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Abstract

A parametric framework is proposed to model both attritional and atypical claims
for insurance pricing. This model relies on a classical Generalized Linear Model for
attritional claims and a non-standard Generalized Pareto distribution regression model
for atypical claims. Maximum likelihood estimators (closed-form for the General-
ized Linear Model part and computed with Iterated Weighted Least Square procedure
for the Generalized Pareto distribution regression part) are proposed to calibrate the
model.

Two premium principles (expected value principle and standard deviation principle)
are computed on a real data set of fire warranty of a corporate line-of-business. In
our methodology, the tuning of the safety loading in the two premium principles is
performed to meet a solvency constraint so that the premium caps a high-level quantile
of the aggregate annual claim distribution over a reference portfolio.

Keywords: commercial lines, non-life insurance, pricing, composite distribution,
solvency criterion.
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1 Introduction

Non-life insurance pricing relies on the appropriate usage of actuarial models on policy
and claim datasets. For most personal lines of business, individual information are (mas-
sively) available in order to fit a regression model, unlike commercial lines where aggregated
datasets might be the only ingredient to compute a premium. In this paper, we have the
opportunity to use individual information for pricing the fire guarantee of a corporate line
of business. Therefore, pricing non-life insurance consists in estimating the claim frequency
and the claim severity distributions at individual level.

The claim frequency can generally be estimated parametrically (i.i.d. model or Poisson
regression model) or non-parametrically (through regression trees or more advanced models).

For modeling claim severity, the claim dataset is commonly split between attritional and
atypical claims. Namely, a threshold µ is chosen either from the extreme value theory or by
expert judgments. Then, on the one hand, a classical Generalized Linear Model (GLM) such
as gamma or inverse-Gaussian is fitted on attritional claim amounts below µ (see e.g. Ohlsson
and Johansson [2010] for a recent book). On the other hand, atypical claim amounts above
µ are not necessarily modeled at all. An empirical and pragmatic rule for the insurance
pricing used by many actuaries is to mutualize atypical claims over the portfolio. That is,
the aggregate sum of atypical claims is shared equally among all policies.

In this paper, we focus on the construction of risk classes for both attritional and atypical
claims for a given insurance product. The risk features (explanatory variables) used to
determines risk classes are the type of industry, the category of maximum probable loss and
the total insured area for instance.

A parametric framework is provided to model attritional and atypical claims. Let A ⊂
A1 × A2 be the set of risk classes (A1 for attritional claims risk classes and A2 for atypical
claims risk classes ). At each risk class α = (α1, α2) ∈ A corresponds policies having the
same attributes with respect to explanatory variables considered. We consider a collective
model for the annual amount of a policy of class α. That is to say, we assume a compound
distribution for the annual aggregate claim of a policy by

Xα =
2∑
i=1

M
(i)
αi∑

k=1

Y
(i)
αi,k

(1)

where M
(i)
αi and (Y

(i)
αi,k

)k are respectively the random claim numbers by policy and the claim
amounts for attritional claim when i = 1 and atypical claim when i = 2. We assume that
(Y

(i)
αi,k

)k are independent and identically distributed variables and independent of M
(i)
αi for

i = {1, 2}. We also suppose finite first two moments for all aforementioned random variables.
Consequently from e.g. Klugman et al. [2008], it is well known that the first two moments
are

E(Xα) =
2∑
i=1

E(M (i)
αi

)E(Y
(i)
αi,1

) (2)

and

Var(Xα) =
2∑
i=1

E(M (i)
αi

)Var(Y
(i)
αi,1

) + Var(M (i)
αi

)(E(Y
(i)
αi,1

))2. (3)
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Recently, a large series of actuarial papers studied the use of composite distributions for
loss modeling. A composite or a spliced distribution is a probability distribution such that
the density is different below and above the threshold µ. Cooray and Ananda [2005], Scollnik
[2007] consider a lognormal - Pareto composite models, whereas Teodorescu and Panaitescu
[2009], Scollnik and Sun [2012] and Nadarajah and Bakar [2014] consider Weibull - Pareto
composite models. More recently, Bakar et al. [2015] focus on Weibull - transformed beta
models and Reynkens et al. [2016] propose a mixed Erlang - Pareto composite model.

A first goal of this paper is to compute different premium principles which includes a
safety loading ρ > 0. We investigate two premium principles based on the insurer practice:
the expected value principle

π1
α,ρ = E(Xα)(1 + ρ) (4)

and the standard deviation principle

π2
α,ρ = E(Xα) + ρ

√
Var(Xα). (5)

These are two well-known principles, see Teugels and Sundt [2004] for details. It is worth
mentioning that the so-called pure premium is obtained for π1

α,0 = π2
α,0 = E(Xα). The

computations of π1
α,ρ and π2

α,ρ requires a proper computation of the first moment and the
first two moments of Xα respectively and the choice of the safety loading. The model is
presented in Section 2 and the two premium principles are computed for a real dataset in
Section 3.1.

Expert judgements and intensive use of actuaries make them set the safety loading ρ to
an arbitrary value. A second goal of this paper consists in providing a solvency criterion to
find the appropriate value of ρ. Here, the value of safety loading is set so that the premium
caps a high-level quantile of the aggregate claim distribution over a reference portfolio. This
quantile is determined by a simulation approach in Section 3.2.

2 Framework

We consider the annual aggregate claim of a policy

Xα =
2∑
i=1

M
(i)
αi∑

k=1

Y
(i)
αi,`

(6)

where M
(i)
αi and (Y

(i)
αi,k

)k are respectively the random claim numbers by policy and the claim
amounts for attritional claim when i = 1 and atypical claim when i = 2. Here α = (α1, α2) ∈
A ⊂ A1×A2 where A1 and A2 are fixed sets of risk classes for attritional and atypical claims
respectively. In the following, it is assumed that,

• For any fixed i ∈ {1, 2}, the random variables (M
(i)
αi , αi ∈ Ai) are independent;

• For any fixed i ∈ {1, 2}, for all αi ∈ Ai, the sequence (Y
(i)
αi,k

, k = 1, . . . ,M
(i)
αi ) are

independent and identically distributed variables conditionally to M
(i)
αi ;
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• In order to get a fair approximation of the aggregate claim amount S =
∑
α∈AXα,

we also assume independence between attritional numbers and amounts claims and
atypical number and amounts claims. Moreover, the independence between claim
amounts of two different classes Xα, Xα′ for α,α′ ∈ A is also supposed.

2.1 Claim frequency modeling

Let us first explain our modeling of the claim frequency for attritional claims (when i = 1)
and atypical claims (when i = 2).

In our model, we assume that the number of claims follows an homogeneous Poisson
process with intensity λαi . Since the annual aggregate claim is considered,

E(M (i)
αi

) = Var(M (i)
αi

) = λ(i)αi . (7)

Generally, some policies are not observed during the whole year, i.e. the insured period
is a sub-period of the year. Consequently, for any i ∈ {1, 2}, the random variable M

(i)
αi is not

observed, nor all the Y
(i)
αi,`

.

For the estimation of λ
(i)
αi , the insurance company can rely on n

(i)
αi policies for the risk class

αi. We index this policies by j = 1, . . . , n
(i)
αi . We denote N

(i)
αi,1

, . . . , N
(i)

αi,n
(i)
αi

the corresponding

number of claims observed on the subperiods d
(i)
αi,1

, . . . , d
(i)

αi,n
(i)
αi

respectively.

The Poisson process structure gives a natural estimation of λαi (see e.g. Klugman et al.
[2008]) with

λ̂(i)αi =

∑n
(i)
αi
j=1N

(i)
αi,j∑n

(i)
αi
j=1 d

(i)
αi,j

. (8)

Consequently, this estimation gives the necessary estimations Ê(M
(i)
αi ) =

̂
Var(M

(i)
αi ) = λ̂

(i)
αi

in Equations (2) and (3) for the computation of premium principles (4) and (5).

2.2 Claim severity modeling

Now we turn our attention to the claim severity. The methodology proposed in this
paper use the Generalized Linear models, introduced by Nelder and Wedderburn [1972] and
popularized in McCullagh and Nelder [1989].The GLMs relax the assumption of identical
distributions for random variables by considering explanatory variables and suppose the
distributions belonging to the exponential family. Consistency and asymptotic normality of
sequences of maximum likelihood estimators (MLE) for GLMs were be studied by Fahrmeir
and Kaufmann [1985].

2.2.1 Attritional claims

As it has been mentioned in the introduction, a classical GLM such as gamma or inverse-
Gaussian is fitted on attritional claim amounts below µ, see e.g. Ohlsson and Johansson
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[2010] for a recent book. In our application, we fit on atypical claims for a given risk class
α1 ∈ A1, the gamma probability density function

gα1(x) =
γνα1

Γ(ν)
xν−1 exp(−γα1x)1x≥0 (9)

where γα1 > 0 the rate parameter and ν > 0 the shape parameter. In a GLM setting, the
rate parameter γα1 is a function of explanatory variables as follows

γα1 = γα1(ϑ1) = exp(ϑ1,α1), (10)

where ϑ1 = (ϑ1,1, . . . , ϑ1,p1) ∈ Rp1 and p1 = #(A1) is the number of risk classes for atypical
claims.

In this model, the expectation and the variance of Y
(1)
α1,1

are given by

Eϑ1

(
Y

(1)
α1,1

)
=

ν

γα1(ϑ1)
(11)

and
Varϑ1

(
Y

(1)
α1,1

)
=

ν

γ2α1
(ϑ1)

. (12)

In order to compute the two premium principles defined in (4) and (5), the estimation of

the parameter ϑ1 is done with the maximum likelihood estimator ϑ̂1 (MLE). Consistency and
asymptotical normality of the MLE are given by classical theorems Fahrmeir and Kaufmann
[1985] and closed-form estimators for categorical variables are given in Brouste et al. [2018].
In order to compute two aforementioned principles, we estimate the first two moments by
the plug-in estimators

̂
Eϑ1

(
Y

(1)
α1,1

)
= Eϑ̂1

(
Y

(1)
α1,1

)
and

̂
Varϑ1

(
Y

(1)
α1,1

)
= Varϑ̂1

(
Y

(1)
α1,1

)
. (13)

The parameter ν is calibrated by maximizing the likelihood of the estimated model (or
in a equivalent way by minimizing the Akaike Information Criterion (AIC).

2.2.2 Atypical claims

In the assurance loss modeling context, sever claims or the exceedances over a large
threshold are usually modeled by heavy-tail distributions, typically Generalized Pareto Dis-
tribution, see for example, Embrechts P. [1997], Chavez-Demoulin et al. [2015], Hambuckers
et al. [2016]. The two last ones propose semi-parametric regression models where the ex-
planatory variables are time or known factor levels. Davison and Smith [1990] studied a least
square estimation procedure and model checking method for the GPD regression model. Re-
gression model for generalized extreme value distributions have been broadly analyzed in
Beirlant et al. [2004]. Recently, in the case of categorical explanatory variables, heavy-tailed
distributions regression model have been studied in Brouste et al. [2018], and explicit solution
of the Maximum Likelihood Estimator have been given. Rigby and Stasinopoulos [2005] are
focused on general regression framework where all parameters are modeled by explanatory
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variables and distribution is outside the exponential family. The authors impose then the
twice differentiability of the probability density function with respect to the parameters.

In this paper we propose a regression model for GPD, with a Iterative Weighted Least
Square (IWLS) procedure to estimate parameters of the GPD. It is not a classical GLM
since the probability density function is not of exponential type.

More precisely, we fit the following probability density function on atypical claims for a
given risk class α2 ∈ A2.

fα2(x) = βα2 (1 + βα2ξ(x− µ))−
1
ξ
−1
1{x≥µ}, (14)

where µ ∈ R is the known threshold (or location parameter), βα2 > 0 is the scale parameter
and ξ > 0 is the shape parameter. In our model, the scale parameter βα2 is a function of
explanatory variables as follows

βα2 = βα2(ϑ2) = `(ϑ2,α2), (15)

where p2 = #(A2) is the number of risk classes for atypical claims and ϑ2 = (ϑ2,1, . . . , ϑ2,p2) ∈
Rp2 is the unknown vector parameter and ` a well-chosen injective link function, such that
`(η) > 0 for all η. Typically we choose ` = exp. The expectation and the variance of Y

(2)
α2,1

are given by

Eϑ2

(
Y

(2)
α2,1

)
= µ+

1

βα2(ϑ2)(1− ξ)
for ξ < 1 (16)

and

Varϑ2

(
Y

(2)
α2,1

)
=

1

βα2(ϑ2)2(1− ξ)2(1− 2ξ)
for ξ < 1/2. (17)

The parameter ξ is calibrated by maximizing the likelihood of the estimated model (or
in a equivalent way by minimizing the Akaike Information Criterion (AIC).

In order to compute the different premium principles, the estimation of the parameter
ϑ2 is done with the maximum likelihood estimator ϑ̂2 (MLE). The proof of the consistency
and asymptotical normality of the MLE and the presentation of the IWLS algorithm used
to compute the MLE are presented in Appendix A. In order to compute two aforementioned
principles, we estimate the first two moments by the plug-in estimators

̂
Eϑ2

(
Y

(2)
α2,1

)
= Eϑ̂2

(
Y

(2)
α2,1

)
and

̂
Varϑ2

(
Y

(2)
α2,1

)
= Varϑ̂2

(
Y

(2)
α2,1

)
. (18)

Nevertheless, the parameter ξ can be bigger than 1/2 (resp. 1) and the variance (resp. the
mean) can be infinite. Consequently, the different premium principles won’t be computable.

For this reason, we consider the upper-truncated random variables Y
(2),G
α2,k

= min(Y
(2)
α2,k

, G) for
a well chosen limit G corresponding the maximal guarantee of the contract. The expressions

of the first two raw moments Eϑ2(Y
(2),G
α2,1

) and Eϑ2

((
Y

(2),G
α2,1

)2)
are given in Appendix B.

3 Numerical illustration to the fire warranty

In this paper, the developed method is illustrated with real insurance dataset. We con-
sider a corporate portfolio on which data are observed between 2000 and 2015 from fire
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warranty. The ultimate loss is adjusted to obtain a consistent view of expenses, because of
the important historical observation period. The threshold between attritional and atypical
claims is fixed to 150k EUR. To guarantee anonymization, the numerical values presented
in the article have been modified and risk classes definitions are hidden.

The dataset consists of 1 414 688 assurance policies including 1006 large atypical claims.
For simplicity, the sets of risk classes for attritional and atypical claims are similar. Namely,
the set A1 = A2 is composed of p1 = p2 = 11 risk class and risk class are of the form
α = (α1, α2) with α1 = α2. In other words A ≡ A1 and p = 11.

3.1 Computation of premium principles

In order to estimate the premium principles π1
α,ρ and π2

α,ρ defined in Equations (4) and (5),

the two first moments of Y i
αi,1

(or Y
(2),G
α2,1

in the infinite expectation or variance setting for

atypical claims) and M
(i)
αi should be estimated for the attritional claims (when i = 1) and

the atypical claims (when i = 2).

Firstly, the first two moments of M
(i)
αi are estimated with (8). Secondly, we consider the

claim amount defined by the models described in Sections 2.2.1 and 2.2.2 for attritional claims
(GLM with gamma distribution) and atypical claims (GPD regression model) respectively.
Hence estimators are given by

Ê(Y
(i)
αi,1

) = Eϑ̂(Y
(i)
αi,1

)

and
̂

Var(Y
(i)
αi,1

) = Varϑ̂(Y
(i)
αi,1

)

where ϑ̂1 is the closed-form MLE for the GLM with gamma distribution defined in Brouste
et al. [2018] and ϑ̂2 is the MLE computed by the IWLS algorithm for the GPD regression
model described on Appendix A. Finally estimation of the premium principles π1

α,θ and π2
α,ρ

are given by

π̂1
α,ρ = (1 + ρ)

2∑
i=1

Ê(M
(i)
αi )Ê(Y

(i)
αi,1

)

and

π̂2
α,ρ =

2∑
i=1

Ê(M
(i)
αi )Ê(Y

(i)
αi,1

) + ρ

(
2∑
i=1

Ê(M
(i)
αi )

̂
Var(Y

(i)
αi,1

) +
̂

Var(M
(i)
αi )(Ê(Y

(i)
αi,1

))2

)1/2

.

The non-parametric and parametric estimates of π1
α,0, π

1
α,1 and π2

α,0.03 are reported in
Table 1. In the case of the GPD regression, the shape parameter ξ is calibrated by AIC
and equals ξ = 0.6. Consequently, the finite variance random variables Y

(2),G
α2,k

has been used
with maximal guarantee G = 25.106. We also present the respective contributions of the
attritional claims and the atypical claims in the pure premium in Table 2.
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α π̂1
α,0 π̂1

α,1 π̂2
α,0.03

1 3704 7408 7343
2 5751 11503 9246
3 1285 2570 3152
4 1792 3584 4346
5 6568 13136 12199
6 6413 12827 12227
7 2265 4529 5206
8 4756 9512 8834
9 4143 8287 7553

10 24631 49263 33174
11 935 1870 2456

Table 1: Estimation of the two premium principles (expected value and standard deviation)
with fixed safety loading ρ in the GLM + GPD approach.

α π̂1
α,0 Attritional (%) Atypical (%)

1 3704 16 84
2 5751 15 85
3 1285 17 83
4 1792 14 86
5 6568 9 91
6 6413 5 95
7 2265 12 88
8 4756 12 88
9 4143 17 83

10 24631 15 85
11 935 23 77

α π̂1
α,0 π̂1

α,ρ′ π̂2
α,ρ∗

1 3704 7860 9548
2 5751 12205 11363
3 1285 2727 4283
4 1792 3803 5893
5 6568 13938 15610
6 6413 13610 15749
7 2265 4806 6988
8 4756 10093 11305
9 4143 8793 9619

10 24631 52269 38350
11 935 1984 3377

Table 2: Respective contributions of the attritional and atypical claims in the pure premium
for the different risk class in the GLM-GPD model (on the left). Estimation of the different
premium principles; for the expectation principle with a global safety loading calibrated to
ρ′ = 1.122 and for the standard deviation principle with a global safety loading calibrated
to ρ∗ = 0.048.
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3.2 Calibration of the tuning parameter

In the section, we focus on the calibration of the safety loading ρ in the expected value
principle (4) and the standard deviation principle (5). For simplicity, we recall that the sets
of risk classes for attritional and atypical claims are similar. Namely, the set A1 = A2 is
composed of p1 = p2 = 11 risk class and risk class are of the form α = (α1, α2) with α1 = α2.
In other words A ≡ A1 and p = 11.

The mean claim amount over the insurer portfolio on a reference year is used to tune the
safety margin ρ in the following way

P

(∑
α∈A

1

noα

noα∑
j=1

Xα,j <
∑
α∈A

π̂rα,ρ

)
≥ 1− ε, r = 1 or 2, (19)

where 1 − ε is a high probability such as 99% or 99.5%, noα is the number of policies in
class α = (α1, α1) on a reference year and the random variables Xα,j, k = 1, . . . , noα are
independent and identically distributed similarly to Xα. The safety loading is calibrated so
as to satisfy Equation (19). Quantiles of the distribution are evaluated with 5000 Monte
Carlo siimulations.

For 1− ε = 99.5%, the value of ρ is calibrated to 1.0372 for the expected value principle
and 0.0445 for the standard deviation principle, The values of these premium principles for
calibrated safety loading are reported in Table 2 for each class of risk α.

An other possibility is to consider individual safety loading ρα for each α ∈ A, i.e. the
values ρα are respectively solution of equation

P

(
1

noα

noα∑
j=1

Xα,j < π̂rα,ρα

)
≥ 1− ε, α ∈ A, r = 1 or 2.

The quantiles are evaluated with a Monte Carlo procedure. For 1−ε = 99.5%, the values
of ρα and the corresponding premium are reported in Table 3.

α π̂1
α,0 π̂1

α,ρα ρα π̂2
α,ρα ρα

1 3704 7391 0.996 7391 0.030
2 5751 36836 5.405 36836 0.267
3 1285 9822 6.643 9822 0.137
4 1792 3965 1.212 3965 0.026
5 6568 21195 2.227 21195 0.078
6 6413 22372 2.488 22372 0.082
7 2265 10826 3.780 10826 0.087
8 4756 16005 2.365 16005 0.083
9 4143 9983 1.409 9983 0.051

10 24631 73232 1.973 73232 0.171
11 935 2109 1.256 2109 0.023

Table 3: Estimation of the premia for the expectation principle and for the standard deviation
principle with individual safety loadings ρα.
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4 Conclusions

In this paper, a parametric framework has been proposed to model both attritional and
atypical claims. The attritional claims are modeled with a classical Generalized Linear
Model (GLM) whereas the atypical claims are modeled with a non-standard Generalized
Pareto regression. It is worth mentioning that the Generalized Pareto distribution (GPD)
is not of exponential type and does not enter in the GLM theory.

Closed-form maximum likelihood estimators can be elicited for the GLM with categorical
explanatory variables (see Brouste et al. [2018] for instance) in order to calibrate the model
for attritional claims. We have proposed an Iterated Weighed Least Square procedure to
compute the maximum likelihood estimators to calibrate the GPD regression model.

Two premium principles (expected value principle and standard deviation principle) are
computed on a real data set of fire warranty on a corporate line-of-business. In our method-
ology, the tuning of the safety loading in the two premium principles is performed to meet
a solvency constraint so that the gross written premium caps a high-level quantile of the
aggregate claim distribution over a reference portfolio.

We can notice that the GPD could exhibit infinite expectation or infinite variance and no
standard deviation premium principle can be computed. Consequently, a maximal guarantee
has been introduced to compute the first two moments. Such maximal guarantee depending
on the risk class could be studied in a further work.

Acknowledgments: This work is supported by the research project PANORisk of the
Région Pays de la Loire.
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A IWLS algorithm for Generalized Pareto regression

model

Let (X1, . . . , Xn) be a sample of independent random variables with Generalized Pareto
distribution of known threshold µ ∈ R (location parameter), shape parameter ξ > 0 and
respective positive scale parameter β1, . . . , βn. More precisely, we fit the i-th atypical claim
with the following probability density function

fi(x) = βi (1 + βiξ(x− µ))−
1
ξ
−1 , x ∈ [µ,∞). (20)

In the following, the link function is denoted ` such that

βi = βi(ϑ) = `(ηi), ηi = 〈yi,ϑ〉 (21)

where ϑ ∈ Rp is the unknown regression parameter and yi ∈ Rp is the vector of covariates,
i = 1, . . . , n. For ξ > 0 the log-likelihood with respect to ϑ is

logL(x,ϑ) = log βi(ϑ)−
(

1

ξ
+ 1

)
log(1 + βi(ϑ)ξ(x− µ)), x ∈ [µ,∞),

and −∞ elsewhere. Let Zi = ξ(Xi − µ). The log-likelihood L is rewritten as

logL(z,ϑ) = γ(βi(ϑ)z)− ϕ(βi(ϑ)) + log h(z), z ∈ [0,+∞)

and −∞ elsewhere, with ϕ(β) = − log(β), γ(z) = −
(

1
ξ

+ 1
)

log(1 + z) and h(z) = 1
ξ
.

Typically, for ξ > 0, the GPD distribution does not belong to the exponential family for
which γ ≡ id. Note that we don’t have the classical GLM representation

g(Eϑ(Zi)) = ηi, with g = `−1 ◦ (ϕ′)−1,

because ϕ′(`(ηi)) fails to be Eϑ(Zi).
With the previous notations, the log likelihood applied on z = (z1, . . . , zn) is

logL(z,ϑ) =
n∑
i=1

(γ(`(ηi)zi)− ϕ(`(ηi))) (22)

Hence the score vector is written as S(ϑ) = (Sj(ϑ))j=1,...,p with

Sj(ϑ) =
∂

∂ϑj
logL(z,ϑ) (23)

=
n∑
i=1

y
(j)
i `′(ηi) (ziγ

′ (`(ηi)zi)− ϕ′ (`(ηi))) ,

and the Hessian matrix is H(ϑ) = (H(ϑ))j,k=1,...,p, with

Hj,k(ϑ) =
∂2

∂ϑj∂ϑk
logL(z,ϑ)

=
n∑
i=1

y
(j)
i y

(k)
i `′(ηi)

2
(
z2i γ

′′(`(ηi)zi)− ϕ′′(`(ηi))
)

+
n∑
i=1

y
(j)
i y

(k)
i `′′(ηi) (ziγ

′ (`(ηi)zi)− ϕ′ (`(ηi))) .
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The Information matrix is given by Iξ(ϑ) = (Ij,k(ϑ))j,k∈{1,...,p}, with

Iξj,k(ϑ) = −EHj,k(ϑ) =
1

1 + 2ξ

n∑
i=1

y
(j)
i y

(k)
i

`′(ηi)
2

`(ηi)2
. (24)

In the case of canonical link function ` = id, we have

Iξj,k(ϑ) = −Hj,k(ϑ) =
1

1 + 2ξ

n∑
i=1

y
(j)
i y

(k)
i

1

〈yi,ϑ〉2
.

As soon as the first and second derivatives of ` are bounded and the second derivative
is uniformly continuous and it asymptotically exists a consistent MLE estimator ϑ̂ of ϑ
for ξ = 0, Fahrmeir and Kaufmann [1985, Theorem 4 and 5] imply than for ξ > 0 there
asymptotically also is a consistent MLE estimator ϑ̂ of ϑ. Indeed Iξ(ϑ) = 1

1+2ξ
I0(ϑ), where

I0 is the Information matrix for the classical exponential distribution.
Generalized linear models are generally fitted using a Newton-type method, which reduces

to an iteratively reweighted least square (IWLS) algorithm. We detail the derivation of this
algorithm for the Generalized Pareto regression.

When minimizing the log-likelihood function logL(z,ϑ) with respect to ϑ, the exact
Newton method consists in computing the following iteration scheme (until convergence)

ϑ(r) = ϑ(r−1) −
(
H(ϑ(r−1))

)−1
S(ϑ(r−1)), (25)

where H and S denote the previous Hessian and score functions.
In Fisher-Scoring, since the score is centered, we do not use the exact random Hes-

sian matrix but its expectation Eϑ(H(ϑ)). The expected Hessian can be rewritten as
−Eϑ(H(θ)) = Y TW (ϑ)Y, with

Y =

y
(1)
1 . . . y

(p)
1

...

y
(1)
n . . . y

(p)
n

 ,W =


(`′(η1))2

`2(η1)(1+2ξ)
0 . . .

. . .

. . . 0 (`′(ηn))2

`2(ηn)(1+2ξ)

 .

Let wij be the general term of W . Rewriting S as

Sj(ϑ) =
n∑
i=1

y
(j)
i wii

`2(ηi)(1 + 2ξ)

`′(ηi)

[
ziγ
′(zi`(ηi)) +

1

`(ηi)

]
,

The score can also be rewritten matricially as S(ϑ) = Y TW (ϑ)Ṽ (ϑ) with

Ṽ =


`2(η1)(1+2ξ)

`′(η1)

[
z1γ
′(z1`(η1)) + 1

`(η1)

]
...

`2(ηn)(1+2ξ)
`′(ηn)

[
znγ

′(zn`(ηn)) + 1
`(ηn)

]
 .
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The Newton recurrence scheme (25) simplifies to

ϑ(r) = ϑ(r−1) +
(
I(ϑ(r−1))

)−1
S
(
ϑ(r−1))

= ϑ(r−1) +
(
Y TW

(
ϑ(r−1))Y )−1 Y TW

(
ϑ(r−1)) Ṽ (ϑ(r−1)) ,

This scheme can be reformulated as an IWLS algorithm

ϑ(r) =
(
Y TW

(
ϑ(r−1))Y )−1 Y TW

(
ϑ(r−1))V (ϑ(r−1)) ,

with V (ϑ) = Y ϑ+Ṽ (ϑ). W is called the working weight matrix and V the working response
vector. Thus the fitting algorithm is

1. Initialization: ϑ(0) = (1, 0, . . . , 0)

2. Iteration: for r = 1, . . . ,M do

(a) Compute linear predictors Y ϑ(r) = (η
(r)
i )i;

(b) Compute working responses V (r) = (vi)i

(c) Compute working weights W (r) = diag(w1, . . . , wn)

(d) Solve the system XTW (r)Xϑ(r+1) = XTW (r)V (r);

(e) For a fixed small ε > 0 and a distance d of Rp, verify convergence of the sequence
of estimators: d(ϑ(r+1),ϑ(r)) ≤ ε.

B Expression of the moment of min(Y
(2)
α2,1

, G)

Eϑ2(min(Y
(2)
α2,1

, G)) = Eϑ2(Y
(2)
α2,1

1(Y
(2)
α2,1
≤ G)) +GEϑ2(1(Y

(2)
α2,1
≥ G))

=

∫ G

µ

xfβα2 (ϑ2)(x)dx+G(1− Fβα2 (ϑ2)(G),

and

Eϑ2((min(Y
(2)
α2,1

, G))2) = Eϑ2((Y
(2)
α2,1

)21(Y
(2)
α2,1
≤ G)) +G2Eϑ2(1(Y

(2)
α2,1
≥ G)

=

∫ G

µ

x2fβα2 (ϑ2)(x)dx+G2(1− Fβα2 (ϑ2)(G)),

where fβ stands for the probability density function of the Generalized Pareto distribution
defined in (20) and Fβ his cumulative distribution function given by

Fβ(x) = 1− (1 + βξ(x− µ))−
1
ξ 1{x≥µ}. (26)

Direct computations lead to

Eϑ2(min(Y
(2)
α2,1

, G)) = Ghβα2 (ϑ2)(G) + µ−Hβα2 (ϑ2)(G) +
1

βα2(ϑ2)(1− ξ)
+G(1−Fβα2 (ϑ2)(G))
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and

Eϑ2((min(Y
(2)
α2,1

, G))2) = G2hβα2 (ϑ2)(G) + µ2 − 2GHβα2 (ϑ2)(G) + 2µ
1

βα2(ϑ2)(1− ξ)

+ 2Jβα2 (ϑ2)(G)− 2
1

βα2(ϑ2)2(1− ξ)(2ξ − 1)
+G2(1− Fβα2 (ϑ2)(G)).

where

hβ(x) = − (1 + βξ(x− µ))−
1
ξ and Hβ(x) =

1

β(1− ξ)
(1 + βξ(x− µ))

ξ−1
ξ ,

and

Jβ(x) =
1

β2(1− ξ)(2ξ − 1)
(1 + βξ(x− µ))

2ξ−1
ξ .
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