative sum (CUSUM), is144

implemented in parallel with the particle filter to catch any sudden deviation of loading parameters.145

This way, the particle filter will receive the information and then reinitialize the previous estimates146

in order to learn the new loading parameters values. This detection step enables to adapt the147

prognosis algorithm to the changes in crack length evolution and therefore give a more accurate148

prediction of the RUL. Indeed, an increase in the amplitude loading can significantly accelerate149

the crack growth rate and lead to the critical crack length causing the failure of the component. In150

both studies, real crack length trajectories were used, and the prognosis metrics that were used to151

validate the ability of the particle filter to perform fatigue crack growth prognosis in such materials152

are accuracy, precision and timeliness.153

This paper is organized as follows. Section 2 introduces the general principle of fatigue crack154

growth model-based prognosis and the model that describes fatigue crack propagation in unidi-155

rectional fiber-reinforced composite materials. In Section 3, the joint parameter-state estimation156

methodology with the particle filter is presented, as well as the two-sided CUSUM algorithm.157
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Then, numerical results which illustrate the efficiency of particle filtering prognosis on real fatigue158

crack growth data are reported in Section 4, where a first part concerns the case of unknown model159

parameters under known external loading amplitude, whereas in the second part the external load-160

ings considered as unknown. Finally, a general conclusion about fatigue crack growth prognosis in161

unidirectional fiber-reinforced composites and perspectives for future work are given in Section 5.162

PROBLEM STATEMENT163

The central idea of model-based prognosis is to use a dynamic mathematical model that de-

scribes the evolution of a degradation occurring in a system or a component. In most cases, as

the degradation state cannot be observed directly, measurements from different sensors can be

used to collect information about it. In the application considered in this paper, the degradation

in question is the crack length and the collected data are crack length measurements. Usually,

due to implementation constraints, a discrete-time state-space representation is employed to relate

the mathematical model of the degradation to the data from the different sensors to determine the

evolution of the degradation state at any time instant:

xk = f (xk−1,θk−1,uk−1,wk−1) (1)

yk = h(xk,θk,uk,vk) (2)

where x ∈ Rnx denotes the state vector, θ ∈ Rnθ represents the parameter vector, y ∈ Rny is the164

measured outputs, u ∈ Rnu is the vector of system inputs and k ∈ N is a discrete time step. The165

functions f and h describe respectively the evolution of the state and the measurements over time,166

and there is no restrictions on their functional forms. The variables w and v are respectively the167

process and measurement noises which represent the model and measurement uncertainties.168

The fatigue crack growth model-based prognosis process is based on three steps: (i) current169

crack length estimation, (ii) future crack length prediction and (iii) RUL calculation. The first step170

is a filtering problem since the current crack length is estimated using measurements from sensors.171

This estimation is performed as long as data is collected, i.e until the prediction time denoted by172
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kp. Then, from this time instant, the second step involves the forecasting of the future crack length173

for time instants k > kp without new measurements. The future crack length is predicted until174

the failure threshold is reached, giving the predicted failure time k f . Finally, in the last step of175

prognosis, the RUL at time kp which is denoted by RUL(kp) can be calculated as:176

RUL(kp) = k f − kp. (3)177

However, as the predicted crack length is uncertain, the predicted failure time k f is also uncertain,178

making the RUL a random variable. Therefore, prognosis methods should account for the different179

uncertainty sources that affect the estimation of the current and future crack length. In that way,180

propagating these uncertainties through the degradation model will allow to obtain the subsequent181

RUL probability density function (pdf).182

In this paper, the problem of fatigue crack growth prognosis in fiber-reinforced titanium matrix183

composite materials is addressed. This will allow to continuously assess the RUL of a structure184

made of such composite material in which a fatigue crack growth has occurred. As a model-185

based prognosis approach is used, the first requirement is to establish an analytical model to assess186

dynamic crack propagation in such materials. Before introducing this model, the experimental187

procedure to collect the real crack growth data used in this work is described.188

Material and experimental procedures189

A composite material is the combination of two or more different materials in order to create190

a superior material with different properties (stronger, lighter, etc.). Composites are mainly made191

up of two constituent materials: matrix and reinforcement. There are three main kinds of materials192

that are used for the matrix (polymer, metal and ceramic) and also different forms of reinforcement193

material (particles, fibers or laminates). In this work, the proposed methodology is applied to194

fatigue crack growth prognosis in titanium metal matrix composites with silicon carbide fibers195

used as reinforcement materials. The fatigue test data were previously used in (Maire et al. 2000)196

to establish and validate a model to describe the fatigue crack growth in the concerned specimens,197
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but the problem of RUL prognosis was not addressed. For consistency, the experimental protocol198

is summarized in what follows.199

The titanium-matrix composite studied was SCS-6/Ti-6242. Ti-6242 is a near alpha titanium200

alloy with the composition Ti-6Al-2Sn-4ZR-2Mo (percent by weight), and this matrix was rein-201

forced with 140 µm diameter SCS-6 Textron fibers. The fibers are regularly spaced in the matrix202

in such a way as to obtain a unidirectional composite. A parallelepiped notched specimen (Fig. 1)203

with a nominal width of 8 mm, thickness of 2.1 mm and length of 160 mm was machined from the204

composite material in a manner that the length of the specimen is parallel to fiber axis. An elliptic205

notch was drilled in the middle of the specimen in order to initiate the crack growth.206

During the experiment, crack growth trajectories of 8 samples of different notch lengths were207

recorded. Some specimens were tested under constant amplitude loading, while the others were208

subjected to load variations. For every specimen, a uniaxial cyclic loading oriented along the fiber209

direction was applied. The stress ratio R = σmin/σmax was equal to 0.1. The fatigue tests were210

performed at room temperature and at 400◦C under a frequency of 50 Hz. In order to measure211

the crack length, photographs of the crack extension were recorded by a digital camera monitored212

by a computer. The reader may refer to (Thurner 2015) to be more informed about the real-time213

detection and measurement of cracks. The typical cracking geometry involved the propagation of a214

crack in the matrix on each side of the notch, propagating perpendicularly to the loading direction215

(Fig. 2).216

The crack propagated through all the thickness of the specimens and across their entire width217

without causing the rupture of the composite material. This phenomena is due to unbroken fibers218

that have bridged the matrix crack. Indeed, as the fiber stress level did not exceed the value of219

the fiber strength, no fiber broke during the experiments. The constraints of these bridging fibers220

can be modeled by the distribution of a closure pressure P acting in the direction opposite to the221

applied stress σa in the bridged zone (Fig. 3). In this case, the bridged zone is equivalent to the222

crack length minus the notch length 2a0.223
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Description of the crack propagation model224

It is assumed that the composite has a linear elastic behavior except in a very small region225

at the crack tip, therefore the principles of linear elastic fracture mechanics can be applied. The226

following modified Paris’ law that was previously used in (Maire et al. 2000) to study the same227

fatigue test dataset can then be used to model the Mode I crack propagation:228

da
dN

=C(∆Km−Kth)
m (4)229

where a is the crack size, N is the number of cycles. Since the crack growth observed in the230

composite material was limited to the matrix cracking, the effective crack-driving force is assumed231

to be the SIF range ∆Km experienced by the matrix. The constants C, m and Kth depend on matrix232

properties. Kth is the threshold value of the SIF below which no crack growth occurs.233

The calculation of the SIF range ∆Km is the main challenge in this modeling stage. A simple234

expression of the SIF range can be available. However, in more complex structures as composite235

materials, an analytical closed form of the SIF does not always exist or is too complicated to236

establish. In these cases, finite element simulations can be run to calculate the SIF values associated237

to different crack lengths. Then, based on the obtained database of SIFs, a regression model is used238

to allow the evaluation of the SIF for any crack length. This technique was used in (Corbetta et al.239

2015) where a machine learning approach based on artificial neural networks was used to provide240

estimates of SIFs. In (Neerukatti et al. 2014), two regression techniques were used, namely least241

absolute shrinkage and selection operator (LASSO) and relevance vector machine. Although very242

efficient to obtain good estimations of the SIF, the main drawback of such an approach is that the243

learning stage can be time consuming and a significant amount of data is required. In this work, an244

analytical expression of the stress intensity factor for bridged cracks in composite materials was245

established, based on different studies found in (Johnson et al. 1996).246

The first step to determine ∆Km is to relate it to the continuum SIF range ∆Ktip which is the247

homogenized composite stress intensity factor. Many discrete-continuum relationships were pro-248
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posed, and three of them were compared in (Bakuckas and Johnson 1993). In their study, the249

one that gave the best results in the modeling of fiber-bridging effect on ∆Km was established250

by (McMeeking and Evans 1990):251

∆Km = ∆Ktip (5)252

In order to calculate ∆Ktip, the weight function technique proposed by (Bueckner 1970) that allows253

to calculate a stress intensity factor for arbitrary stress distributions is applied. In this case study,254

the applied stress range on the crack surface is ∆σbr = ∆σa−∆P(x), therefore we have:255

∆Ktip = 2
∫ a

0
(∆σa−∆P(x))G(x,a,c)dx (6)256

where G(x,a,w) is a weight function that depends on the geometry of the specimen, c is the spec-257

imen width and 2a is the crack length.258

For a center crack configuration in a finite width specimen, the following expression of ∆Ktip259

is finally obtained (Zheng and Ghonem 1996):260

∆Ktip = F∆σa
√

πa−2F
√

a
π

∫ a

a0

∆P(x)√
a2− x2

dx (7)261

where F is a geometric factor that depends on the specimen width (various expressions can be262

found in (Tada et al. 1973)), 2a0 is the length of the unbridged zone (i.e. notch length) and x is the263

distance from the crack center. It can be noted that this expression of ∆Ktip takes into account both264

the contribution of the applied remote stress ∆σa and the contribution of the bridging stress ∆σbr265

produced by unbroken fibers in the crack wake.266

Finally, the model that describes crack growth propagation in the studied specimens is given267

by:268

da
dN

=C
(

F∆σa
√

πa−2F
√

a
π

∫ a

a0

∆P(x)√
a2− x2

dx−Kth

)m

(8)269

The determination of the change in closure pressure ∆P(x) is the critical issue of the fatigue270

crack propagation problem in fiber reinforced composites. In the literature, two types of analytical271
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models have been widely used to calculate ∆P(x): (i) the shear-lag model and (ii) the fiber pressure272

model. For more details about these two approaches, the reader may refer to (Ghosn et al. 1992).273

As an alternative to these methods, (Davidson 1992) have used a uniform closure pressure over274

the entire bridged zone and obtained satisfying results for SCS-6/Ti-6Al-4V composite materials.275

This approach was considered in this paper as it allows to avoid the integration of ∆P(x) to calculate276

∆Ktip, which highly decreases the computational time. Indeed, this is an important criteria for277

online RUL prognosis.278

Adopting this constant approximation of the closure pressure leads to the following model:279

da
dN

=C
(

F∆σa
√

πa−2F
√

a
π

∆P
∫ a

a0

1√
a2− x2

dx−Kth

)m

(9)280

where281 ∫ a

a0

1√
a2− x2

dx =
π

2
− arcsin

(a0

a

)
. (10)282

Finally, the model that is used for crack growth prognosis in the studied fiber-reinforced tita-283

nium matrix composite material is:284

da
dN

=C
(

F∆σa
√

πa−2F
√

a
π

∆P
(

π

2
− arcsin

(a0

a

))
−Kth

)m

(11)285

The model (11) that was obtained involves two different types of parameters. One needs to286

distinguish between model parameters and loading parameters:287

• m and C are constant model parameters which depend on the material under study and288

various testing conditions (stress ratio R, temperature, etc.). They can be estimated for a289

given specimen and considered to have the same values for the other similar test specimens;290

• ∆σa and ∆P are loading parameters directly related to the external loading applied to each291

specimen. Their values may therefore vary according to the loading conditions. The es-292

timation of these two loading parameters is an interesting feature as most of the existing293

prognosis methods have assumed known values of current and future loading conditions,294
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which is not the case in real life scenarios. Their real-time monitoring would allow the295

prognosis system to catch any abrupt load variation and update the RUL estimation. In-296

deed, depending on the load variation suffered by the structure, the crack growth rate may297

rapidly increase and cause its sudden failure.298

Because of their different nature (constant ore time-varying), these two sets of parameters will not299

be estimated at the same time for the fatigue crack prognosis in the studied composite material.300

Firstly, a dataset of crack growth trajectory from a specimen tested under a known constant am-301

plitude loading will be used to estimate the model parameters m and C and perform fatigue crack302

growth prognosis. Then, using these estimated values of m and C, the case of fatigue crack growth303

prognosis under variable amplitude loading where ∆σa and ∆P are unknown will be considered. In304

both studies, the parameters are jointly estimated along with the crack length with a particle filter.305

However, in the second case study, ∆σa and ∆P are time-varying parameters that change abruptly306

with the applied load. A CUSUM algorithm is then used to detect load variations and help the307

particle filter to adapt and learn the new loading parameters values.308

In the next section, the general methodology for joint estimation of the parameters along with309

the crack length using a particle filter is first presented. Then, it will be explained how the particle310

filter and a detection algorithm can be combined to correctly estimate the crack length in a structure311

subjected to variable amplitude loading.312

FATIGUE CRACK GROWTH PROGNOSIS WITH A PARTICLE FILTER COMBINED313

WITH A TWO-SIDED CUSUM ALGORITHM314

A particle filter was chosen to perform the joint estimation of the unknown parameters along315

with the crack length in order to calculate the RUL of the composite specimens subjected to fatigue316

crack growth. The ability of the particle filter to perform uncertainty propagation but also to deal317

with the high nonlinearities of the fatigue crack growth analytical model (11) has motivated this318

choice. Moreover, as the particle filter is a Bayesian filtering method, the RUL predictions are319

updated and improved as new crack length data is collected.320
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When specimens were tested under variable amplitude loading (block loading), loading param-321

eters are piecewise constant functions of time. In order to detect load variations and to keep an322

accurate estimate of these loading parameters, a two-sided CUSUM algorithm is added to the par-323

ticle filter so it can keep on tracking the time-varying parameters. The idea is to jointly estimate the324

unknown loading parameters along with the crack length using the particle filter, while monitoring325

their estimations with the two-sided CUSUM algorithm to detect abrupt load variations. If a load326

variation happens, the CUSUM algorithm informs the particle filter which has then to reinitialize327

its previous estimates of the loading parameters and learn their new values.328

In this section, the sequential importance resampling (SIR) particle filter is first introduced329

briefly, then the two-sided CUSUM algorithm is presented, and finally model-based prognosis330

process under unknown loading parameters that uses the combination of these two techniques is331

described.332

Particle filter for joint parameter-state estimation333

Particle filtering allows to recursively estimate and update the pdf of the state vector xk based on334

the discrete state-space system characterized by equations (1) and (2). In this work, the unknown335

model parameters denoted by the vector θ ∈ Rnθ are included in the state vector x ∈ Rnx . This336

allows to form an augmented state vector X =

[
x θ

]
in order to perform the identification of the337

unknown parameters in conjunction with state estimation using the particle filter. In this paper, x338

is the crack length while θ contains the model parameters m and C or the loading parameters ∆σa339

and ∆P depending on the considered case study.340

In the particle filter approach, the state pdf at time instant k is approximated by a set of Npart341

particles {X i
k}

Npart
i=1 representing points in the state space, and a set of associated weights {ω i

k}
Npart
i=1342

denoting discrete probability masses:343

p(Xk|y0:k)≈
Npart

∑
i=1

ω
i
kδ (Xk−X i

k) with
Npart

∑
i=1

ω
i
k = 1 (12)344

where δ is the Dirac delta function.345

14



A sequential importance resampling (SIR) particle filter is used in this work. The reader may346

refer to (Arulampalam et al. 2002) to have more details about the various particle filter algorithms347

and the SIR particle filter that will be briefly presented in what follows. It is based on three main348

steps that are prediction, update and resampling:349

Initialization350

• Draw particles X i
0 ∼ p(X0)351

• Compute the initial weights ω i
k =

1
Npart

352

1. Prediction353

• Simulate the state equation (1) to generate a new set of Np particles X i=1:Npart
k which354

are realizations of the predicted pdf p(Xk|y0:k−1).355

2. Update356

• Each sampled particle is assigned a weight based on the likelihood p(yk|Xk):357

ω
i
k = ω

i
k−1 p(yk|X i

k−1) = ω
i
k−1

p(yk|X i
k)p(X i

k|X
i
k−1)

p(X i
k|X

i
k−1,yk)

(13)358

• Normalize the weights:359

ω
i
k = ω

i
k

(
Npart

∑
i=1

ω
i
k

)−1

(14)360

3. Resampling361

• Degeneracy problem: the weight variance increases and after a few iterations all362

but one particle may have a negligible weight (Daum 2005). Particles with small363

weights are eliminated so that the computational efforts are concentrated in those364

having large ones.365

• Resampling condition: if the effective sample size Ne f f is under some threshold366
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Nth, a re-sampling procedure is done. An estimate of Ne f f is367

N̂e f f =

(
Npart

∑
i=1

(ω i
k)

2

)−1

(15)368

• Using the inverse cumulative distribution function method (Arulampalam et al.369

2002) and the current set {Xk}
Npart
i=1 , a new set {X̃k}

Npart
i=1 is drawn to replace the370

current one. Finally, with ω̃ i
k = N−1

part , the state is given by:371

X̂ i
k =

Npart

∑
i=1

ω̃
i
kX̃k

i (16)372

This classical SIR particle filter algorithm is applied during the first step of the prognosis pro-373

cess which consists in estimating the current augmented state vector using data from the different374

sensors. This step is realized as long as measurements are available until the prediction time kp375

from which a prediction of the future augmented state vector is performed. During the forecasting376

step, no more measurements are collected. However, the update of the particle weights depends377

on the acquisition of new measurements. To overcome this difficulty, the state is propagated only378

using the state model (1) while the particle weights are propagated in time without any changes.379

In other words, only the prediction step is repeated until the chosen failure threshold is reached.380

Considering that the particle weights are invariant for time instants k > kp leads to a negligible ap-381

proximation error with respect to other sources of error such as wrong choices of noise parameters382

or model inaccuracies (Orchard and Vachtsevanos 2007).383

The general methodology that was presented above is adopted when the constant model pa-384

rameters m and C are jointly estimated along with the crack length. In the case where the crack385

is propagating under unknown variable amplitude loading (block loading), the loading parameters386

are unknown and time-varying (piecewise constant functions of time). However, the SIR particle387

filter itself cannot handle sudden change in loading parameters. Indeed, between two load varia-388

tions, the loading parameters have constant values. The marginal posterior parameter distributions389
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become increasingly concentrated around the true parameters values as more data is available.390

Thus, if some abrupt load variation occurs, the new loading parameters values may fall far into the391

tails of the parameter distributions, leading to particles with negligible weights. The particle filter392

is not able to estimate the new parameters values and a reinitialization of the particle system is393

then needed. In this work, a two-sided CUSUM algorithm is implemented to detect load variations394

and trigger the re-initialization of the particle filter for the learning of the new loading parameters395

values.396

Two-sided CUSUM algorithm397

A two-sided CUSUM algorithm is used to detect load variations during experiments. It is the398

combination of two CUSUM algorithms, one for the detection of an increase in the mean of the399

monitored variable, and the other one to detect a decrease in the mean. The general idea is to400

calculate a cumulative sum Sk that depends on the monitored process ∆x, on its initial mean value401

µ0 and on the minimal size of change to detect denoted by ν . And when the value of the sum402

exceeds a predefined threshold value Sth, a change in the mean value is detected. Therefore, the403

two-sided CUSUM algorithm is based on the following equations:404


S+k = max

(
0,S+k−1 +∆xk−µ0− ν

2

)
S−k = max

(
0,S−k−1−∆xk−µ0− ν

2

)
Ndetect = min{k : S+k ≥ Sth∪S−k ≥ Sth}

(17)

where Ndetect is the time at which the detection is made. There are two parameters that have405

to be chosen in this algorithm: Sth and ν . This choice depends on how the signal to process looks406

like, and for a Gaussian distribution, one can set Sth = 2σ∆x
ν

where σ∆x is the standard deviation407

of ∆x. Further information about the two-sided CUSUM algorithm can be found in (Blanke et al.408

2006).409
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Prognosis methodology with the particle filter and the detection algorithm410

The constant monitoring of loading parameters with the detection algorithm allows not only to411

detect abrupt load variations but also to reinitialize the parameters values right after the alarm. This412

would help the particle filter to converge more quickly and more easily to the actual crack length.413

This procedure leads to the introduction of a new uncertain parameter which is the initial loading414

parameters values after load variation. In most cases this value is unknown, but the user may415

have an order of magnitude of it. Indeed, depending on the monitored system, the critical input416

value that can accelerate the degradation state evolution can be obtained from expert knowledge.417

Therefore, because of the uncertainty associated to this value, it is included in an interval L= [L,L].418

NUMERICAL APPLICATIONS419

The aim of this section is to show how online fatigue crack growth prognosis with a SIR particle420

filter can be assessed in fiber-reinforced titanium matrix composite materials. The case of a fatigue421

crack prognosis with unknown model parameters m and C but known loading parameters ∆σa and422

∆P is first presented. A dataset from a specimen tested under constant amplitude loading is used. In423

order to justify the choice of a particle filter rather than an extended Kalman filter (EKF) which is424

easier to implement and is less time consuming, the performance of these two stochastic filters will425

be compared. Then, in a second part, a more complex and realistic case of fatigue crack growth426

prognosis where the loading parameters ∆σa and ∆P are unknown is considered. In this second427

example, a dataset from a specimen tested under variable amplitude loading is used.428

In order to evaluate the performance of the particle filter and of the EKF in estimating the RUL429

of the considered composite materials, three prognosis metrics (accuracy, precision and timeliness)430

are calculated. Accuracy measures the degree of closeness of the predicted RUL to the actual431

RUL, and its values are between 0 and 1 where 1 gives the best accuracy. Precision evaluates the432

narrowness of the interval in which the RUL predictions fall, and ranges between 0 and 1 which433

reflects the highest precision. Finally, timeliness indicates the relative position of the predicted434

RUL pdf along the time axis with respect to the occurrence of the actual failure event. There435

are three cases: (i) the failure occurs after the predicted failure time, (ii) the failure occurs at the436
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same time as the predicted failure time, and finally, (iii) the failure occurs earlier than predicted.437

This last case must be absolutely avoided, that is why the timeliness function allows to penalize438

late predictions. Timeliness has positive values and 0 is the best score. More details about the439

formulation of these metrics can be found in (Robinson et al. 2016), where the SIR particle filter440

and the EKF were compared on synthetic data generated with a Paris’ law to simulate a simple441

fatigue crack growth test case.442

For both case studies, the input parameters required for the implementation of the algorithms443

are provided, then the simulation results are shown. Finally, the prognosis methods are compared444

using the performance metrics that have been defined above. The following discrete-time form of445

the crack growth model (11) is used:446

ak+1 = ak +C∆N
[

F∆σak

√
πak−2F

√
a
π

∆Pk

(
π

2
− arcsin

(
a0

ak

))
−Kth

]m

(18)447

This model is randomized in order to take the different uncertainty sources into account. Mod-448

eling and measurement uncertainty are integrated by adding zero-mean Gaussian noises to the449

state and measurement equations, that are respectively wk and vk. Moreover, the unknown model450

parameters to estimate in conjunction with the crack length are considered as Gaussian random451

variables.452

Unknown model parameters m and C453

In this first case study, a crack growth trajectory dataset where the loading amplitude is main-454

tained constant is used. The loading parameters ∆σa and ∆P are then constant and equal to 196455

MPa. The objective here is to jointly estimate and forecast the crack length and the two un-456

known material parameters m and C, therefore the augmented state vector is defined as X>k =457 [
ak Ck mk

]
. The variances of the stochastic variables that were used for the implementation of458

the particle filter and of the EKF algorithms are listed in Table 1. In this work, filter tuning was459

performed offline on the basis of a trial and error procedure. The online tuning of the particle filter460

was not addressed in this paper as it is a complex problem when a highly nonlinear model and461
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real data are both involved. In the literature, some references have treated this problem outside462

the context of prognosis. In (Kontoroupi and Smyth 2015), an online strategy to jointly estimate,463

through the formulation of an augmented vector, the state vector, the model parameters and the464

statistical parameters (covariance and mean) of the process and observation noises is proposed.465

They assume some conjugate prior distributions for both mean and covariance matrix of noises466

and perform Bayesian updating using an unscented Kalman filter (UKF). However, they point out467

the possible limitations of such a method due to the curse of dimensionality.468

The values of the initial state vector have to be determined for the initialization of the filtering469

algorithms. The initial crack length a0 is supposed to be known because the prognosis module is470

launched only if a crack growth is detected in the monitored component. In the tested specimen,471

this value is a0 = 3.1mm. Concerning m and C, as they are material constants, their order of472

magnitude can be a priori known to initialize the algorithms. In this case, we have chosen m0 = 2.4473

and log(C) = −23.65. Finally, measurements were collected every ∆N = 1172 cycles and a total474

number of 500 particles was used by the filter. In the figures presented in the next subsections, the475

plotted curves correspond to the mean estimation.476

The crack growth prognosis has been done for different prediction time cycles Np, which means477

that the number of available measurements in the observation interval has been increased over478

cycles, as in on-line prognosis. From prediction time cycle Np, the forecasting of the future crack479

length was performed without any measurements until the threshold was reached in order to deduce480

the RUL value. This critical crack length was fixed at 7.5 mm. In order to evaluate the performance481

of the algorithms in terms of accuracy, precision and timeliness, 100 experiments have been done482

to simulate experimental variability. Concerning the choice of the performance metrics parameters483

[Imin,Imax] and I0, they depend on the material and user requirements. They can be derived from484

prior knowledge about the fatigue behavior of the material under study characterized by its S−N485

curve (Kawai and Itoh 2014). Based on these considerations, the user can define an allowable486

margin as a decision criterion. In this case, we have chosen I0 = 2×105 cycles. As for the interval487

[Imin, Imax], its width equals I0 = 2×105 cycles.488
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The evolution of the crack growth prognosis for different values of Np are shown in Fig. 4,489

Fig. 5 and Fig. 6 for the EKF and in Fig. 7, Fig. 8 and Fig. 9 for the PF. The performance metrics490

values for both methods are listed in Table 2. The results show that the EKF did not manage to491

predict correctly the future crack length until time cycle Np = 2.794× 105 cycles. Indeed, the492

EKF gives reliable results only if the system is locally linear and is not highly nonlinear, or when493

there is no joint parameter-state estimation as in (Wang et al. 2017). The only way to obtain494

satisfactory results with the EKF was to decrease the standard deviation of the exponent parameter495

m to σm = 10−6, however it is not a realistic value because the parameter m generally varies by496

10% from one specimen to another. As regards the particle filter, even at only Np = 1.198× 105
497

cycles, the RUL prognosis gives appropriate results in terms of accuracy, precision and timeliness,498

and the metric values improve as more measurements are available.499

The high performance of the particle filter for the fiber-bridged crack prognosis was highlighted500

in the results and confirms the results obtained in (Robinson et al. 2016) on an academic test case501

with a Paris’ law. Moreover, the choice of the constant value of the closure pressure is appropriate502

in this case. Thus, the proposed model for fatigue crack growth propagation in fiber-reinforced503

composites can be validated.504

Unknown loading parameters ∆σa and ∆P505

This second case study is based on a dataset where the cracked specimen was subjected to506

variable loading amplitude. A joint input-state estimation will allow the constant monitoring of507

external loads while estimating the crack length. The augmented state vector is then defined as508

X>k =

[
ak ∆σak ∆Pk

]
. The variances of these stochastic variables that were used for the imple-509

mentation of the particle filter algorithm are listed in Table 3.510

The initial crack length a0 is supposed to be known because the prognosis module is launched511

only if a crack growth is detected in the monitored component. In the tested specimen, this value512

is a0 = 0.7mm. Concerning the inputs loading parameters ∆σa and ∆P, their initial values are513

assumed to be included in the interval L0 = [300,400] MPa.514

In this part, the material parameters m and C are assumed to be constant variables as the focus515
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is placed on the estimation of the unknown loading parameters. They have already been calculated516

in a previous work, and we have m = 2.4 and C = 5.4× 10−11. Finally, a total number of 500517

particles was used and crack length measurements were collected every ∆N = 1172 cycles.518

Fatigue crack growth under unknown constant amplitude loading519

The first step of prognosis consists in jointly estimating the current crack length a and the520

unknown loading parameters ∆σa and ∆P using the crack growth model and the collected crack521

length data at each time step k corresponding to a cycle number N. Then, from a prediction time522

cycle Np, the forecasting of the future state vector is performed without any new measurements.523

First of all, in order to demonstrate the robustness of the proposed particle filter to the initial524

unknown loading parameters values, the prognosis results for different initial values of ∆σa and525

∆P in L0 have been plotted in Fig. 10.526

It can be seen that despite the uncertainty on the initial loading input values, the particle filter527

always manages to converge to the actual crack length. This is an important feature of the proposed528

joint input-state estimation algorithm because in real-time prognosis, this value is unknown.529

Moreover, one can notice that the crack length does not increase and the estimated unknown530

loading parameters remain constant after the transient state (Fig. 11). Indeed, the crack growth531

stops after some extension because of the fiber bridging phenomenon mentioned in Section 2.532

Therefore, the crack growth reaches a steady-state and the failure threshold will not be reached.533

In the following, a case of crack growth under variable amplitude loading is treated to study the534

ability of the proposed methodology to jointly estimate the crack length and the unknown loading535

parameters even in these circumstances.536

Fatigue crack growth under unknown variable amplitude loading537

In this subsection, crack growth prognosis under unknown variable amplitude loading is con-538

sidered. The crack length measurements are from the real dataset obtained during fatigue test on539

fiber-reinforced titanium matrix composite materials presented in Section 2.540

As a first step, the estimation of the crack length and the unknown loading parameters is per-541

formed using the available measurements. Then, the forecasting step is realized from the prediction542
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time cycle Np. Before load variation, the prognosis results are the same as described in the pre-543

vious subsection. After load variation, the forecasting of the future crack growth without new544

measurements is made at different prediction time cycles Np. The evolution of the future crack545

length predictions are depicted in Fig. 12 and Fig. 13. The first part of the crack length evolution546

is not shown as it is the same as in Fig. 10.547

The higher amplitude of the external applied load has led to an increase in the crack length,548

which indicates that the critical stress has been attained. The results show that the particle filter has549

some difficulties to converge even after several time cycles of estimation using the measurements.550

Indeed, the particle filter needs more data in order to estimate the unknown loading parameters551

whose values have significantly increased after this abrupt load variation. This problem might be552

addressed by increasing the number of particles. In this study, 500 particles were used, and a test553

with 3000 particles was realized. The results were almost the same, and this number cannot be554

further increased because the computational time would be too important, which is not suitable for555

online applications.556

In order to circumvent this issue, the two-sided CUSUM algorithm presented in Section 3557

is integrated to the particle filter. The unknown loading parameters ∆σa and ∆P are constantly558

monitored to detect the sudden load variation. Indeed, as these inputs are related to the applied559

load, when the loading amplitude changes, their values change as well (Fig. 14). It can be seen560

that this monitoring must start after the transient state to avoid any false detection.561

The parameter µ0 of the CUSUM algorithm is the mean value of the estimated parameters562

in the transient state. The minimal size of change to detect in the unknown loading parameters563

variables was xed to ν = 2 MPa. This value was chosen based on the parameter estimations shown564

in Fig. 11. The two-sided CUSUM algorithm has detected the variation at Ndetect = 10.881×106
565

cycles while the actual load variation time is Nload = 10.868×106 cycles.566

After the detection of load variation, the values of ∆σa and ∆P are reinitialized. The choice of567

the interval L is based on the a priori knowledge of the necessary load amplitude that may cause a568

rapid propagation of the crack in the considered specimen. The values ∆σacrit and ∆Pcrit associated569
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to the critical load are known to be around 450 MPa. Therefore, in order to take the uncertainty570

associated to this value into account, it was considered that the reinitialized values of ∆σa and ∆P571

belong to the interval L = [400,500]. This has allowed to estimate and then forecast an interval572

that contains the estimated crack length after load variation. The bounds of this interval are derived573

from two extreme loading cases. The evolution of this interval for different prediction cycles Np is574

shown in Fig. 15 and in Fig. 16.575

First of all, the gain of the detection algorithm and the reinitialization of the loading parameters576

values is highlighted in these figures. It can be seen that even if the loading parameters values after577

the load variation are uncertain, the interval that was derived from the interval L still gives an578

accurate prediction of the future crack length. Moreover, the predictions improve as more data is579

available. Even if the plotted results give an idea about the efficiency of the proposed methodology,580

a more precise performance evaluation using metrics such as accuracy, precision and timeliness581

has been performed. The metrics were calculated for several reinitialization values of ∆σa and582

∆P included in L. Thus, for each value of ∆σa and ∆P included in L, 100 RUL pdf computations583

were simulated to calculate the metrics. Then, the mean values and the standard deviation of each584

metrics in the predicted interval are given in Table 4.585

The calculated metrics confirm that the proposed methodology gives satisfactory results in586

terms of accuracy, precision and timeliness despite the high uncertainty on the reinitialized values587

of the unknown loading parameters after load variation. Moreover, the obtained values show the588

usefulness of the timeliness metric. Indeed, we can see that the highest value of timeliness is at589

the prediction cycle Np = 12.337×106. This is explained by the fact that a significant part of the590

predicted RUL have fallen after the actual RUL value. Thus, even if the accuracy is the highest591

one, the timeliness value must be taken into account carefully to optimize maintenance decisions592

and avoid catastrophic events. As for the case of the particle filter without the detection algorithm,593

the metrics could not even be calculated. Indeed, the particle filter did not manage to estimate the594

increase in crack length after the load variation. Therefore, the crack growth was so slow that the595

critical crack length could never be reached, making the calculation of the metrics impossible.596
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CONCLUSIONS597

In this work, fatigue crack growth prognosis in unidirectional fiber-reinforced composites us-598

ing real data from fatigue tests on titanium matrix composites has been considered. First of all,599

the model that describes fatigue crack growth in such materials has been derived. For this pur-600

pose, the model that was previously developed in (Maire et al. 2000) has been simplified. Indeed,601

the problem in model-based prognosis is to make a compromise between a very accurate model602

that induces very high computational time, and a simplified model that will reduce computational603

time and effort. This simplified model was obtained by making assumptions on the physics-based604

model, and the resulting modeling uncertainties were represented with uncertain parameters and605

additive noise.606

Then, using this nonlinear model and real crack growth data, two cases of fatigue crack prog-607

nosis in fiber-reinforced composite materials were treated. In a first study, the joint estimation608

of model parameters that depend on material in conjunction with the crack length was performed609

while assuming known value of the applied load. The performances of a particle filter and an610

extended Kalman filter (EKF) for the crack growth prognosis were compared using three prog-611

nosis metrics (accuracy, precision and timeliness). The results highlighted the high performance612

of the particle filter and the difficulty of the EKF to predict the future crack growth in presence613

of high nonlinearities. It was also shown that the more measurements are collected, the more614

the performance metrics of both filters were improved. However, the particle filter needed much615

less measurements to obtain a predicted RUL value close to the real one, which also proves the616

efficiency of the particle filter over the EKF in the studied crack growth prognosis.617

In a second case study, a real crack growth dataset recorded under variable amplitude loading618

was used to perform fatigue crack growth prognosis in unidirectional fiber-reinforced composites619

under unknown applied load. A model-based on-line prognosis method that is able to estimate and620

forecast unknown loading parameters was proposed in this paper. A particle filter was used for621

the joint parameter-state estimation and a two-sided CUSUM algorithm was integrated to detect622

load variations. Indeed, it was noted that after an abrupt load variation, the particle filter had some623
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difficulties to converge to the degradation state whose trajectory had suddenly changed. Therefore,624

the role of the CUSUM algorithm is to monitor the unknown loading parameters values, and to625

give an alert when a load variation is detected. Once the particle filter has received this alert, the626

estimated values of the unknown loading parameters are reinitialized in an interval that is chosen627

from a priori knowledge. The association of these two algorithms have enabled to keep the RUL628

predictions accurate even after load variation.629

Finally, the simplified crack growth model that was proposed for fatigue crack growth prog-630

nosis in unidirectional fiber-reinforced composite materials can be validated. Indeed, even when631

considering that the absolute value of the closure pressure is equal to the applied load, the crack632

growth prognosis results were satisfactory. That is an important aspect in on-line prognosis be-633

cause the computational time must be minimized.634

In future work, the proposed prognosis method will be applied to fatigue crack growth data635

with more load variations, and other analytical models will be considered. Moreover, the problem636

of online filter tuning will be investigated.637
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TABLE 1: Distributions of random parameters for the estimation of m and C

Parameter log(C) m w v
Variance (10−2)2 (10−3)2 (10−3)2 (10−3)2
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TABLE 2: Performance evaluation results for the estimation of m and C

Prediction time Method Accuracy Precision Timeliness

1.198×105 PF 0.88 0.72 0.77
EKF 0.67 0.93 4.83

2.370×105 PF 0.95 0.82 0.17
EKF 0.71 0.95 2.04

3.542×105 PF 0.96 0.85 0.08
EKF 0.72 0.95 0.91
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TABLE 3: Distributions of random parameters for the estimation of ∆σa and ∆P

Parameter ∆σa ∆P w v
Variance (0.07)2 (0.07)2 (10−3)2 (5×10−3)2
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TABLE 4: Performance evaluation results for the estimation of ∆σa and ∆P

Prediction time Accuracy Precision Timeliness
11.058×106 0.59 (±0.04) 0.62 (±0.02) 4.56 (±1.05)
11.197×106 0.65 (±0.04) 0.75 (±0.02) 2.74 (±0.73)
11.335×106 0.81 (±0.08) 0.86 (±0.04) 0.92 (±0.46)
12.337×106 0.87 (±0.15) 0.59 (±0.07) 207.12 (±486.04)
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FIG. 1: Schematic of the specimen showing the dimensions and the loading axis parallel to fiber
direction
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FIG. 2: Photography of the specimen with a crack perpendicular to fiber direction - With permis-
sion of ONERA/DMAS, Châtillon, France
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FIG. 3: The closure pressure in the crack wake
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FIG. 4: Crack growth prognosis with the EKF at Np = 1.198×105 cycles
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FIG. 6: Crack growth prognosis with the EKF at Np = 3.542×105 cycles
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FIG. 7: Crack growth prognosis with the PF at Np = 1.198×105 cycles
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FIG. 8: Crack growth prognosis with the PF at Np = 2.794×105 cycles

1 2 3 4 5 6 7

x 10
5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

N (cycle number)

C
ra
ck

si
ze

(m
m
)

Particle filter : Np = 3.542 × 105 cycles

Reference crack size

Estimated crack size

Predicted crack size

Threshold

FIG. 9: Crack growth prognosis with the PF at Np = 3.542×105 cycles
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FIG. 12: Evolution of the crack length at different prediction cycles Np without the detection
algorithm (Np = 11.058×106 cycles and Np = 11.197×106 cycles)
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FIG. 13: Evolution of the crack length at different prediction cycles Np without the detection
algorithm (Np = 11.335×106 cycles and Np = 12.337×106 cycles)
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FIG. 14: Abrupt change in ∆σa and ∆P after load variation
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FIG. 15: Evolution of the crack length at different prediction cycles Np with the detection
algorithm (Np = 11.058×106 cycles and Np = 11.197×106 cycles)
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FIG. 16: Evolution of the crack length at different prediction cycles Np with the detection
algorithm (Np = 11.335×106 cycles and Np = 12.337×106 cycles)
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