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Paul Sabatier (UPS), Toulouse, France

Abstract

Background: The human pathogen Mycobacterium tuberculosis (Mtb) has the originality of possessing a multifunctional
mega-enzyme FAS-I (Fatty Acid Synthase-I), together with a multi-protein FAS-II system, to carry out the biosynthesis of
common and of specific long chain fatty acids: the mycolic acids (MA). MA are the main constituents of the external
mycomembrane that represents a tight permeability barrier involved in the pathogenicity of Mtb. The MA biosynthesis
pathway is essential and contains targets for efficient antibiotics. We have demonstrated previously that proteins of FAS-II
interact specifically to form specialized and interconnected complexes. This finding suggested that the organization of FAS-
II resemble to the architecture of multifunctional mega-enzyme like the mammalian mFAS-I, which is devoted to the fatty
acid biosynthesis.

Principal Findings: Based on conventional and reliable studies using yeast-two hybrid, yeast-three-hybrid and in vitro Co-
immunoprecipitation, we completed here the analysis of the composition and architecture of the interactome between the
known components of the Mtb FAS-II complexes. We showed that the recently identified dehydratases HadAB and HadBC
are part of the FAS-II elongation complexes and may represent a specific link between the core of FAS-II and the condensing
enzymes of the system. By testing four additional methyltransferases involved in the biosynthesis of mycolic acids, we
demonstrated that they display specific interactions with each type of complexes suggesting their coordinated action
during MA elongation.

Significance: These results provide a global update of the architecture and organization of a FAS-II system. The FAS-II
system of Mtb is organized in specialized interconnected complexes and the specificity of each elongation complex is given
by preferential interactions between condensing enzymes and dehydratase heterodimers. This study will probably allow
defining essential and specific interactions that correspond to promising targets for Mtb FAS-II inhibitors.
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Introduction

Multifunctional mega-enzymes such as fatty acid synthases

(FAS) are comparable to enzymatic assembly lines [1,2,3]. FAS are

responsible for the biosynthesis of fatty acids in all living organisms

and are, schematically, of two types. A type-I FAS (FAS-I), found

mainly in eukaryotes as a multifunctional enzyme with different

degrees of homo- or hetero-multimerization, and a type-II FAS

(FAS-II), more specific of prokaryotes and organelles, which is

composed of monofunctional enzymes encoded by discrete genes.

Several 3D structures of FAS enzymes are known and the

structure of a mammal FAS (mFAS-I) has now been resolved at a

high resolution [1,4,5,6,7]. According to these structures, mega-

enzymes appear to have retained, or lost, functional domains in

accordance with their biological functions but their overall

structure, ultrastructure and the links between enzymatic modules

are kept, with only minor changes.

The pathogenic bacillus Mycobacterium tuberculosis (Mtb) is the

etiologic agent of tuberculosis which remains a major cause of

death worldwide, and recently became even more worrying

because of the emergence of multi-drug-resistant (MDR) and

extensively-drug-resistant (XDR) clinical isolates [8]. Mtb, as the

other mycobacteria, possesses a peculiar way of achieving the

synthesis of fatty acids since a multifunctional, ‘‘eukaryotic like’’,

FAS-I and a prokaryotic "dissociated" FAS-II coexist in the

bacteria [9]. These two systems, in Mtb, are devoted to the

synthesis of normal chain-length fatty acids together with specific

long-chain, a-branched and b-hydroxylated fatty acids: the

mycolic acids (MA) [10]. MA represent the major and the most

specific lipid components of the cell wall and are involved in what
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is now called the external myco-membrane of the Gram positive

bacillus Mtb [11,12,13]. MA are part of the physiological barrier

between the bacillus and its environment [14,15]. The thick

mycobacterium envelope is partly responsible for its inborn

resistance to antibiotics and plays a major role in the virulence

and the persistence of Mtb. The complexity, the essentiality and the

variability of the biosynthetic pathway of MA (Fig. 1) probably

reflect the fact that these fatty acids are of primary importance in the

life of the bacillus. Several antituberculous agents, and specially

isoniazid (INH), target the essential biosynthetic pathway of MA.

MA result from the Claisen condensation of an aliphatic chain

of medium length (C24-C26) with a long mero-mycolic chain (up to

C60) bearing specific biochemical modifications [16,17]. The FAS-

II initial substrates for the synthesis of the meromycolic chain are

medium length keto-acyl-ACP resulting from the condensation by

the mtFabH protein of the acyl-CoA products of FAS-I with

malonyl-ACP produced by a malonylCoA ACP transacylase

(MCAT) mtFabD [18]. After reduction by the keto-acyl-ACP

reductase (KR) MabA [19,20,21], then dehydration by the

recently identified hetero-dimers HadAB and HadBC hydroxyl-

acyl-dehydratase (DH) [22,23,24] and finally the reduction by the

enoyl-ACP reductase (ER) InhA [25], the fully saturated acyl-

chain enter into a new cycle of elongation via the condensation by

the keto synthase (KS) KasA or KasB with a new malonyl-ACP

Figure 1. Schematic representation of the mycolic acid biosynthesis pathway. The biochemical reactions necessary to achieve the
biosynthesis of mature mycolic acids are symbolized with black arrows. The enzymes responsible for each reaction are named in colored squares. The
cofactors necessary for certain reactions to occur (NADPH, NADH) were omitted for clarity. The proximal and distal position of the meromycolic chain
modifications by the MA-Mtfs are indicated as P and D respectively. The interrupted arrows are used to symbolize the existence of intermediates
biochemical reactions that are not detailed on the figure.
doi:10.1371/journal.pone.0029564.g001
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unit [26,27,28]. The meromycolic chains are modified at two

specific positions: the distal (D) and proximal (P) positions (Fig. 1).

To date, eight different methyltransferases (Mtf) have been

involved in these specific modifications; there are MmaA1 to

MmaA4, CmaA1, CmaA2, PcaA, and UmaA. After its synthesis

the meromycolic chain is adenylated and ligated by FadD32 onto

Pks13 [29,30,31,32,33], which is the terminal condensing enzyme

that links the meromycolic chain to a carboxylated alpha chain

coming from FAS-I. The remaining keto function of what will

become the mycolic motif is then reduced, probably by the

orthologous of cmrA (rv2509) identified in Corynebacterium glutamicum

[34] and Mycobacterium smegmatis [35].

The essential interactions between the proteins of this

biosynthetic pathway represent very promising targets per se. In

order to approach this final objective, we have previously analyzed

the complex network of interactions between the main FAS-II

protein components. We have proposed the first model of the

architecture of a prokaryotic FAS-II system [36,37]. In this model

of interactome, called here the MABI (Mycolic Acid Biosynthesis

Interactome), three types of FAS-II specialized complexes are

interconnected together (Fig. 2): (i) the ‘initiation FAS-II’ (I-FAS-

II) is formed by a core (the reductases and mtFabD) and mtFabH

and represent the link between FAS-I and FAS-II; (ii) two

‘elongation FAS-II’ (E-FAS-II) complexes consist in a core and

either KasA (E1-FAS-II) or KasB (E2-FAS-II) and are capable of

elongating acyl-AcpM to produce full-length meromycolyl-AcpM ;

and finally (iii) the ‘termination FAS-II’ (T-FAS-II) involves Pks13

linked with KasB and condenses the a-branch with the

meromycolic branch. Our working hypothesis was that the

specialized and interconnected complexes of the prokaryotic

‘‘dissociated’’ FAS-II system of Mtb, might adopt the same

composition and architecture as a multifunctional FAS-I protein.

The aim of the present work was to obtain a precise and global

view of the MABI of the FAS-II complexes of Mtb and address the

question of the specificity of each specialized complex by including

the recently identified dehydratases of the FAS-II system (HadAB

and HadBC) and specific methyltransferases involved in mer-

omycolic chain modifications in the interactome.

Results

The Had dehydratases form specific heterodimers in the
Y2H system

Using a biochemical approaches together with a mycobacterial

two-hybrid system, It has been shown in our laboratory that the

dehydration step of FAS-II was accomplished by three proteins

(HadA, HadB and HadC) [22,24]. The heterodimerization of the

dehydratase proteins conducted to the formation of two types of

active heterodimers HadAB and HadBC. In order to be able to set

up experiments using a yeast-three-hybrid (Y3H) system allowing

to test the interaction of each heterodimer with a given FAS-II

protein, we first analyzed the heterodimer formation in a Y2H

screen. The Mtb genes rv0635, rv0636, rv0637 coding respectively

for HadA, HadB, and HadC were inserted into the Y2H vectors

(pGAD-T7 and pGBK-T7) to produce in-phase C-terminal

fusions with the coding sequences of either the activator domain

(AD) or the binding domain (BD) of the yeast transcriptional

activator GAL4. All the possible combinations of pGAD-T7 and

pGBK-T7 derivatives were transformed in the yeast strain AH109.

As negative controls, the interactions between the three Had

proteins fused to either GAL4 domains were tested against the

empty vectors (pGAD-T7 or pGBK-T7) or the lamin fusion from

Clontech (pGBK::lam). The results obtained with the positive

control pair (pGAD::AgT and the pGBK::p53) are not shown. The

three proteins were tested in both directions, that is to say merged

either to the activator domain (AD) or the binding domain (BD) of

GAL4 and on each selective medium using the ‘‘two screen test’’

described in Materials and methods and before [36,37].

Homotypic interactions were revealed for HadA and HadB but

not for HadC (Table 1), a result in agreement with the previous

findings indicating that the only relevant homodimers concerned

HadA or HadB [22]. The specific formation of the HadAB and

HadBC heterodimers was also clearly observed in this Y2H system

whereas HadAC was never observed. The pertinence of the ‘‘both

direction Y2H screen’’ was well illustrated by the result obtained

in yeast with BD-HadB. In contrary to the AD-HadB fusion that

Figure 2. The FAS-II specialized complexes. The FAS-II initiation
complex (I-FAS-II), elongation complex 1 and 2 (E1-FAS-II and E2-FAS-II),
and the termination complex (T-FAS-II) are represented as filled grey
boxes. The condensing enzymes KasA, KasB and MtFabH (labeled as
FabH) are in orange. The reductases InhA and MabA are respectively
represented in green and yellow. The malonylCoA ACP transacylase
MtFabD is represented as a red box and labeled as FabD. The
interactions between KasA and KasB with either the MA-Mtf (in violet)
or the condensing enzyme Pks13 (in blue) are symbolized by curved
arrows. The traffic of the substrates and products of each complex is
also symbolized by curved arrows and the numbers represent the
sequence of the events. MA is for mycolic acids, FAS-I for fatty acid
synthase of type-I and FAS-II for FAS of type-II. The product of FAS-I and
substrate of FAS-II is an Acyl-CoA. The product of FAS-II is an Acyl-ACP.
doi:10.1371/journal.pone.0029564.g002

Table 1. Y2H analysis of interactions between the Had
monomers.

AD fusions BD fusions

lam hadA hadB hadC

Ø -a - - -

hadA - +/- - -

hadB - + +/- +

hadC - - - -

aEach sign indicates the growth on three selective media (DOBA-LTH, DOBA-
LTA, and DOBA-LTHA) the rules of attribution of either +, +/-, or - are given in
Materials and Methods.

doi:10.1371/journal.pone.0029564.t001
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interacted clearly with HadC or HadA as previously described, the

BD-HadB fusion did not interact with either HadA or HadC. We

excluded bellow the results obtained with the BD-HadB fusion

that did not interact with any protein tested (data not shown).

Each Had heterodimer contacts preferentially a specific
FAS-II complex

The Y3H system is based on the reconstitution, in yeast, of a

functional GAL4 activator with a protein bridge between the AD

and the BD fusions proteins. The expression of the protein bridge

was controlled by a pMet promoter (repressed by methionine)

present on a derivative of pGBK-T7 (pBridge) that expresses

constitutively a given BD fusion. Each pBridge derivative,

containing one had gene expressed as a constitutive BD fusion

and the other one as a methionine repressible gene, was used to

test interactions with the FAS-II genes AD-fusions carried on a

pGAD-T7 derivatives. The Y3H screen was essentially conducted

like the Y2H screen, except that half of the selective plates

contained methionine in order to repress the pMet promoter

located on the pBridge constructs (Table 2). Each protein HadA or

HadC did not interact individually with FAS-II protein (Table 2,

columns 4 and 5, + Met). HadA and HadC, which do not interact

with each other (Table 1), do not interact either with the FAS-II

components when they are co-produced (Table 2, columns 4 and

5, - Met). In contrast, we found interactions with the condensing

enzymes KasA, KasB, or mtFabH when the pairs HadAB or

HadBC were tested (Table 2, columns 2 and 3). HadAB interacted

with the three condensing enzymes with a preference for KasA

and HadBC interacted with only KasB. The interaction seen in

the presence of methionine (Column 2 and 3, + Met) might reflect

a leak of the pMet promoter allowing the HadB production

because HadA and HadC do not interact when they are alone

(Table 2, columns 4 and 5, + Met). Each heterodimer HadAB or

HadBC interacted with the condensing enzymes probably via an

interaction through HadB. The specificity of interaction seemed to

come from either HadA (KasA preference) or HadC (KasB

preference) when they were in the heterodimer. HadAB might

contact I-FAS-II and E1-FAS-II whereas HadBC might interact

with only E2-FAS-II.

The Mycolic acid-Mtfs (MA-Mtf) interact with the
Elongation Complexes

We have previously demonstrated that the four MA-Mtfs

MmaA1 to MmaA4, involved in meromycolic acid modifications,

interacted mainly with the condensing enzymes KasA and KasB

and not with mtFabH [36,37]. MA-Mtfs were shown to be specific

for the elongation complexes E1-FAS-II and E2-FAS-II [36,37].

We investigated here the interactions between the FAS-II proteins

and four additional MA-Mtfs involved in the meromycolic chain

modification: CmaA1, CmaA2, PcaA, and UmaA. We used in vivo

(Y2H) and in vitro (Co-IP) complementary experimental approach-

es. The Mtb genes rv3392c, rv2254c, rv0470c, rv0469 coding

respectively for CmaA1, CmaA2, PcaA, and UmaA were inserted

into the Y2H vectors (pGAD-T7 and pGBK-T7). The pGAD-T7

and pGBK-T7 derivatives expressing the fusions of the four MA-

Mtfs genes mmaA1 to mmaA4 and of the main FAS-II proteins were

already had available from a previous study [36,37]. All the

possible combinations of double transformants of the yeast strain

AH109 were tested in Y2H with the suitable positive and negative

controls. We analyzed the results obtained when the proteins were

tested in ‘‘both direction’’ (Table S1) and found, according to their

behavior with respect to the MA-Mtf proteins three groups of

FAS-II proteins. In Y2H, the reductases InhA and MabA, did not

interact with any MA-Mtfs. In contrast, KasA, KasB and mtFabD

interacted with nearly all the MA-Mtfs with some variations in the

strength of the interactions. Finally the condensing enzymes

mtFabH and Pks13, either did not interact or interacted only

poorly with some MA-Mtf.

The MA-Mtfs contacts specifically each type of FAS-II
complex

The pGAD-T7 and pGBK-T7 plasmids are organized in such a

way that they allow the in vitro synthesis of 35S labeled proteins

tagged in N-terminus by either a c-Myc epitope (giving a c-protein

from pGBK-T7 derivatives) or a HA epitope (giving a h-protein

from pGAD-T7 derivatives). Co-immunoprecipitation (Co-IP)

experiments were designed to analyze the in vitro interactions

between the four MA-Mtfs and the FAS-II proteins by trapping c-

proteins with h-protein bound onto magnetic beads coated with

anti-HA antibodies (Fig. 3). In vitro, KasA and KasB behaved like

in Y2H experiments and interacted with all the MA-Mtfs. It was

less obvious for MtFabD that displayed only light interactions with

only two MA-Mtfs (CmaA1 and CmaA2). MtFabH remains

poorly interactive and displayed only faint interactions with

CmaA1, CmaA2, and UmaA. Pks13 did not interact at all in vitro.

Finally, and in contrast to the Y2H results, InhA interact very

significantly with the four MA-Mtfs. We have observed this

behavior previously with InhA and MabA [36,37] that never

displayed any interaction in Y2H but were interactive in vitro. We

have attributed this behavior to the high degree of multimerization

of these proteins [20,38,39] that might interfere in yeast with the

reconstitution of an active GAL4. This was particularly true with

MabA that interacted only if its multimerization was impaired by

punctual mutations [37].

The compilation of the results of the two Y2H analyses (Table

S1) together with those of the Co-IP analysis (Fig. 3 and Table S1)

was obtained by giving arbitrarily the same weight to each

experiment (Materials and Methods) to give a semi-quantitative

view of the data (Table 3). We have defined three interaction

groups. MabA felt in the non-interacting (NI) group whereas the

Table 2. Y3H analysis of protein-protein interactions between
the Had heterodimers and the FAS-II proteins.

AD fusions BD gene fusions and pmet operon fusions

1 2 3 4 5

BD-lam BD-HadA BD-HadC BD-HadC BD-HadA

pmet-
HadB

pmet-
HadB

pmet-
HadA pmet-HadC

Meta Met Met Met

Ø -b - - - - - - - -

mabA - - - - - - - - -

inhA - - - - - - - - -

kasA - +/- + - - - - - -

kasB - - +/- +/- +/- - - - -

mtfabH - - +/- - - - - - -

mtfabD - - - - - - - - -

aMet Indicates the presence of 1mM methionine in the medium.
bEach sign symbolizes the growth on three selective media (DOBA-LTH, DOBA-

LTA, and DOBA-LTHA).The rules of attribution of either +, +/-, or - are given in
Materials and Methods.

doi:10.1371/journal.pone.0029564.t002
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other reductase, InhA, was found in the all interacting (AI) group

because of the Co-IP results (Fig. 3). The condensing enzymes

KasA and KasB were also part of the AI group together with

MtFabD. Finally, Pks13 and MtFabH, because of either the

absence of interaction with some of the MA-Mtfs tested or the

weakness of interactions found, were placed in the poorly

interacting (PI) group.

The overall interaction pattern of the MA-Mtfs was clear and

followed the classification of FAS-II complexes as I-FAS-II, E-FAS-

II and T-FAS-II (Fig. 4). All the MA-Mtfs interacted preferentially

with the condensing enzymes, KasA and KasB, and with mtFabD,

suggesting a preference for the elongation complexes E1-FAS-II and

E2-FAS-II. The MA-Mtfs of FAS-II might contact the E-FAS-II

complexes mainly through interactions with the KS-AT proteins

(KasA-KasB and mtFabD) and seemed to contact InhA more than

MabA in the core of the FAS-II complexes.

The Had dehydratases participate in the FAS-II complex
specificity

We used the Y3H system to monitor the interactions between

the Had heterodimers and all the MA-Mtf proteins. The pBridge

derivatives expressing each heterodimer of Had were introduced

in AH109 together with a pGAD-T7 derivative encoding a GAL4

AD fusion with a given MA-Mtf. For clarity, and because of the

detrimental effect of the BD-HadB fusion (Table 1), the data

obtained with the BD-HadB fusion with the pBridge BD-HadB

pmet-HadA or the pBridge BD-HadB pmet-HadC were omitted

from Table 4. All the results were compared with the negative

controls as above (Table 4, line 1 and column 1). Five MA-Mtfs

(CmaA2, MmaA1, MmaA3, CmaA1, and PcaA) displayed a clear

preference for either of the two dehydratases. The CmaA2 protein

interacted with HadBC when HadB was induced (Table 4,

columns 3). In addition, CmaA2 did not interact with HadA or

Figure 3. In vitro Co-IP between Mtb FAS-II proteins and MA-Mtfs. The L-[35S]-methionine labeled h-proteins (HA tagged; h-protein) and c-
proteins (c-myc tagged; c-protein) from in vitro transcription translation reactions and Co-IP reactions products were fractionated by SDS-PAGE (10%)
followed by phosphor-imaging analysis. In column 1, the gels contained the h-protein alone. In even numbered column, the gels contained the c-
protein alone. In the other columns (odd numbered except 1), the gel contained the Co-IP reaction products. Each row corresponds to a distinct h-
protein analysis and the names of proteins are indicated in front of their position of migration. For CmaA1, the complete gel lines are presented. For
the other Mtfs only the gel region of interest is presented. The black filled arrows represent a Co-IP band corresponding to a positive interaction. The
open arrows mark the position of the absent Co-IP band and correspond to a negative interaction.
doi:10.1371/journal.pone.0029564.g003

Table 3. Protein-protein interactions between MA-Mtf and FAS-II: a compilation of Y2H and Co-IP.

AD fusions BD fusion Group

lam cmaA1 cmaA2 umaA pcaA mmaA1 mmaA2 mmaA3 mmaA4

Ø -a - - - - - - - -

mabA - - - - - - - - - NIb

inhA - +/- +/- +/- +/- +/- +/- +/- +/- AI

kasA - + + + + +/- + + + AI

kasB - + + + + + + + + AI

mtfabH - +/- +/- +/- - +/- +/- +/- +/- PI

mtfabD - + + + + + + +/- + AI

pks13 - - - - - - - +/- +/- PI

aEach sign represent the compilation of the results of three experiments: the Y2H results in ‘‘both directions’’ (Table S1) and the Co-IP (Table S1 and Fig. 3). These three
types of experiments were each scored as +, +/- or - as indicated in the text and in Materials and Methods.

bThe interaction groups are indicated as defined in the text: AI (All Interacting Group), NI (Non Interacting Group) and PI (Poorly interacting Group).
doi:10.1371/journal.pone.0029564.t003
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HadC alone (Table 4, columns 4 and 5). MmaA1 interacted with

HadAB even when HadB was repressed (Table 4, column 2) this

interaction with HadA alone was not seen when a putative

background of HadC was present (Table 4, column 5). MmaA3

interacted with HadAB even in the absence of HadB (Table 4,

column 2) and this interaction with HadA seemed inhibited by the

presence of HadC (Table 4, column 5). The behavior of CmaA1

was not clear because it interacted only with HadA in only one

type of double transformant (Table 4, column 2) and not in the

other (Table 4, column 5). PcaA interacted with HadA (Table 4,

column 2) and HadC (Table 4, columns 3 and 4). The interaction

with HadA was inhibited by HadB (Table 4, column 2) and the

interaction with HadC was not inhibited by either HadB or HadA

(Table 4, columns 3 and 4). We concluded that PcaA interacted

with HadBC through HadC. The three remaining MA-Mtfs

(MmaA2, MmaA4, and UmaA) were more interactive. MmaA2

interacted with HadA (Table 4, columns 2 and 5) and HadC

(Table 4, columns 3 and 4). These interactions were not inhibited

by the presence of either Had proteins when the pMet promoters

were not repressed (Table 4, columns 2 to 4) suggesting that

MmaA2 was able to interact with both types of Had heterodimers

(HadAB and hadBC). The MmaA4 protein (also named Hma

[40]) displayed an interaction profile similar to the one of MmaA2

suggesting an interaction with both types of Had heterodimers.

Finally, UmaA interacted with both type of Had heterodimers

with no clear preference (Table 4, columns 2 to 4). To conclude,

we observed a clear selectivity of the MA-Mtfs for each

dehydratase heterodimer. MmaA2, MmaA4, and UmaA interact-

ed with both Had heterodimers with no clear preference. In

contrast MmaA1 and MmaA3 displayed a clear specificity for

HadAB whereas CmaA2 and PcaA interacted preferentially with

HadBC. It seems likely that Had heterodimers might represent a

specificity determinant of the FAS-II complexes.

Discussion

Our goal was first to achieve the characterization of the Mtb

MABI by including interaction results obtained with the recently

identified dehydratases HadABC of FAS-II together with MA-

Mtfs involved in the modification of the meromycolic chains.

Because these two types of protein are each specific for a given

type of meromycolic chain, we also wanted to discover the

potential molecular basis of the specificity of each already

identified [36,37] specialized FAS-II complex: I-FAS-II, E1-

FAS-II, E2-FAS-II and T-FAS-II (Fig. 2).

We confirmed the formation of the specific heterodimers of

dehydratases HadAB and HadBC in Y2H. These (3R)-hydro-

xyacyl-ACP dehydratases have been identified as responsible for

the dehydration of the meromycolic chain during elongation by

the FAS-II complexes [22,24]. The HadB monomer is believed to

carry the catalytic center [22]. Y3H experiment showed that the

dehydatases interact with the FAS-II proteins through the HadB

protein reinforcing the idea that they might belong to the FAS-II

specialized complexes. The dehydratases interacted essentially

with the condensing enzymes and we did not observe any

interaction with the reductases MabA or InhA in Y3H. Rv3389c,

a related Mtb dehydratase: that do not participate in MA

Figure 4. Summary of protein-protein interactions within the
MA biosynthesis interactome. The protein-protein interactions
between the components of the specialized interconnected FAS-II
complexes of Mtb are represented as defined in the present work and
before [36,37]. The condensing enzymes (in orange) interact with each
other and with the core composed of MabA (in yellow),InhA (in dark
green) and FabD (in red). For clarity, the core is depicted in each type of
complex. KasA and KasB interact preferentially with HadAB (in light
green) and HadBC respectively. The interactions between the MA-Mtfs
(in violet) and KasA, HadAB, FabD, and InhA, or KasB, HadBC InhA, and
FabD are represented with black curved arrows. Pks13 (in blue) interact
with KasB and with the MA-Mtfs MmaA3 and MmaA4. Each type of
complex is represented as a grey rectangle; I-FAS-II is the initiation
complex, E1-FAS-II and E2-FAS-II the elongation complexes of type 1
and 2 respectively and T-FAS-II is the termination complex.
doi:10.1371/journal.pone.0029564.g004

Table 4. Y3H analysis of protein-protein interactions between
the Had heterodimers and the MA-Mtfs.

AD fusions BD gene fusions and pmet operon fusions

1 2 3 4 5

BD-lam BD-HadA BD-HadC BD-HadC BD-HadA

pmet-
HadB

pmet-
HadB

pmet-
HadA pmet-HadC

Met Met Met Met

Ø -a - - - - - - - -

cmaA2 - - - - +/- - - - -

mmaA1 - +/- + - - - - - -

mmaA3 - +/- +/- - - - - +/- -

cmaA1 - +/- - - - - - - -

pcaA - +/- - +/- +/- + + - -

mmaA2 - + + +/- + + + +/- +/-

mmaA4 - +/- +/- +/- +/- +/- +/- + +

UmaA - + + + +/- +/- +/- + +/-

aEach sign symbolize the growth on three selective media (DOBA-LTH, DOBA-
LTA, and DOBA-LTHA).The rules of attribution of either +, +/-, or - are given in
Materials and Methods. Met. Indicate the presence of 1mM methionine in the
medium.

doi:10.1371/journal.pone.0029564.t004
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biosynthesis [23] did not interact with any FAS-II protein (data

not shown).Interestingly, we also established a selectivity of each

heterodimer HadAB or HadBC for either KasA-mtFabH or KasB

respectively. HadAB has been proposed to be involved, like KasA

[41,42], in the early elongation cycle of FAS-II of mycobacteria

and in the synthesis of intermediate length fatty acids in Nocardia

and Rhodococcus [22]. HadAB, which interacts with KasA, can

be placed into the E1-FAS-II complex centered on KasA (Fig. 4).

HadBC, like KasB [41,42], was strongly suspected to be

implicated in the late steps of the meromycolic chain biosynthesis.

Indeed, HadBC prefers longer substrates than HadAB and there is

neither HadC nor KasB orthologs in genera bearing medium-

chain MA [22]. Our results showing a HadBC-KasB interaction

are fully consistent with these observations and place HadBC into

the E2-FAS-II complexes (Fig. 4). It is not possible yet to ascertain

the existence of a physical link between the Had heterodimers and

the reductases in the FAS-II complexes but each type of Had

heterodimer likely belong specifically to each type of elongation

complex via interactions with the condensing enzymes (Fig. 4). We

have tried to confirm these results with Co-IP experiments in vitro

(data not shown). However, each individual monomer of Had

interacted with all the proteins tested, including with the controls.

The same results were obtained when the Hads monomers were

tested two-by-two against the FAS-II proteins (data not shown).

We concluded that isolated monomers do not form proper

heterodimers in vitro and that they probably expose hydrophobic

surfaces which are responsible for the observed non-specific

interactions. In vivo, the three had genes are nearly overlapping in a

compact operon and we believe that the Had subunits of each

heterodimer have probably to be produced in a coordinated

fashion.

We have shown previously that the MA-Mtfs MmaA1 to

MmaA4 can interact with the elongation complexes E-FAS-II

through specific interactions with the keto-synthases KasA and

KasB. Here, we showed that the four remaining MA-Mtfs (PcaA,

UmaA, CmaA1, and CmaA2) behaved in the same way and

interacted also with the FAS-II condensing enzymes. The FAS-II

elongation complexes might possess at least one MA-Mtf binding

site (Fig. 4). We propose that modifications of the meromycolic

chain could occur during the elongation process in the FAS-II

elongation complexes. The MA-Mtfs of mycobacteria modify the

meromycolic chains of the MA at two specific positions referred as

distal (D) and proximal (P) positions with respect to the mycolic

motif (Fig. 1). During fatty acid biosynthesis, as described in text

books, the meromycolic chain elongates from the carboxyl end.

The D region is synthesized at the early step of elongation before

the P region that is synthesized during the last steps of elongation.

We have postulated that E1-FAS-II and E2-FAS-II could

synthetize the portion of the meromycolic chain containing the

D region and the P region respectively [36] and it has been shown

that KasB is involved in the synthesis of the proximal portion of

the mero mycolic chain in M.marinum [42] and in Mtb [41].

This hypothesis has been integrated in a regulation model of the

functioning of FAS-II [43]. We have interpreted our data in the

view of these models keeping in mind that the modifications of

the meromycolic chains by MA-Mtfs might take place during the

elongation process, as suggested by the effect on the proximal

modification of the meromycolic chain of the disruption of KasB

in Mtb [41]. A distal modification of the meromycolic chain by a

MA-Mtf is supposed to occur in the E1-FAS-II complex before its

proximal modification with another MA-Mtf in the E2-FAS-II

complex. We showed that CmaA2 and PcaA interact preferen-

tially with the HadBC heterodimers. It corresponds to an interac-

tion with the E2-FAS-II complex centred on KasB and devoted to

the late elongation steps. Both PcaA and CmaA2 modify the

proximal position of the meromycolic chain by respectively cis-

and trans- cyclopropanation of a-MA or oxygenated-MA [44,45].

PcaA and CmaA2 must actually act in the last stages of the

elongation process in the E2-FAS-II complexes. Conversely,

MmaA3, which catalyzes the formation of the methoxy groups

at the distal position of oxygenated-MA [46,47] displayed a

preference for HadA in the HadAB heterodimer. We put MmaA3

in the E1-FAS-II complex centered on KasA and involved in the

early steps of elongation allowing methylation at the first modified

position: the distal position. The profile of interaction of MmaA2

was also consistent with its known activities. MmaA2 has been

involved in the cis-cyclopropanation of the distal position of a-MA

and of the proximal position of oxygenated-MA [41,48]. MmaA2

displayed a redundant function with CmaA2 for the cis-

cyclopropanation of oxygenated MA [49]. MmaA2 interact with

both types of Had heterodimers, suggesting that it can indeed

participate in distal or proximal modification in either E1-FAS-I or

E2-FAS-II complexes. The MA-Mtf CmaA1 has been initially

suspected to synthetize a cis-cyclopropan at the distal position of a-

MA when it was overproduced in M.smegmatis [50,51]. This

hypothesis has not been confirmed when it has been re-evaluated

in Mtb KO-mutant studies [48]. The effective role of CmaA1 still

remains unclear. Here, we observed a unique and light interaction

between CmaA1 and HadA without any clear specificity for one or

the other of the Had heterodimers. It suggests that CmaA1 is not

part of the MABI. It is possible that when CmaA1 has been

overproduced in vivo [50], the CmaA1-HadA interaction was

sufficient to promote an artifactual targeting of CmaA1 to the E1-

FAS-II complex in order to modify the D position of the

meromycolic chain. The case of UmaA is different in the sense

that even if it has been shown that UmaA methylates the vicinal

position of proximal double bonds in a-MA and epoxy-MA of

M.smegmatis, the Mtb-KO mutant had no phenotype [52]. Here, by

looking at interactions between Mtb proteins, we observed UmaA

interactions with both types of Had heterodimers. It suggests that

UmaA participates in both types of FAS-II elongation complexes

whereas it is supposed to act only at the P position [52] and to

display a preference for the HadBC dimer of the E2-FAS-II

complexes. This discrepancy between these results and the activity

of UmaA in M.smegmatis could be explained by the fact that we

studied only Mtb proteins and not M.smegmatis proteins and suggest

that UmaA might have a function in Mtb that need to be

identified. The only example, presented here, which was clearly

not coherent with the literature, was the one of MmaA1. MmaA1

has been involved in the methylation of the vicinal position of the

trans-cyclopropane in the P position of oxygenated-MA [53] and

‘‘should’’ prefer the HadBC dimer in the E2-FAS-II system. We

observed the opposite result and a very clear specificity of

interaction for HadAB in E1-FAS-II. It suggests an activity at the

D position of the meromycolic chain. We believe that overpro-

duction experiments [53] might conduct to a misleading

interpretation of the MmaA1 activity like as demonstrated in the

case of CmaA1 [48,50,51]. The precise definition of the role of

MmaA1 awaits the study of a Mtb KO-mutant. Finally, MmaA4

(also named Hma [40]), is involved in the methylation of the

vicinal position of the oxygenated motives in the distal region of

the oxygenated-MA. Hma probably provide the substrates to

MmaA3 for the synthesis of methoxy-MA and keto-MA [46,54].

Hma was suspected to act on a double bond present at the distal

position of proximal cis-cyclopropanated MA [55]. We observed a

Hma-HadAB interaction that could explain its ‘‘distal’’ site of

activity when belonging to the E1-FAS-II complex. In addition to

the absence of oxygenated-MA in a Mtb hma KO-mutant, the MA
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chains are shortened, suggesting the untimely end of the elongation

process and a functional interaction with the last stages of elongation

[55,56]. Furthermore, there is no trans-cyclopropanated MA (the

product of CmaA2) in the hma mutant strain [55]. And finally, the

deletion of the kasB gene in Mtb also provokes the disappearance of

the trans-cyclopropanated MA, suggesting a CmaA2-KasB interac-

tion [41]. It appears that the activities of Hma, KasB, and CmaA2

seem to be interdependent. This functional link between Hma and

other proteins belonging to the E2-FAS-II complexes might explain

the Hma-HadBC interaction observed here.

The global organization of the FAS-II MABI
The 3D structures of several FAS enzymes are known and the

structure of a mammal FAS has now been resolved at high

resolution [4,5,6,7]. Even if the present study do not allow any

structural comparison between the ‘‘dissociated’’ FAS-II and the

megaenzyme mFAS-I, each type of FAS-II complex (Fig. 5A) can

be compared, in term of its composition, to a monomer of the

mFAS-I protein [6,9,36,37].By completing this MABI we showed

that it might adopt the same composition as a multifunctional

eukaryotic FAS-I protein. The observed preferential Had-Kas

interactions can be connected with the existence, in mFAS-I, of a

KS-DH interaction [6]. HadAB or HadBC might select the keto-

synthase needed for the elongation in a given FAS-II complex. It

will be interesting to try to define the interaction interfaces

between the Had and the Kas proteins. Interestingly, in mFAS-I,

there is a pseudo-Mtf domain (Y-Mtf), consisting in a S-adenosyl-

methionine binding site [6] facing the KR region of the protein

(Fig. 5B). We discovered here specific interactions between the

MA-Mtfs and FAS-II. The known structures of the MA-Mtfs are

very similar [40,57,58] and it is thus possible to imagine that each

MA-Mtf can contact FAS-II at a unique position and in the same

manner. The prokaryotic ‘‘dissociated’’ FAS-II system of Myco-

bacterium tuberculosis (Mtb) might adopt the same architecture as a

multifunctional eukaryotic FAS-I enzyme. We are actually

investigating this possibility by using molecular modeling and

structural alignments.

In addition to provide the first global view of the known

components of the FAS-II mycolic acid biosynthesis interactome we

identified its specificity determinants. The Had dimers, together

with the keto-synthases KasA and KasB might target specifically the

MA-Mtfs to a given elongation complex to perform either a distal

modification (HadAB/KasA/E1-FAS-II) or a proximal modifica-

tion (HadBC/KasB/E2-FAS-II) during the course of the meromy-

colic chain elongation. The FAS-II system of Mycobacterium

tuberculosis is organized in specialized interconnected complexes

[36,37] and the specificity of each type of elongation complex and of

meromycolic modifications seems to be given by specific ternary

interactions between condensing enzymes, dehydratase heterodi-

mers and MA-Mts. These interactions are certainly crucial and their

efficient targeting by inhibitors might be certainly detrimental for

the survival of Mtb: it represent the targets of choice.

Materials and Methods

Strains and culture conditions
Plasmid constructions were done in the Escherichia coli K12

derivative Top10-F’ (Invitrogen) using classical cloning procedures

and according to enzyme and product manufacturers (NEBiolabs,

Fermentas, Promega). When needed, culture media (Luria-Broth

(LB), or LB-Agar) were supplemented with kanamycin (50 mg/mL)

or ampicillin (100 mg/mL).

The Y2H and Y3H recipient strains (Clontech) were Saccharo-

myces cerevisiae AH109 (MATa; trp1-901; leu2-3, 112; ura3-52;

his3-200; gal4D; gal80D; LYS2::GAL1UAS-GAL1TATA-HIS3;

GAL2UAS-GAL2TATA-ADE; URA3::MEL1UAS-MEL1TATA-lacZ)

and MaV203 (MATa; leu2-3,112; trp1-901; his3D200; ade2-101;

cyh2R; can1R; gal4D; gal80D; GAL1::lacZ; LYS2::GAL1UAS-

GAL1TATA-HIS3; SPAL10::URA3 respectively. AH109 and

MaV203 were cultured in YEP (BIO101) with 2% dextrose and

0.003% adenine. Selective plates were made with synthetic

medium DOBA (BIO101) supplemented with the amino acids of

the Complete Supplement Mixture (BIO101) lacking leucine and

tryptophan (DOBA-LT) for AH109 or lacking methionine,

leucine, and tryptophan (DOBA-LMT). The Y2H genetic tests

were performed on DOBA-LT also devoid of histidine (DOBA-

LTH), or adenine (DOBA-LTA), or both (DOBA-LTHA). The

Y3H genetic tests were performed on DOBA-LTM also devoid of

histidine (DOBA-LTMH), or uracile (DOBA-LTMU), or both

(DOBA-LTMHU). When needed, the selective media were also

supplemented with 1 mM L-Methionine.

Figure 5. Modular organization of Mtb FAS-II and mFAS-I. (A)
Schematic representation of type-I (E1-FAS-II) and type-II (E2-FAS-II)
FAS-II elongation complexes as defined by the analysis of protein
interactions in the present work and before [36,37]. The interactions
between the different MA-Mtfs (in violet) and each complex are
represented by curved arrows. (B) Schematic representation of a dimer
of m-FAS-I adapted from Maier and colleagues [6] and drawn from the
3D structure. For both panels, the enoyl reductase domains (ER) and
proteins (InhA) are in dark green, the keto-reductase domains (KR) or
pseudo keto-reductase domains (Y-KR) and proteins (MabA) are in
yellow, the keto-synthase domains (KS) or proteins (KasA, KasB) are in
orange, the acyl transferase domains or the MtFabD protein (FabD) are
in red, the pseudo-methyltransferase domains (Y-Mtf) or the MA-Mtf
proteins (CmaA1, CmaA2, MmaA1 to MmaA4, UmaA, PcaA) are in violet,
the dehydratase domains (DH) or proteins (HadA, HadB, HadC) are in
light green and the mammalian FAS-I linker region (L) are in grey. The
links between the domains of mFAS-I in its primary structure are
symbolized by straight lines.
doi:10.1371/journal.pone.0029564.g005
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Construction of the Y2H and Y3H vector derivatives
The vectors pGBK-T7 and pGAD-T7 from the Matchmaker

TM

Two-hybrid system 3 (Clontech) allowed the downstream cloning

of genes in phase with the coding sequence of the DNA-binding

domain (BD) or of the activation domain (AD) of the yeast GAL4

transcription activator. In pGBK-T7, the BD coding sequence is

followed by the sequence of an internal T7 promoter and the

coding sequence of an eleven amino-acid epitope tag from the

proto oncogene c-Myc, just upstream of the multiple cloning sites.

After cloning of a gene of interest, the resulting protein will be a C-

terminal fusion with the BD domain and the c-Myc epitope tag.

The vector pGAD-T7 possesses the same genetic organization but

it contains the coding sequence of the AD domain of GAL4, the

sequence of a hemagglutinin (HA) tag, an ampicillin resistance

gene and the yeast LEU2 coding sequence. The pBridge Y3H

vector (Clontech) offers two cloning regions: a ‘‘pGBK-T7 like’’

cassette allowing the construction of BD fusions and a multiple

cloning site downstream of a flexible pMet promoter (repressed by

methionine). In addition, pBridge carries an ampicillin resistance

gene and the yeast selection marker TRP1. The four Mtb MA-Mtf

genes studied here; cmaA1 (rv3392c), cmaA2 (rv0503c), pcaA

(rv0470c), and umaA (rv0469), together with the three dehydratase

genes hadA (rv0635), hadB (rv0636), and hadC (rv0637) were all

amplified by PCR from Mtb H37Rv chromosomal DNA using the

Pfu DNA polymerase (Promega) with specific pairs of primers

(Table S2) allowing their in phase cloning in the multiple cloning

sites of pGAD-T7 and pGBK-T7. In addition, the three

dehydratase genes were cloned as C-terminal fusion of the

GAL4 BD domain in the pBridge vector. Each of the three

resulting plasmid (pBridge::BD-HadA, pBridge::BD-HadB, pBrid-

ge::BD-HadC) was used to clone the remaining two others

dehydratase genes under the pMet promore control. All the

combinations of pairs of dehydratases were obtained. The control

vectors (Clontech) encode for either a non-interacting protein

(pGAD::lam) or a pair of strong interacting proteins (pGAD::AgT

and pGBK::p53). They have been described in details in previous

work [36,37].

Y2H and Y3H genetics analysis
AH109 has two main reporter genes (HIS3 and ADE2), under

the control of two different GAL4 dependent promoters. The

promoter driving the expression of HIS3 possesses a strong GAL4

Upstream Activating Sequences (UAS), and thus allows the

detection of weak interactions. The promoter of ADE2 has a

weak GAL4 UAS and thus allows only the detection of strong

interactions. AH109 was transformed with each couple of pGAD-

T7 and pGBK-T7 (or pBridge in Y3H) derivatives as described

(Clontech). Co-transformants, containing two plasmids, were

selected on DOBA-LT. As a first screen for protein-protein

interactions and for each couple of plasmid tested, at least five

individual co-transformants were streaked on DOBA-LT with

replicate on DOBA-LTH, DOBA-LTA and DOBA-LTHA for

AH109 derivatives or on DOBA-LT with replicate on DOBA-

LTH, DOBA-LTU and DOBA-LTHU with or without L-

Methionine (1 mM) for MaV203 derivatives and in the presence

of the HIS3 inhibitor 3-amino-triazol (3-AT, 100 mM). Following

this first screen, the validity of a given interaction was evaluated by

plating dilutions (1.104 and 1.103) of saturated liquid cultures of an

individual co-transformant on the eight types of selective plates.

On each medium, the number of colony-forming unit (cfu) was

reported to the number of cfu on DOBA-LT. Following the streak

test and the plating assay, the scoring of a given interaction was

done as follows: an interaction was scored as positive ( + ) when

numerous individual colonies were visible on the streak assay and

when more than 80% of the population had the appropriate

phenotype on a given medium in the plating assay. It was scored as

plus-minus ( +/- ) when only a few colonies were visible in the

streak assay and when 50% to 80% of the population had the

required phenotype in the plating assay. In all the other cases, the

results were scored as negative ( - ).

In vitro Co-immunoprecipitation
In vitro transcription/translation of the genes of interest was

done with supercoiled DNA (1 mg) from pGAD-T7 or pGBK-T7

derivatives as matrix with the TnTH Quick Coupled Transcrip-

tion/Translation System (Promega). Reactions were performed in

a final volume of 50 mL either in the presence of 0.4 mCi/mL of L-

[35S]-methionine (1000 Ci/mmol; Amersham) or with cold

methionine (40 mM) when unlabeled h-proteins were required.

For Co-IP experiments, we used DynabeadsH M-450 Goat anti-

mouse IgG coated with monoclonal anti-HA antibodies (Sigma).

The ratios of the proteins were adjusted to 1:1 by evaluating the

specific activity of each protein (in cpm per mL) and correcting by

their differences in the number of methionine residues. Proteins

were incubated with the coated beads (2 hours at 4uC) in 20 mL of

50 mM Tris (pH 7.4), 50 mM NaCl and 0.025% Tween 20. After

extensive washing of the beads with 100 mM Tris (pH 7.4),

100 mM NaCl and 0.025% Tween 20, the reactions were boiled

in the SDS PAGE loading buffer and fractionated on SDS PAGE

followed by autoradiography and Phosphor-imaging (STORM-

Applied Biosystems).
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