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A BOUNDARY-PARTITION-BASED VORONOI DIAGRAM OF
D-DIMENSIONAL BALLS: DEFINITION, PROPERTIES AND

APPLICATIONS∗

XIANGLONG DUAN† , CHAOYU QUAN‡ , AND BENJAMIN STAMM§

Abstract. In computational geometry, different ways of space partitioning have been developed,
including the Voronoi diagram of points and the power diagram of balls. In this article, a generalized
Voronoi partition of overlapping d-dimensional balls, called the boundary-partition-based diagram,
is proposed. The definition, properties and applications of this diagram are presented. Compared to
the power diagram, this boundary-partition-based diagram is straightforward in the computation of
the volume of overlapping balls, which avoids the possibly complicated construction of power cells.
Furthermore, it can be applied to characterize singularities on molecular surfaces and to compute
the medial axis that can potentially be used to classify molecular structures.

Key words. Voronoi diagram, power diagram, partition of d-dimensional balls
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1. Introduction. The Voronoi diagram [14, 16, 24] is a partition of a Euclidean
plane into regions, based on the distance to points in a specific subset of the plane. In
any dimension d, given a finite set of points {p1,p2, . . . ,pN} in Ed (the d-dimensional
Euclidean space), the corresponding Voronoi cell RV (pi) consists of every point whose
distance to pi is not greater than its distance to any other point pj . That is to say,
the Voronoi region is given by

(1.1) RV(pi) =
{
x ∈ Ed | |x− pi| ≤ |x− pj | , j = 1, . . . , N

}
,

where the notation | · | denotes the Euclidean norm. Each Voronoi cell is generated
by the intersection of half-spaces, and hence, is a convex polygon. See Figure 1 (left)
for a graphical illustration.

The power diagram [20, 4], also called the Laguerre–Voronoi diagram, provides
another partition of the plane into polygonal cells with respect to a finite set of circles.
For a finite set of spheres {S1, S2, . . . , SN} in Ed with d ≥ 2 (circles in E2), the power
region RP(Si) consists of all points whose power distances to Si are not larger than
their power distances to any other sphere Sj . The power distance from a point x ∈ Ed
to a sphere Si with center ci and radius ri is defined as

(1.2) distP(x, Si) := |x− ci|2 − r2
i .

The power region RP(Si) is then given by

(1.3) RP(Si) =
{
x ∈ Ed | distP(x, Si) ≤ distP(x, Sj), j = 1, . . . , N

}
.

It is worth to mention that the spheres could be overlapping and the power distance
can be negative. The power diagram can be seen as a generalized Voronoi diagram,
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Fig. 1. Left: classical Voronoi diagram of three points; middle: power diagram of three circles;
right: boundary-partition-based diagram of the same three circles.

in the sense that the Euclidean norm in Eq. (1.1) is replaced with the power distance
distP(·, ·). If ri = 0 for each i, the power diagram degenerates to be the classical
Voronoi diagram. Figure 1 (middle) shows an example of the power diagram for three
discs. The volume of the union of d-balls can be computed by summing up the volume
of each power cell, see [5, 11] for details. However, computing the power cells could
be tricky which involves characterizing the planar bases of pyramids [11].

In the general case, given a Euclidean subspace X ⊂ Ed endowed with a distance
function and a finite number of nonempty subsets {A1, A2, . . . , AN} in X, the corre-
sponding Voronoi region RV(Ai) is the set of each point in X whose distance to Ai is
not greater than their distance to any other set Aj . That is to say, the Voronoi region
RV(Ai) is given by

(1.4) RV(Ai) = {x ∈ X | dist(x, Ai) ≤ dist(x, Aj), j = 1, . . . , N} ,

where the distance function between a point x and a set A defined as

(1.5) dist(x, A) := inf
y∈A

|x− y|.

Most commonly, each subset Ai is taken as a point and its corresponding Voronoi
region RV(Ai) is consequently a polyhedron in Ed. In particular, the Voronoi diagram
in E3 can be computed and visualized by some softwares such as the Voro++ [31] and
the CGAL [1]. In addition to the power diagram, there are some other generalized
Voronoi diagrams, such as the Möbius diagram [7], the anisotropic diagrams [9], the
Apollonius diagram [17, 8], and the centroidal Voronoi tessellations [15].

In this article, we propose a special Voronoi diagram of d-balls, called the boundary-
partition-based (BPB) diagram, which is based on the boundary partition of the union
of d-balls. The initial idea of this diagram started from the characterization of molecu-
lar surfaces in E3, see [26]. Figure 1 (right) provides a simple example of this diagram
of three discs in the plane, whose boundary is divided into three open circular arcs
{γ1, γ2, γ3} and three intersection points {x1,x2,x3}. We take {γ1, γ2, γ3,x1,x2,x3}
as the sets {Ai} in Eq. (1.4) for the generic Voronoi diagram, to obtain six BPB cells.
This gives a partition of the union of discs, consisting of circular sectors and polygons.
To compute the area of these discs, one can sum up simply the areas of three circular
sectors (respectively in red, yellow and blue) and one big polygon (in grey). Note
that the area of a polygon is easy to compute using the Gauss–Green theorem, as its



BOUNDARY-PARTITION-BASED DIAGRAM OF D-BALLS 3

boundary is composed of line segments. Comparing to the power diagram, the BPB
diagram is convenient for volume (area) computation, which will be presented later.
In addition, it can be used to characterize the singularities of molecular surfaces.

The outline of this paper is as follows. In Section 2, we divide the boundary into
patches of different dimensions and study the properties of the BPB cells in Ed, by
analyzing the signed distance from any point to the boundary of a union of d-balls.
Then, in Section 3, we present the volume formula of a union of d-balls based on the
boundary components. In Section 4, we introduce the application of the BPB diagram
to characterize molecular surfaces. Finally, we draw some conclusions in Section 5.

2. Boundary-partition-based Voronoi diagram. We consider a finite set of
(d − 1)-dimensional spheres {S1, S2, . . . , SN} in Ed, where the (d − 1)-sphere Si has
center ci ∈ Ed and radius ri for each 1 ≤ i ≤ N . The corresponding d-balls are
consequently denoted by {B1, B2, . . . , BN} where Bi = B(ci, ri). In this article, the
notation B(c, r) denotes the open ball with center c and radius r. The union of these
d-balls is denoted by Ω, that is,

(2.1) Ω :=

N⋃
i=1

Bi

and the boundary of this union is denoted by Γ := ∂Ω. The open exterior region
outside Ω is denoted by Ω

c
:= Ed\ (Ω ∪ Γ).

As the boundary Γ is a closed and compact set, for any point p ∈ Ed, there exists
at least one closest point on Γ to p. The signed distance function fΓ with respect to
Γ is then given as follows

(2.2) fΓ(p) :=

{
−dist(p,Γ) if p ∈ Ω,

dist(p,Γ) if p ∈ Ωc.

As a consequence, the sets Ω, Γ and Ω
c
can be mathematically written as Ω =

{p | fΓ(p) < 0}, Γ = {p | fΓ(p) = 0} and Ω
c

= {p | fΓ(p) > 0}.
Remark 2.1. Another way to characterize Ω, Γ and Ω

c
is to use the signed dis-

tance function fi(p) to each sphere Si, where fi(p) = |p − ci| − ri, ∀p ∈ Ed and
1 ≤ i ≤ N . By defining the following function

(2.3) F (p) := min
1≤i≤N

{fi(x)},

we have Ω = {p | F (p) < 0}, Γ = {p | F (p) = 0} and Ω
c

= {p | F (p) > 0}.

2.1. Boundary partition. As mentioned previously, the boundary Γ is com-
posed of spherical patches of different dimensions from 0 to d− 1. We will provide a
rigorous characterization in this subsection.

To do this, we define an index mapping I as follows

(2.4) x ∈ Γ 7→ I(x) := {i1, i2, . . . , im | x ∈ Sit , t = 1, . . . ,m} ⊆ {1, 2, . . . , N},

where I(x) collects all indices of the spheres containing x and m is the number of
these spheres. Then, we define the intersection set of these spheres as follows

(2.5) Si :=

m⋂
t=1

Sit ,
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Fig. 2. 2D schematic diagram of the index set i = I(x) at the boundary of three discs.

where the subscript i = I(x) = {i1, i2, . . . , im} depends on x, see an example in Figure
2. Further, the affine space generated by the associated centers

(2.6) ci := {ci1 , ci2 , . . . , cim}

is denoted by

(2.7) Λi := {y | y =

m∑
t=1

λtcit ,

m∑
t=1

λt = 1, λt ∈ E}.

With the above notations, we propose the following lemma:

Lemma 2.2. In the case when Si is non-empty and dim(Λi) ≤ d− 1, Si is either
a k-dimensional sphere (k-sphere) with

(2.8) k = dim(Si) = d− dim(Λi)− 1,

or a point (in the tangent case), where dim(·) denotes the dimension. Note that the 0-
dimensional sphere is a pair of points. Furthermore, in the case when Si is non-empty
and dim(Λi) = d, Si is a point.

Proof. Let us take an arbitrary point x0 ∈ Si. We rewrite Si in the following
form

(2.9)
Si = {x | |x− cit |2 − |x0 − cit |2 = 0, 1 ≤ t ≤ m}

= Si1 ∩ Pi,

where

(2.10)
Pi = {x | |x− cit |2 − |x0 − cit |2 = |x− ci1 |2 − |x0 − ci1 |2, 2 ≤ t ≤ m}

= {x | (x− x0, cit − ci1) = 0, 2 ≤ t ≤ m}.

Here, Pi is the intersection of m− 1 hyperplanes that contain x0. It is an affine space
with dim(Pi) = d− dim(Λi) and satisfies Pi − x0 ⊥ Λi − ci1 .

In the case of dim(Λi) ≤ d − 1, we then have dim (Pi) ≥ 1. Note that Si is the
intersection of the sphere Si1 and the affine space Pi. If Si is non-empty, then it is
either a sphere with dim(Si) = d − dim(Λi) − 1, or a single point in the degenerate
case when Pi is tangent to Si. We mention that in this degenerate case, Si is a point
contained in Λi with dim(Λi) ≤ d − 1. Furthermore, in the case of dim(Λi) = d, we
have dim(Pi) = 0 and Pi is consequently the point x0. If Si is nonempty, then Si is
just the point x0.
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For a given set of indices i ⊆ {1, 2, . . . , N}, if dim(Si) ≥ 1, we can define the
following set

(2.11) Γi := {x ∈ Γ | I(x) = i} ⊆ Si ∩ Γ,

which is open in Si. In this case, we can further divide Γi as follows

(2.12) Γi =
⋃
j

γ
(k)
i,j ,

where γ(k)
i,j ⊆ Γi is an open connected k-patch and k = dim(Si) = dim(γ

(k)
i,j ) denotes

the dimension. This means that Γi has been divided into different k-patches. For
the sake of simplicity, we can reorder all patches {γ(k)

i,j } based on the dimension k, by
replacing the subscripts (i, j) with only one subscript i. As a consequence, the whole
boundary Γ is classified into a set of patches {γ(k)

i } with 0 ≤ k ≤ d− 1, 1 ≤ i ≤ nk,
that is,

(2.13) Γ =

d−1⋃
k=0

nk⋃
i=1

γ
(k)
i ,

where nk is the number of k-patches and γ
(k)
i is an open connected k-patch when

k ≥ 1. In particular, γ(0)
i is simply an intersection point and γ(1)

i is a circular arc or
a circle. From the derivation of γ(k)

i , we know that I(x) remains the same for any
point x ∈ γ(k)

i . Therefore, we can generalize the definition of I as follows

(2.14) I(γ
(k)
i ) := I(x),

where x ∈ γ(k)
i is an arbitrary point on γ(k)

i .
Next, we analyze the signed distance fΓ to the boundary Γ, which involves in

finding one closest point to any given point p (note that the uniqueness of the closest
point is not guaranteed).

2.2. Analysis of the signed distance function. We want to analyze the
signed distance fΓ from an arbitrary point to the boundary Γ of the union of d-balls.
We first consider the case when the point lies outside the union and give the following
lemma. The proof of this lemma is trivial and therefore skipped here.

Lemma 2.3. For any point p ∈ Ω
c
, fΓ(p) = dist(p,Γ) = F (p).

We now focus our attention to the case when p ∈ Ω. In fact, this case is studied
from another pespective, in the sense that for any point x on Γ, we study the set of
all points in Ω that have x as a closest point on Γ. We therefore define a mapping R
such that ∀x ∈ Γ,

(2.15) R(x) = {p ∈ Ω | dist(p,Γ) = |p− x|} ⊆ Ω,

which represents the region consisting of the points having x as a closest point. It
therefore holds for any x ∈ Γ and p ∈ R(x), fΓ(p) = −dist (p,Γ) = −|p−x|. Further,
the convexity of the set R(x) is ensured according to the following lemma.

Lemma 2.4. ∀x ∈ Γ, the set R(x) is convex. Further, it holds that conv(x, ci) ⊆
R(x), where i = I(x) = {i1, i2, . . . , im}. Here, the notation conv denotes the convex
hull of a set of points.
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Proof. We first need to prove that ∀p1,p2 ∈ R(x) and ∀λ ∈ [0, 1], p0 = λp1 +
(1− λ)p2 ∈ R(x). To do this, we construct a function as follows

(2.16) h(p) = dist(p,Γ)2 − |p− x|2 = inf
y∈Γ

{
2(x− y,p) + |y|2 − |x|2

}
, p ∈ Ed.

As a consequence, x is a closest point on Γ to p if and only if h(p) = 0. As an obvious
fact, we have h(p) ≤ 0, ∀p ∈ Ed. Since x is a closest point on Γ to p1 and to p2, we
have h(p1) = h(p2) = 0. Then, we can compute

(2.17)

h(p0) = inf
y∈Γ

{
2(x− y) ·

[
λp1 + (1− λ)p2

]
+ |y|2 − |x|2

}
≥ λ inf

y∈Γ

{
2(x− y) · p1 + |y|2 − |x|2

}
+(1− λ) inf

y∈Γ

{
2(x− y) · p2 + |y|2 − |x|2

}
= λh(p1) + (1− λ)h(p2)

= 0.

This means that x is also a closest point to p0. To prove that p0 ∈ R(x), we should
show further that p0 ∈ Ω. As x is a closest point to p1, we know that the ball centered
at p1 with radius |p1 − x| is covered by Ω, i.e.,

B(p1, |p1 − x|) ⊆ Ω.

Similarly, we have B(p2, |p2 − x|) ⊆ Ω. Notice that the line segment p1p2 is covered
by the union of these two balls (intersecting at x), which implies that p0 ∈ p1p2 ⊆ Ω.
Since p0 has x as a closest point and p0 ∈ Ω, we therefore have p0 ∈ R(x). So far,
we have proved that R(x) is convex.

Further, if there exists a set of spheres {Sit}t=1,...,m each containing x ∈ Γ, it is
obvious that x is a closest point of cit . In addition, we know that x ∈ Γ is a closest
point to itself. Due to the convexity of R(x), we then have conv(x, ci) ⊆ R(x).

Remark 2.5. It is well-known that the Voronoi cells of a finite number of points
are convex. In Lemma 2.4, we have actually proved that this convexity also holds for
an infinite number of points (forming the boundary surface).

Theorem 2.6. Given a point x ∈ Γ and i = I(x) = {i1, i2, . . . , im}, the following
statements hold:

(1) R(x) ⊆ cone(x;v1,v2, . . . ,vm), where vt := cit−x and cone(x;v1,v2, . . . ,vm)

= {y | y = x+

m∑
t=1

λtvt, λt ≥ 0} represents a convex cone (as in linear alge-

bra) with apex x.
(2) If there exists another point x′ ∈ Γ satisfying x′ 6= x and x′ ∈ Si, then
R(x) = conv(x, ci).

Proof. (1) According to Theorem 19.1 in the book [29], we can write

(2.18) cone(x;v1,v2, . . . ,vm) =

N0⋂
s=1

Hs,

where Hs := {y | (y,ns) ≤ bs} is a half-space in Ed, ns denotes its normal vector,
bs = (x,ns) is a real number, N0 denotes the number of half-spaces and (·, ·) denotes
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the Euclidean scalar product in Ed equivalent to the · notation. Each half-space Hs

corresponds to a hyperplane Ps defined by

Ps := {y | (y,ns) = bs}.

Without loss of generality, we suppose that |ns| = 1 for each half-space Hs. Fur-
thermore, each hyperplane Ps is supposed to contain at least one ray starting from x
in a direction among {v1,v2, . . . ,vm}. In fact, the half-space Hs can be removed in
Eq. (2.18) if Ps does not contains any such ray. To prove the first statement of the
theorem, it suffices to show that ∀p ∈ R(x) and ∀1 ≤ s ≤ N0, it follows that p ∈ Hs.

Let p ∈ R(x) and s be fixed. As mentioned above, Ps contains a ray starting from
x in direction vr, for some 1 ≤ r ≤ m. Then, we have (x + λvr,ns) = bs, ∀λ ≥ 0,
which implies that (vr,ns) = 0.

We now construct a small curve ζs(x) starting from x in the direction of ns lying
on Γ, of the form

(2.19) ζs(x) = x + xns + α(x)v, x ∈ [0, ε],

where α(x) ≥ 0 is a function with respect to x satisfying α(0) = 0, v is a nonzero
vector in Ed and ε is a sufficiently small positive number. In order to choose v, we
define the following nonempty set

As = {vt | (vt,ns) = 0, 1 ≤ t ≤ m} 3 vr.

As a consequence, the vector v and the function α(x) can be constructed as follows

(2.20) v = csvr,

and

(2.21) α(x) = 1−

√
1− x2

|v|2
∈ [0, 1], 0 ≤ x ≤ |v|,

where cs = max
vt∈As

(vt,vr)

|vr|2
=

(vt0 ,vr)

|vr|2
≥ 1 for some vt0 ∈ As. The above-constructed

v has the following two properties

(2.22) (v,v − vt0) = (v,v)− (v,vt0) =
(vt0 ,vr)

2

|vr|2
− (vt0 ,vr)

2

|vr|2
= 0

and

(2.23) (v,v − vt) =
(vt0 ,vr)

2

|vr|2
− (vt0 ,vr)(vt,vr)

|vr|2
≥ 0, ∀vt ∈ As.

With the above construction of ζs(x) and the properties of v, we can now state the
following claim.

Claim 2.7. ∃ ε > 0, s.t., ζs(x) ∈ Γ, ∀x ∈ [0, ε].

The proof of this claim is presented in Appendix A. Let us focus on the proof of
the first statement in Theorem 2.6. For any point p ∈ R(x), we know that x is a
closest point on Γ to p and ζs(x) ∈ Γ, ∀x ∈ [0, ε]. Therefore, we have

(2.24)
d

dx

(
|ζs(x)− p|2

)
|x=0 ≥ 0,
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which yields that (x− p, ζ ′s(0)) ≥ 0. It is not difficult to find that ζ ′s(0) = ns and we
then obtain (p,ns) ≤ (x,ns) = bs. This implies that p ∈ Hs for each subscript s.
The proof of the first statement in the theorem is complete.

(2) We now prove the second statement in Theorem 2.6. Suppose that there exists
another point x′ ∈ Γ such that x′ 6= x and x′ ∈ Sit , ∀1 ≤ t ≤ m. According to Lemma
2.4, we only need to prove that R(x) ⊆ conv(x, ci). For any point p ∈ R(x), since
R(x) ⊆ cone(x;v1,v2, . . . ,vm) from the first statement, there exist a set of positive
numbers λt ≥ 0, s.t.,

p = x +

m∑
t=1

λtvt.

Since x,x′ ∈ Sit for each 1 ≤ t ≤ m, we have

0 = |x− cit |2 − |x′ − cit |2 = −|x′ − x|2 + 2(x′ − x) · vt,

which yields that
2(x′ − x) · vt = |x− x′|2, 1 ≤ t ≤ m.

Furthermore, since x is a closest point on Γ to p, we have

|p− x|2 ≤ |p− x′|2 = |p− x|2 + 2(p− x) · (x− x′) + |x− x′|2,

and therefore,

|x− x′|2 ≥ 2(x′ − x) · (p− x)

= 2

m∑
t=1

λt(x
′ − x) · vt

=

(
m∑
t=1

λt

)
|x− x′|2.

Since x′ 6= x, we consequently have the inequality
m∑
t=1

λt ≤ 1,

which means that p ∈ conv(x, ci). Then, we have R(x) ⊆ conv(x, ci).

Corollary 2.8. For each boundary component γ(k)
i of Γ, if k ≥ 1, then ∀x ∈

γ
(k)
i , R(x) = conv(x, ci), where i = I(γ

(k)
i ) = {i1, i2, . . . , im}.

Proof. In the case of k ≥ 1, γ(k)
i contains infinitely many points, each of which is

contained and only contained by the set of spheres {Si1 , Si2 , . . . , Sim}. Therefore, the
second statement in Theorem 2.6 can be applied.

Remark 2.9. For an intersection point x = γ
(0)
i , R(x) = conv(x, ci) might not

hold.

2.3. Partition of the union of d-balls. In this part, we introduce the general
concept of the BPB diagram, which gives a partition of Ed. According to Lemma 2.3,
the partition of Ω

c
is directly based on the simple function F (·) given by Eq. (2.3).

Alternatively, one can also decompose Ω
c
using the power distance or even simply

treat Ω
c
as one entire cell. Thus, we are only interested in the partition of Ω.
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The mapping R maps any point x ∈ Γ to a subregion of Ω that collects all points
having x as a closest point. We now generalize the definition (2.15) of R as follows

(2.25) R(γ) =
⋃
x∈γ
R(x) ⊆ Ω, ∀γ ⊆ Γ,

which maps any subset γ of Γ to a subregion of Ω such that each point in the subregion
has a closest point in γ. Further, we define the BPB cell corresponding to γ(k)

i as
follows
(2.26)
RBP(γ

(k)
i ) =

{
x ∈ Ed | dist(x, γ

(k)
i ) ≤ dist(x, γ

(l)
j ), ∀0 ≤ l ≤ d− 1, 1 ≤ j ≤ nk

}
,

where the distance function dist(·, ·) is given by Eq. (1.5). As a consequence, each
BPB cell RBP(γ

(k)
i ) satisfies the following relationship

(2.27) RBP(γ
(k)
i ) ∩ Ω = R(γ

(k)
i ), ∀0 ≤ k ≤ d− 1, 1 ≤ i ≤ nk.

According to Theorem 2.6 and Corollary 2.8, in the case of 1 ≤ k ≤ d − 1, R(γ
(k)
i )

can be characterized by

(2.28) R(γ
(k)
i ) =

⋃
x∈γ(k)

i

conv(x, ci), ∀1 ≤ k ≤ d− 1, 1 ≤ i ≤ nk,

where i = I(γ
(k)
i ). In the case of k = 0, γ(0)

i is an intersection point (0-patch). Then,
according to the first statement in Theorem 2.6, we have

(2.29) conv(γ
(0)
i , ci) ⊆ R(γ

(0)
i ) ⊆ cone(γ

(0)
i ;v1,v2, . . . ,vm),

where i = I(γ
(0)
i ) = {i1, i2, . . . , im} and vt = ct − γ(0)

i with 1 ≤ t ≤ m.
To better understand the cell R(γ

(0)
i ), we define the following subregion of Ω by

(2.30) R0 :=

n0⋃
i=1

R(γ
(0)
i ).

Suppose that the classical Voronoi diagram of all intersection points {γ(0)
i }1≤i≤n0 is

given, which divides E3 into different Voronoi cells. The Voronoi cell corresponding
to γ(0)

i is denoted by Vor
(
γ

(0)
i

)
. As a consequence, the cell R(γ

(0)
i ) can be written as

(2.31) R(γ
(0)
i ) = R0 ∩Vor

(
γ

(0)
i

)
, 1 ≤ i ≤ n0.

R0 will be further analyzed later in Section 3.
Here, we provide two examples of the BPB diagram. Figure 3 provides a partition

of some discs in E2, respectively obtained from the power diagram (computed by F.
McCollum’s package [22]) and the proposed BPB diagram. In the BPB diagram, the
union of these discs is divided into circular sectors and polygons (constituting R0).
Note that the boundary of R0 is composed of line segments with the disc centers and
the intersection points as endpoints. As a consequence, the area of R0 can be obtained
directly using the Gauss–Green theorem, while the power cells could be complicated
to compute.
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Figure 4 provides an example of the power diagram and the BPB diagram of
three intersected balls in E3. The union of these 3-balls is divided into spherical
sectors (in red), double-cone cells (in yellow) and tetrahedrons (in blue), respectively
corresponding to the 2-patches, 1-patches (circular arcs) and 0-patches (intersection
points) on Γ. The volumes of BPB cells are can be computed conveniently, similarly
to the 2D case, which will be explained with details in Section 3.

Fig. 3. The power diagram (left) and the BPB diagram (right) of 15 random circles in the
plane. In the BPB diagram, R0 is composed of those polygons enclosed by the red segments and its
subdivisions are not shown.

Fig. 4. The power diagram (left) and the BPB diagram (right) of three intersected 3-balls. In
the BPB diagram, R0 is composed of the polyhedron enclosed by the blue triangles and its subdivisions
are not shown.

In summary, the group of subregions {R(γ
(k)
i )} with 0 ≤ k ≤ d−1 and 1 ≤ i ≤ nk

provide a partition of Ω. In fact, for any point p ∈ Ω, we have p ∈ R(γ
(k)
i ) if and

only if p has a closest point in γ(k)
i . Therefore, this newly-proposed diagram allows

to find efficiently a closest point on Γ to p and consequently, allows to compute the
signed distance fΓ(p). Since Lemma 2.4, Theorem 2.6 and Corollary 2.8 provide an
accurate description of any cell R

(
γ

(k)
i

)
, we emphasize that the volume (resp. area)

of the union of balls (resp. discs) can be computed based on the BPB diagram, which
is explained in the next section.

3. Volume of the union of d-balls. The BPB diagram can be used to calculate
the volume of Ω, given all components of Γ. In E2 and E3, the boundary components
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are easy to compute, while this could be difficult in higher dimension (so as the power
diagram). In Ed with d ≥ 4, the BPB diagram builds a relationship between the
boundary and the volume through the mapping R.

3.1. General formula. Consider an arbitrary k-patch γ(k)
i on Γ, 1 ≤ k ≤ d−1,

1 ≤ i ≤ nk. We suppose that γ(k)
i is part of a k-sphere with center c

(k)
i and radius

r
(k)
i , see Lemma 2.2. According to Eq. (2.28), we can compute

(3.1)

R(γ
(k)
i )

=
⋃

x∈γ(k)
i

conv(x, ci)

=

{
y | y = λx +

m∑
t=1

λtcit , x ∈ γ
(k)
i , λ+

m∑
t=1

λt = 1, 0 ≤ λ, λt ≤ 1

}
=
{
y | y = λx + (1− λ)z, x ∈ γ(k)

i , z ∈ conv(ci), 0 ≤ λ ≤ 1
}
,

where i = I(γ
(k)
i ) = {i1, i2, . . . , im}. Then, we propose the following lemma on

calculating the d-dimensional volume (d-volume) of the cell R(γ
(k)
i ) when k ≥ 1.

Lemma 3.1. Let γ(k)
i be an arbitrary k-patch with 1 ≤ k ≤ d − 1 contained on a

k-sphere. The d-volume of R(γ
(k)
i ) can be characterized as follows

(3.2) Vol(d)
(
R(γ

(k)
i )
)

= r
(k)
i B(k + 1, d− k) Vol(k)

(
γ

(k)
i

)
Vol(d−k) (conv(ci)),

where Vol(k)(γ) denotes the k-volume of a k-dimensional surface γ, r(k)
i denotes the

radius of the k-sphere containing γ(k)
i and B(·, ·) is the Beta function.

Proof. We define two sets Σ := γ
(k)
i − c

(k)
i and Π := conv (ci)− c

(k)
i , where c(k)

i is
the center of the k-sphere containing γ(k)

i . From Lemma 2.2, we then conclude that
Σ ⊥ Π. Further, Σ and Π are respectively of dimension k and d − k − 1. According
to Eq. (3.1), we can write R(γ

(k)
i ) as follows

(3.3)

R(γ
(k)
i ) =

{
y
∣∣ y = c

(k)
i +

r

r
(k)
i

σ +

(
1− r

r
(k)
i

)
τ, σ ∈ Σ, τ ∈ Π, 0 ≤ r ≤ r(k)

i

}
.

Since Σ ⊥ Π, the volume infinitesimal dy can be written as

dy =

(
r

r
(k)
i

)k(
1− r

r
(k)
i

)d−k−1

drdσdτ.

We can consequently compute

(3.4)

Vol(d)
(
R(γ

(k)
i )
)

=

∫ r
(k)
i

0

(
r

r
(k)
i

)k(
1− r

r
(k)
i

)d−k−1

dr

∫
Σ

dσ

∫
Π

dτ

= r
(k)
i

(∫ 1

0

λk(1− λ)d−k−1dλ

)
Vol(k)

(
γ

(k)
i

)
Vol(d−k−1) (conv(ci))

= r
(k)
i B(k + 1, d− k) Vol(k)

(
γ

(k)
i

)
Vol(d−k−1) (conv (ci)) .
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where B(·, ·) is the Beta function [25].

We now consider an abitrary intersection point γ(0)
i with 0 ≤ i ≤ n0. Suppose

that γ(0)
i is an endpoint of some 1-patches (circular arcs) denoted by {γ(1)

ij }j=1,...,Ki
.

Recall that ΛI(γ
(0)
i )

denotes the affine space defined in (2.7) . In the degenerate case,

γ
(0)
i lies in the affine space ΛI(γ

(0)
i )

which is in this case of dimension

(3.5) dim
(

ΛI(γ
(0)
i )

)
≤ d− 1,

as presented in the proof of Lemma 2.2. In this case, γ(0)
i is actually generated by

a (d − 1)-sphere and a tangent affine space. According to Theorem 2.6, we have
R(γ

(0)
i ) ⊆ ΛI(γ

(0)
i )

and therefore,

(3.6) dim
(
R(γ

(0)
i )
)
≤ d− 1.

As a consequence, the volume of the BPB cell corresponding to a degenerate inter-
section point is

(3.7) Vol(d)
(
R(γ

(0)
i )
)

= 0.

This implies that the degenerate intersection points can be ignored in the computation
of Vol(d) (R0). In the nondegenerate case, γ(0)

i is generated by the intersection of a
(d − 1)-sphere and some line passing through the sphere. In this case, there exists
some 1-patches having γ(0)

i as an endpoint, implying that Ki > 0. Further, it holds
that

(3.8) dim
(

ΛI(γ
(1)
ij )

)
= d− 2, ∀j = 1, 2, . . . ,Ki,

according to Lemma 2.2. Then, we can denote the (d − 1)-dimensional face corre-
sponding to γ(1)

ij by

(3.9) Fij := conv
(
γ

(0)
i , cI(γ

(1)
ij )

)
,

where cI(γ
(1)
ij )

is a set of spherical centers given by (2.6) and Fij is actually a tetrahe-
dron in some (d− 1)-hyperplane. We define the set of all nondegenerate intersection
points as P̃0. Then, we propose the following lemma for computing Vol(d) (R0) where
R0 is defined in (2.30).

Lemma 3.2. The volume of R0 can be computed as

(3.10) Vol(d)(R0) =

n0∑
i=1

Ki∑
j=1

1

d

(
nij · γ(0)

i

)
Vol(d−1) (Fij) ,

where nij denotes the outward-pointing normal vector of Fij. We make a convention
that nij = 0 when γ

(0)
i is a degenerate intersection point.

Proof. Denote by R̃0 the union of all BPB cells associated with nondegenerate
intersection points in P̃0, that is,

(3.11) R̃0 = R
(
P̃0

)
.
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According to the definition (2.30) of R0 and Eq. (3.7), we know that

(3.12) Vol(d) (R0) = Vol(d)
(
R̃0

)
.

Claim 3.3. The boundary of R̃0 can be characterized as

(3.13) ∂R̃0 =
⋃

1≤i≤n0
1≤j≤Ki

Fij
⋃
F0,

where F0 is some subset on ∂R̃0 with dim (F0) ≤ d− 2.

The proof of Claim 3.3 is presented in Appendix B. According to the Gauss–Green
theorem, we can further compute

(3.14)

Vol(d)(R̃0) =

∫
R̃0

1

d
(∇ · y) dy

=
1

d

∫
∂R̃0

(n · y) dσy

=

n0∑
i=1

Ki∑
j=1

1

d

∫
Fij

(nij · y) dσy

=

n0∑
i=1

Ki∑
j=1

1

d

(
nij · γ(0)

i

)
Vol(d−1) (Fij) ,

where dσy denotes the surface measure. In the last equality, we use the fact that Fij
lies in a hyperplane and that nij · y is constant.

In summary, given the components of its boundary Γ, we obtain an explicit ex-
pression of the volume of the union of balls Ω according to Lemma 3.1 and 3.2 as
follows

(3.15)

Vol(d)(Ω) =

d−1∑
k=1

nk∑
i=1

r
(k)
i B(k + 1, d− k) Volk

(
γ

(k)
i

)
Vold−k (conv (ci))

+

n0∑
i=1

Ki∑
j=1

1

d

(
nij · γ(0)

i

)
Vol(d−1) (Fij) .

3.2. Analytical volume in 3D. We have given an explicit formula of the vol-
ume of Ω, which is based on the BPB diagram. In the cases of E2 and E3, the different
components of Γ are not difficult to compute. In this subsection, we consider the case
of E3 as an illustration.

The boundary of the union of 3-balls is constituted by the intersection points,
the circular arcs (or circles) and the spherical 2-patches. The length of a circular
arc is easy to compute and the area of a spherical 2-patch can be computed by the
Gauss–Bonnet theorem [13]. For the sake of completeness, we present here the explicit
formula of the area of a spherical 2-patch γ with the notations in Figure 5 as follows
(see [26] for details)

(3.16)
∑
j

αj +
∑
j

kej |ej |+
1

r2
Area (γ) = 2πχ,
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Fig. 5. 3D schematic diagram of notations associated with the spherical patch γ with center
c and radius r. αj is the angle variation between two neighboring circular arcs ej−1 and ej at the
vertex vj of γ.

where αj is the angle at vertex vi between two neighboring circular arcs ej−1 and ej ,
kej is the geodesic curvature of ej , |ej | is the length of ej , Area (γ) is the area of γ.
In addition, χ is the Euler characteristic of γ, which equals to 2 minus the number of
loops forming the boundary of γ.

From the volume formulation (3.15) in the previous subsection, we obtain the
volume of the union (still denoted by Ω) of balls in E3:

(3.17)

Vol(3)(Ω) =
1

3

n2∑
i=1

r
(2)
i Area(γ

(2)
i ) +

1

6

n1∑
i=1

r
(1)
i d

(1)
i

∣∣∣γ(1)
i

∣∣∣
+

1

3

n0∑
i=1

Ki∑
j=1

(
nij · γ(0)

i

)
Area (Fij) ,

where r(2)
i denotes the radius of the 2-patch γ(2)

i , r(1)
i denotes the radius of the circular

arc γ(1)
i , d(1)

i denotes the distance between the centers of the two spheres generating
γ

(1)
i , Area(γ

(2)
i ) is computed according to Eq. (3.16). The faces {Fij} are 2D polygons

enclosed by specific line segments (connecting the sphere centers and the intersection
points) and in the common case, are triangles. The above formula (3.17) is convenient
to be computed.

The computation of the volume of molecular cavities is an elementary problem in
biology and chemistry. There are plenty of works on it using the power diagram, such
as [23, 30, 32, 18, 10]. Based on the proposed BPB diagram, we test 18 molecules in
Matlab, with the geometry data derived from the Protein Data Bank (PDB), including
caffeine, 1yjo, 1etn, 1b17, 101m, 2k4c, 3wpe, 1kju, 1a0t, 1a0c, 4xbg, 4cql, 5any, 4wht,
4qy1, 4by9, 4u8u, 4y5z. The numerical results are presented in Table 1 and Figure 6.
We should mention that these volumes are exact if the machine errors are not taken
into account. In addition, the run time appears to scale roughly linearly with respect
to N .

Remark 3.4. The volume forumla (3.17) of the BPB diagram only involves the
computation of boundary components. In other words, any buried ball does not
contribute to the volume. While the power diagram requires to compute more, because
one has to compute not only the boundary components, but also the boundaries of all
power cells, which could be tricky and nonrobust due to the possible degenerate cases
as pointed out in [11]. From this point of view, the BPB diagram is more convenient
to be implemented and can save computational cost for the volume computation.
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Table 1
Molecule volumes computed by the BPB diagram and the run time of the implementation in

Matlab. N represents the number of balls (atoms). n0, n1 and n2 represent the number of inter-
section points, the number of circular arcs (or circles) and the number of spherical patches on the
boundary.

PDB ID N n0 n1 n2 Volume (Å3) Time (s)
caffeine 24 56 85 31 2.1703e+02 7.1000e-01
1yjo 67 174 269 90 9.7922e+02 9.6000e-01
1etn 160 550 847 282 1.5936e+03 9.6000e-01
1b17 483 1308 2154 668 7.1927e+03 1.3500e+00
101m 1413 4388 6987 2114 2.0476e+04 2.6500e+00
2k4c 2443 9032 13691 4412 2.2762e+04 4.8400e+00
3wpe 5783 18404 28568 8470 8.0276e+04 8.8700e+00
1kju 7671 26858 41680 12257 1.0550e+05 1.2490e+01
1a0t 10077 32430 50834 14644 1.3923e+05 1.5360e+01
1a0c 15116 48048 76952 22416 2.1503e+05 2.3920e+01
4xbg 20282 63522 98952 29032 2.8060e+05 3.3720e+01
4cql 26833 85046 133223 39112 3.7450e+05 5.2120e+01
5any 35620 112000 172843 51366 4.8399e+05 7.0990e+01
4wht 40099 127982 200208 58037 5.6224e+05 8.6080e+01
4qy1 48138 154450 241906 70948 6.7187e+05 1.0895e+02
4by9 49984 209296 318007 99517 4.2904e+05 1.4133e+02
4u8u 59163 196422 303695 91414 8.1057e+05 1.4600e+02
4y5z 86922 283224 442363 128651 1.2061e+06 2.0266e+02

Remark 3.5. In the high-dimensional space Ed with d > 3, it is difficult to com-
pute the surface volumes of the boundary components on Γ in a general case. As a
consequence, one can not compute the analytical volume easily based on the BPB di-
agram, unless the boundary components are known. Nevertheless, the same difficulty
exists for the power diagram.

In the next section, we will discuss about another application of the BPB diagram
for characterizing molecular surfaces.

4. Characterization of molecules. For the sake of completeness, we introduce
briefly how the BPB diagram can be used to characterize molecules in E3 .

4.1. Singularity problem. In computational chemistry, the “smooth” molec-
ular surface [12] is actually defined as the level set of a signed distance function,
which strictly speaking, is not always smooth. The related singularities have caused
trouble when meshing or visualizing molecular surfaces. Some meshing algorithms
of molecular surfaces even fail when the surface contains singularities. However, the
BPB diagram allows us to compute all surface singularities a priori, which was first
introduced in our previous work [26, 27]. In the following content, we will briefly
present the basic idea.

In an implicit solvation models, the solute molecule is commonly regarded as a
union of atomic balls, such as the van der Waals balls with radii rv,i. Meanwhile, the
solvent molecules are simply idealized as spherical probes with radius rp. The solvent
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Fig. 6. The run time for volume computation with respect to the number of atoms, implemented
in Matlab on a mac with processor 2.5 GHz Intel Core i7.

excluded surface (SES), denoted by Γses, is the boundary of the cavity where solvent
probes can not touch (the solute atoms and the solvent probes can not overlap). We
take Γ as the boundary of the union of balls with atomic centers and radii ri = rv,i+rp.
Then, the SES can be represented mathematically as the following level set:

(4.1) Γses := f−1
Γ (−rp),

where fΓ is the signed distance defined in Eq. (2.2). Figure 7 illustrates the signed
distance of the benzene molecule in the XY plane. The SES is the so-called “smooth”
molecular surface, which however might have plenty of singularities.

Fig. 7. Boundary surface Γ (left) of benzene molecule with rp = 1Å and the signed distance
fΓ (right) in the XY plane where the color represents the distance value.

The BPB diagram gives a partition of the union of balls, based on the signed
distance to different boundary components. As a consequence, given any point x in
the union, one can find conveniently its closest point(s) on Γ by determining which
BPB cell this point lies in. Note that any point x ∈ Γses is a singularity (in the sense
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that fΓ is nondifferentiable at x) if and only if x has more than one closest points on
Γ. However, the number of closest points can be counted directly as soon as the BPB
diagram is constructed, which means that all surface singularities can be computed a
priori.

Figure 8 illustrates the SES of a protein (generated by our MolSurfComp package
[28]), where the green curves highlight singularities. It is well-known that Γses is com-
posed of three types of patches: convex spherical patches (in red), toroidal patches
(in yellow) and concave spherical patches (in blue). These patches corresponds re-
spectively to the 2-patches, the 1-patches (circular arcs in yellow) and the 0-patches
(intersection points in blue) on Γ. With the same notations as previously, we can
write each SES-patch corresponding to the k-patch γ

(k)
i ⊂ Γ, denoted by P

(k)
i , as

follows:

(4.2) P
(k)
i := R(γ

(k)
i ) ∩ f−1

Γ (−rp) = R(γ
(k)
i ) ∩ f−1

γ
(k)
i

(−rp), k = 0, 1, 2.

where R(γ
(k)
i ) is the BPB cell and f

γ
(k)
i

is the signed distance to γ(k)
i . The above

formula is computable as soon as the BPB cell is given (see [26] for details). In
particular, the singularities on each SES-patch lie on the boundary of the BPB cell,
because any interior point of the BPB cell has only one closest point on Γ.

Fig. 8. The SES of the molecule 1mbg with 905 atoms and the probe radius rp = 1Å. The
green arcs are SES-singularities, computed by our MolSurfComp package.

Remark 4.1. Generally speaking, given an arbitrary surface in 3D, the signed
distance from one point to the surface is expensive to compute. However, in the
special case for balls, the BPB diagram allows to compute this value directly.

4.2. Medial axis of molecule. The medial axis of an object is the set of all
points having more than one closest points on the object’s boundary. According to
the definition of BPB cells, we can claim that the medial axis of a molecule is part of
the boundaries of BPB cells. The concept of medial axis was first introduced by Blum
[6] and was originally referred to as the topological skeleton. It has been shown that
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the medial axis of an object is always homotopy equivalent to the object itself [21] and
the medial axis is useful for shape descriptions. As a consequence, it is potentially a
good idea to use the medial axes of molecules for classifying their structures.

In fact, the theory on the BPB diagram allows us to compute the medial axis
of 3-balls. As mentioned above, the boundary of the union of 3-balls is composed of
k-patches with k = 0, 1, 2. Given a k-patch γ(k)

i , let i = I(γ
(k)
i ) be the indices of the

3-balls generating this k-patch. In the case when k = 1, 2, according to Corollary 2.8,
we can claim that conv(ci) is part of the medial axis. The reason is that ∀x ∈ conv(ci),
any point on γ

(k)
i is a closest point of x. In other words, x has infinite number of

closest points. In the case when k = 0, given an arbitrary intersection point γ(0)
i , it

is easy to find that the set ∂R(γ
(0)
i ) ∩Vor(γ

(0)
i ) is part of the medial axis, where Vor

represent the classical Voronoi cell, see Section 2.3.
For the sake of illustraction, we provide a simple example of the medial axis of

molecule 1yjo in Figure 9. As mentioned above, the molecule and its medial axis are
homotopy equivalent.

Fig. 9. Molecule 1yjo (left) and its medial axis (right), composed of red points, yellow line
segments and blue faces, which are part of the boundaries of BPB cells.

5. Conclusion. In this article, we have introduced the so-called boundary-
partition-based (BPB) Voronoi diagram of d-balls in the Euclidean space Ed, which
can be seen as an alternative partition to the power diagram. We have studied the
properties of this diagram and presented its applications. Compared to the power
diagram, the BPB diagram is more convenient to be implemented for volume com-
putations of balls, avoiding the possibly complicated computation of power cells. In
addition, this BPB diagram can be used to compute singularities on molecular sur-
faces and to compute the molecular medial axis for possible structure classification
in the context of protein-ligand binding affinity prediction. At this moment, these
applications are restricted to E2 and E3 just like the power diagram. We expect
nevertheless possible applications in higher dimensions.

Appendix A. Proof of Claim 2.7. First, we consider a sphere Sit 3 x for a
fixed 1 ≤ t ≤ m. According to the definition (2.19) and Eq. (2.21), we can compute

(A.1)

|ζs(x)− cit |2 − |x− cit |2

= |xns + α(x)v|2 − 2 (vt, xns + α(x)v)

=
(
α2(x)|v|2 + x2

)
+ 2xα(x) (ns,v)− 2α(x)(v,vt)− 2x(vt,ns)

= 2α(x)(v,v − vt)− 2x(vt,ns)

= 2x

[
−(vt,ns) +

x

|v|2(2− α(x))
(v,v − vt)

]
,
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where in the third and forth equality, we use the fact that α2(x)|v|2 +x2 = 2α(x)|v|2
and (ns,v) = 0 as vr ∈ As.

Since (x + λvt,ns) ≤ bs, ∀λ ≥ 0, we know that (vt,ns) ≤ 0. In the case of
(vt,ns) < 0, according to Eq. (A.1), there exists a small enough number εit > 0 such
that ∀x ∈ [0, εit ],

|ζs(x)− cit | ≥ |x− cit | = rit .

Besides, in the case of (vt,ns) = 0 implying vt ∈ As, according to Eq. (2.23) and
(A.1), we have ∀0 ≤ x ≤ |v|,

|ζs(x)− cit | ≥ |x− cit | = rit .

In particular, when t = t0, we have both (vt,ns) = 0 and (v,v − vt) = 0. As a
consequence,

|ζs(x)− cit | = |x− cit | = rit ,

which means that ζs(x) ∈ Sit0 . So far, we have proved that ∀x ∈ [0, εit ], ζs(x) does
not lie in the interior of Sit and lies on the sphere Sit0 .

Second, we consider a sphere Sj 6∈ {Si1 , Si2 , . . . , Sim} that does not contain x. In
this case, we have |x − cj | − rj > 0. Therefore, there exists a small number εj > 0
such that ∀x ∈ [0, εj ],

|ζs(x)− x| ≤ 1

2
(|x− cj | − rj).

This yields that ∀x ∈ [0, εj ],

|ζs(x)− cj | ≥ |x− cj | − |ζs(x)− x| ≥ 1

2
(|x− cj |+ rj) > rj ,

that is to say, ζs(x) lies outside the sphere Sj .
In summary, there exists a possibly small number ε > 0 such that ∀x ∈ [0, ε],

ζs(x) does not cross any sphere Si and lies on the sphere Sit0 , which implies that
ζs(x) ∈ Γ.

Appendix B. Proof of Claim 3.3 . Recall the definition of the face

(B.1) Fij := conv
(
γ

(0)
i , cI(γ

(1)
ij )

)
, 1 ≤ i ≤ n0, 1 ≤ j ≤ Ki.

Given a nondegenerate intersection point γ(0)
i and the associated 1-patch γ

(1)
ij , the

(d − 1)-face Fij is actually a subset of R̃0, since, according to Lemma 2.4, Fij is a
subset of R(γ

(0)
i ). Further, taking any point y ∈ γ(1)

ij , we have the following result

(B.2) R(y) = conv
(
y, cI(γ

(1)
ij )

)
⊆ R

(
γ

(1)
ij

)
.

As y tends to γ(0)
i , R(y) tends to Fij . Any interior point of R(y) has y as a unique

closest point, which implies that the interior of R(y) lies completely outside R̃0. For
any point x ∈ Fij , we can then find a sequence of points {xn} outside R̃0 converging
to x. Therefore, we have Fij ⊆ ∂R̃0.

It is sufficient to prove that any point x ∈ ∂R̃0 belongs to either some face Fij or
some set F0 with dim(F0) ≤ d− 2. ∂R̃0 can be divided into two sets

(B.3) U1 := {x ∈ ∂R̃0 | all closest points of x belong to P̃0},
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and

(B.4) U2 := {x ∈ ∂R̃0 | there exists a closest point of x not contained in P̃0}.

In the following content, we prove that if x ∈ U1, then x belongs to a certain face Fij ,
while if x ∈ U2, then x belongs to F0 which will be defined later.

Step 1: In the case of x ∈ U1, we can find a sequence of points {xn} in Ω\R0

such that xn tends to x. Correspondingly, there exists a sequence of points {an} on
Γ, where an is one closest point of xn. Since x has finitely many closest points in P̃0

and the total number of k-patches is finite, we can extract a subsequence of an such
that this subsequence lies on some k-patch γ(k) with k ≥ 1 and converges to some
nondegenerate intersection point γ(0)

i . Without loss of generality, we can therefore
suppose that an tends to γ(0)

i and an ∈ γ(k), ∀n. As a consequence, γ(0)
i is on the

boundary of γ(k) and further, there exists a 1-patch γ(1)
ij on γ(k), satisfying

(B.5) cI(γ(k)) ⊆ cI(γ
(1)
ij )

.

Due to the fact that

(B.6) xn ∈ conv
(
an, cI(γ(k))

)
,

we then have

(B.7) x ∈ conv
(
γ

(0)
i , cI(γ(k))

)
⊆ conv

(
γ

(0)
i , cI(γ

(1)
ij )

)
= Fij ,

by taking n→∞.
Step 2: In the case of x ∈ U2, we want to prove that x belongs to some F0.

According to the definition of U2, x has at least one closest point a that is not a
nondegenerate intersection point. Here, we mention the fact that for any point y
belonging to the open line segment ax with endpoints a and x, a is the unique closest
point of y on Γ, which can be easily proven by contradiction.

On the one hand, if a is not an intersection point, then a lies on some k-patch
γ(k) with k ≥ 1. According to Theorem 2.6, we know that

(B.8) R(a) = conv
(
a, cI(γ(k))

)
.

Considering that the latter convex hull, we obtain that x ∈ conv(cI(γ(k))) of dimension
dim(conv(cI(γ(k)))) ≤ d − 2, since otherwise, x will has a unique closest point on Γ.
On the other hand, if a is a degenerate intersection point, then we have a ∈ ΛI(a)

with dim
(
ΛI(a)

)
≤ d−1. Since R(a) ⊆ ΛI(a) according to Theorem 2.6, it holds that

dim (R(a)) ≤ d− 1. Here, we actually have a ∈ R(a) and R(a) is a convex set from
Lemma 2.4. Due to the fact mentioned above, we obtain that x ∈ R(a) only lies on
∂R(a) of dimension dim (∂R(a)) ≤ d− 2.

As the number of k-patches and degenerate intersection points are finite, we can
conclude that

(B.9) x ∈
⋃
k≥1

conv(cI(γ(k)))
⋃

γ
(0)
i 6∈P̃0

∂R(γ
(0)
i ), ∀x ∈ U2,

where γ(0)
i in the second union is taken as all degenerate intersection points. Note

that the union on the right-hand side of Eq. (B.9) is of dimension less than or equal
to d− 2. This implies that dim(U2) ≤ d− 2. Therefore, we can define F0 = U2, which
satisfies dim(F0) ≤ d− 2.
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