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A VORONOI-TYPE DIAGRAM OF D-DIMENSIONAL BALLS:
DEFINITION, PROPERTIES AND APPLICATIONS∗

XIANGLONG DUAN† , CHAOYU QUAN‡ , AND BENJAMIN STAMM§

Abstract. The power diagram, which is a partition of the Euclidean space, has been widely
used, for example, to compute the volume of a union of d-dimensional balls (d-balls). In this article,
an alternative partition is proposed, which is a generalized Voronoi diagram based on the boundary
components of the union of d-balls in any dimension d. The definition, properties and applications
of this new diagram are presented.
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1. Introduction. The Voronoi diagram [9, 14] was initially a partition of the
2-dimensional (2D) plane into regions, based on the distance to points in a specific
subset of the plane. In the general case, for a Euclidean subspace X ⊂ Ed (here, Ed
represents the d-dimensional Euclidean space) endowed with a distance function and
a tuple of nonempty subsets {Ai}i∈K in X, the Voronoi region Rv(Ai) associated with
Ai is the set of all points in X whose distance to Ai is not greater than their distance
to any other set Aj . In other words, the Voronoi region Rv(Ai) is given by

(1.1) Rv(Ai) = {x ∈ X | dist(x, Ai) ≤ dist(x, Aj)} ,

where the distance function between a point x and a set Ai defined as

(1.2) dist(x, Ai) := inf
y∈Ai

|x− y|.

Here, the notation | · | denotes the Euclidean norm and dist(·, ·) is the Euclidean
distance between a point and a set. Most commonly, each subset Ai is taken as a
point and its corresponding Voronoi region Rv(Ai) is consequently a polyhedron, as
depicted on the left of Figure 1 for a simple example in the plane.

In computational geometry, the power diagram [11, 3], also called the Laguerre-
Voronoi diagram, is another partition of the 2D plane into polygonal cells with respect
to a finite set of circles. In the general case, for a finite set of spheres {Si}i∈K in Ed
with d ≥ 2 (which are circles in E2), the power region Rp(Si) consists of all points
whose power distances to Si are not larger than their power distances to any other
sphere Sj . The power distance from a point x ∈ Ed to a sphere Si with center ci and
radius ri is defined as

(1.3) distp(x, Si) := dist2(x, ci)− r2
i .

The power region Rp(Si) is then given by

(1.4) Rp(Si) =
{
x ∈ Ed | distp(x, Si) ≤ distp(x, Sj)

}
.
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Fig. 1. Left: Voronoi diagram of three points; middle: the power diagram of three circles;
right: Voronoi-type diagram of the same circles as in the power diagram.

The power diagram can be seen as a generalized Voronoi diagram, in the sense that
one can simply replace the distance function dist(·, ·) in Eq. (1.1) with the power
distance function distp(·, ·). Figure 1 gives an example of three circles in the plane.
Note that the power distance here is not a real distance function. The volume of the
union of balls can be computed by summing up the volume of each power cell inside
the union [4, 7]. Each power cell is characterized as the corresponding ball cut by
(hyper)planes.

In this article, we propose a new Voronoi-type diagram of d-dimensional balls
(d-balls) in Ed, based on the different components of the boundary of the union of
these d-balls. This diagram is an alternative to the power diagram and can also
be seen as a generalized Voronoi diagram. For example, on the right-hand side of
Figure 1, there exists three intersected discs in plane, whose boundary is composed
of open circular arcs {γ1, γ2, γ3} and intersection points {x1,x2,x3}. We take the
sets {Ai} introduced for the Voronoi diagram as {γ1, γ2, γ3,x1,x2,x3}, to obtain six
corresponding regions from Eq. (1.1). This gives a new partition of the plane, in
particular, a new partition of the union of the discs including circular sectors and
polygons. Further, this Voronoi-type diagram can be generalized to any dimension
d ≥ 2 as explained briefly in the following.

In the general case, the boundary of the union of d-balls can be classified into a
list of spherical patches

(1.5)
{
γ

(k)
i

}
0≤k≤d−1, 1≤i≤nk

where k denotes the dimension of the patch and nk is the number of k-dimensional
patches (k-patches). More details about this classification will be presented in Section
2.1. In particular, a 0-patch represents an intersection point and a 1-patch presents
an open circular arc or a circle. Similar to the 2D case, we can define the Voronoi-type
diagram of these d-balls, where the Voronoi-type cell corresponding to γ(k)

i is given
by

(1.6) Rvt(γ
(k)
i ) =

{
x ∈ Ed | dist(x, γ

(k)
i ) ≤ dist(x, γ

(l)
j )
}
,

where the distance function dist(·, ·) is given by Eq. (1.2). We mention that this
Voronoi-type diagram was first proposed by some of us to characterize smooth molec-
ular surfaces in E3, see [16] for details.

In Section 2, we first study the properties of the Voronoi-type cells, based on
analyzing the signed distance from an arbitrary point to the boundary of the union of
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d-balls. Then, in Section 3, we present how this diagram can be used to compute the
volume of the union of d-balls. In Section 4, we mention its application to characterize
the smooth molecular surface in E3. After that, in Section 5, we introduce briefly its
application to compute the medial axis of the union of balls. Finally, we draw some
conclusions.

2. Voronoi-type diagram. We consider a finite set of (d − 1)-dimensional
spheres {S1, S2, . . . , SN} in Ed, where the d-sphere Si has center ci ∈ Ed and ra-
dius ri for each 1 ≤ i ≤ N . The corresponding d-balls are consequently denoted by
{B1, B2, . . . , BN} where Bi = B(ci, ri). In this article, the notation B(c, r) denotes
the open ball with center c and radius r. The union of these d-balls is denoted by Ω,
that is,

(2.1) Ω :=

N⋃
i=1

Bi

and the boundary of this union is denoted by Γ := ∂Ω. The open region on the outside
of Ω is denoted by Ω

c
:= Ed\ (Ω ∪ Γ).

Since the boundary Γ is a closed and compact set, for any point p ∈ Ed, there
exists at least one closest point in Γ to p. The signed distance function fΓ with respect
to Γ is then given as follows

(2.2) fΓ(p) :=

{
−dist(p,Γ) if p ∈ Ω,

dist(p,Γ) if p ∈ Ωc .

As a consequence, the three sets Ω, Γ and Ω
c
can be mathematically characterized

by Ω = {p | fΓ(p) < 0}, Γ = {p | fΓ(p) = 0} and Ω
c

= {p | fΓ(p) > 0}.
Remark 2.1. Another way to characterize Ω, Γ and Ω

c
is to use the notion of the

local signed distance functions fi(p) to Si, defined by fi(p) = |p− ci| − ri, ∀p ∈ Ed
and 1 ≤ i ≤ N . By defining the following function

(2.3) F (p) := min
1≤i≤N

{fi(x)},

the sets Ω, Γ and Ω
c
can also be characterized by Ω = {p | F (p) < 0}, Γ = {p | F (p) =

0} and Ω
c

= {p | F (p) > 0}.

2.1. Characterization of the boundary. As mentioned previously, the bound-
ary Γ is composed of spherical patches of different dimensions from 0 to d − 1. We
will provide more details in this subsection.

We first define a mapping I as follows

(2.4) x ∈ Γ 7→ I(x) := {i1, i2, . . . , im | x ∈ Sit , t = 1, . . . ,m} ⊆ {1, 2, . . . , N},

where I(x) collects all indices of the spheres containing x and m is the number of
these spheres. Then, we can define the intersection set of these spheres as follows

(2.5) Si :=

m⋂
t=1

Sit ,

where the subscript i = I(x) = {i1, i2, . . . , im} depends on x, see an example in Figure
2. Further, the affine space generated by the associated centers

(2.6) ci := {ci1 , ci2 , . . . , cim}
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Fig. 2. 2D schematic diagram of the index set i = I(x) at the boundary of three discs.

is denoted by

(2.7) Λi := {y | y =

m∑
t=1

λtcit ,

m∑
t=1

λt = 1, λt ∈ R}.

With the above notations, we propose the following lemma.

Lemma 2.2. In the case when Si is non-empty and dim(Λi) ≤ d− 1, Si is either
a k-dimensional sphere (k-sphere) with

(2.8) k = dim(Si) = d− dim(Λi)− 1,

or a point (the degenerate case), where dim(·) denotes the dimension. In the case
when Si is non-empty and dim(Λi) = d, Si is a point.

Proof. Let’s take an arbitrary point x0 ∈ Si. We rewrite Si in the following form

(2.9)
Si = {x | |x− cit |2 − |x0 − cit |2 = 0, 1 ≤ t ≤ m}

= Si1 ∩ Pi,

where

(2.10)
Pi = {x | |x− cit |2 − |x0 − cit |2 = |x− ci1 |2 − |x0 − ci1 |2, 2 ≤ t ≤ m}

= {x | (x− x0, cit − ci1) = 0, 2 ≤ t ≤ m}.

Here, Pi is the intersection of m− 1 hyperplanes that contain x0. It is an affine space
with dim(Pi) = d− dim(Λi) and satisfies Pi − x0 ⊥ Λi − ci1 .

In the case of dim(Λi) ≤ d − 1, we then have dim (Pi) ≥ 1. Note that Si is the
intersection of the sphere Si1 and the affine space Pi. If Si is non-empty, then it is
either a sphere with dim(Si) = d − dim(Λi) − 1, or a single point in the degenerate
case when Pi is tangent to Si. We mention that in this degenerate case, Si is a point
contained in Λi with dim(Λi) ≤ d − 1. Furthermore, in the case of dim(Λi) = d, we
have dim(Pi) = 0 and Pi is consequently the point x0. If Si is nonempty, then Si is
just the point x0.

For a given set of indices i ⊆ {1, 2, . . . , N}, if dim(Si) ≥ 1, we can define the following
set

(2.11) Γi := {x ∈ Γ | I(x) = i} ⊆ Si ∩ Γ,
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which is open in Si. In this case, we can further divide Γi as follows

(2.12) Γi =
⋃
j

γ
(k)
i,j ,

where γ(k)
i,j ⊆ Γi is an open connected k-patch and k = dim(Si) = dim(γ

(k)
i,j ) denotes

the dimension. This means that Γi has been divided into different k-patches. For
the sake of simplicity, we can reorder all patches {γ(k)

i,j } based on the dimension k, by
replacing the subscripts (i, j) with only one subscript i. As a consequence, the whole
boundary Γ is classified into a set of patches {γ(k)

i } with 0 ≤ k ≤ d− 1, 1 ≤ i ≤ nk,
that is,

(2.13) Γ =

d−1⋃
k=0

nk⋃
i=1

γ
(k)
i ,

where nk is the number of k-patches and γ
(k)
i is an open connected k-patch when

k ≥ 1. In particular, γ(0)
i is simply an intersection point and γ(1)

i is a circular arc or
a circle. From the derivation of γ(k)

i , we know that I(x) holds the same for any point
x ∈ γ(k)

i . Therefore, we can generalize the definition of I as follows

(2.14) I(γ
(k)
i ) := I(x),

where x ∈ γ(k)
i is an arbitrary point on γ(k)

i .
Next, we analyze the signed distance fΓ to the boundary Γ, which involves in

finding one closest point to any given point p (note that the uniqueness of the closest
point is not guaranteed).

2.2. Analysis of the signed distance. We want to analyze the signed distance
from an arbitrary point to the boundary Γ of the union of d-balls. We first consider
the case when the point lies outside the union and give the following lemma. The
proof of this lemma is trivial and therefore skipped here.

Lemma 2.3. For any point p ∈ Ω
c
, dist(p,Γ) = F (p).

We now focus our attention to the case when p ∈ Ω. In fact, this case is studied
from another aspect, in the sense that for any point x on Γ, we study the set of all
points in Ω that treat x as a closest point on Γ. We define a mapping R such that
∀x ∈ Γ,

(2.15) R(x) = {p ∈ Ω | dist(p,Γ) = |p− x|} ⊆ Ω,

which represents the region consisting of the points having x as a closest point. The
convexity of the set R(x) is ensured according to the following lemma.

Lemma 2.4. ∀x ∈ Γ, the set R(x) is convex. Further, it holds that conv(x, ci) ⊆
R(x), where i = I(x) = {i1, i2, . . . , im}. Here, the notation conv denotes the convex
hull of a set of points.

Proof. We first need to prove that ∀p1,p2 ∈ R(x) and ∀λ ∈ [0, 1], p0 = λp1 +
(1− λ)p2 ∈ R(x). To do this, we construct a function as follows

(2.16) h(p) = dist(p,Γ)2 − |p− x|2 = inf
y∈Γ

{
2(x− y) · p + |y|2 − |x|2

}
, p ∈ Ed.
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As a consequence, x is a closest point on Γ to p if and only if h(p) = 0. As an obvious
fact, we have h(p) ≤ 0, ∀p ∈ Ed. Since x is a closest point on Γ to p1 and to p2, we
have h(p1) = h(p2) = 0. Then, we can compute

(2.17)

h(p0) = inf
y∈Γ

{
2(x− y) ·

[
λp1 + (1− λ)p2

]
+ |y|2 − |x|2

}
≥ λ inf

y∈Γ

{
2(x− y) · p1 + |y|2 − |x|2

}
+(1− λ) inf

y∈Γ

{
2(x− y) · p2 + |y|2 − |x|2

}
= λh(p1) + (1− λ)h(p2)

= 0.

This means that x is also a closest point to p0. To prove that p ∈ R(x), we should
show further that p0 ∈ Ω. As x is a closest point to p1, we know that the ball centered
at p1 with radius |p1 − x| is covered by Ω, i.e.,

B(p1, |p1 − x|) ⊆ Ω.

Similarly, we have B(p2, |p2 − x|) ⊆ Ω. Notice that the line segment p1p2 is covered
by the union of these two balls (intersecting at x), which implies that p0 ∈ p1p2 ⊆ Ω.
Since p0 has x as a closest point and p0 ∈ Ω, we therefore have p0 ∈ R(x). So far,
we have proved that R(x) is convex.

Further, if there exists a set of spheres {Sit}t=1,...,m each containing x ∈ Γ, it is
obvious that x is a closest point of cit . In addition, we know that x ∈ Γ is a closest
point to itself. Due to the convexity of R(x), we then have conv(x, ci) ⊆ R(x).

Theorem 2.5. Given a point x ∈ Γ and i = I(x) = {i1, i2, . . . , im}, the following
statements hold:

(1) R(x) ⊆ cone(x;v1,v2, . . . ,vm), where vt := cit−x and cone(x;v1,v2, . . . ,vm)

= {y | y = x+

m∑
t=1

λtvt, λt ≥ 0, 1 ≤ t ≤ m} represents a convex cone (as in

linear algebra) with apex x.
(2) If there exists another point x′ ∈ Γ satisfying x′ 6= x and x′ ∈ Si, then
R(x) = conv(x, ci).

Proof. (1) According to Theorem 19.1 in the book [17], we can write

(2.18) cone(x;v1,v2, . . . ,vm) =

N0⋂
s=1

Hs,

where Hs := {y | (y,ns) ≤ bs} is a half-space in Ed, ns denotes its normal vector,
bs = (x,ns) is a real number, N0 denotes the number of half-spaces and (·, ·) denotes
the Euclidean scalar product in Ed. Each half-space Hs corresponds to a hyperplane
Ps defined by

Ps := {y | (y,ns) = bs}.

Without loss of generality, we suppose that |ns| = 1 for each half-space Hs. Fur-
thermore, each hyperplane Ps is supposed to contain at least one ray starting from x
in a direction among {v1,v2, . . . ,vm}. In fact, the half-space Hs can be removed in
Eq. (2.18) if Ps does not contains any such ray. To prove the first statement of the
theorem, it suffices to show that ∀p ∈ R(x) and 1 ≤ s ≤ N0, it follows that p ∈ Hs.
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Let p ∈ R(x) and s be fixed. As mentioned above, Ps contains a ray starting
from x in direction vr, 1 ≤ r ≤ m. Then, we have (x + λvr,ns) = bs, ∀λ ≥ 0, which
implies that (vr,ns) = 0.

We now construct a small curve ζs(x) starting from x and lying on Γ in the
direction of ns, of the form

(2.19) ζs(x) = x + xns + α(x)v, x ∈ [0, ε],

where α(x) ≥ 0 is a function with respect to x satisfying α(0) = 0, v is a nonzero
vector in Ed and ε is a sufficiently small positive number. In order to choose v, we
define the following nonempty set

As = {vt | (vt,ns) = 0, 1 ≤ t ≤ m} 3 vr.

As a consequence, the vector v and the function α(x) can be constructed as follows

(2.20) v = csvr,

and

(2.21) α(x) = 1−

√
1− x2

|v|2
∈ [0, 1], 0 ≤ x ≤ |v|,

where cs = max
vt∈As

(vt,vr)

|vr|2
=

(vt0 ,vr)

|vr|2
≥ 1 for some vt0 ∈ As. The above-constructed

v has the following two properties

(2.22) (v,v − vt0) = (v,v)− (v,vt0) =
(vt0 ,vr)

2

|vr|2
− (vt0 ,vr)

2

|vr|2
= 0

and

(2.23) (v,v − vt) =
(vt0 ,vr)

2

|vr|2
− (vt0 ,vr)(vt,vr)

|vr|2
≥ 0, ∀vt ∈ As.

With the above construction of ζs(x) and the properties of v, we can now state the
following claim.

Claim 2.6. ∃ ε > 0, s.t., ζs(x) ∈ Γ, ∀x ∈ [0, ε].

The proof of this claim is presented in Appendix A. Let’s focus on the proof of
the first statement in Theorem 2.5. For any point p ∈ R(x), we know that x is a
closest point on Γ to p and ζs(x) ∈ Γ, ∀x ∈ [0, ε]. Therefore, we have

(2.24)
d

dx

(
|ζs(x)− p|2

)
|x=0 ≥ 0,

which yields that (x− p, ζ ′s(0)) ≥ 0. It is not difficult to find that ζ ′s(0) = ns and we
then obtain (p,ns) ≤ (x,ns) = bs. This implies that p ∈ Hs for each subscript s.
The proof of the first statement in the theorem is complete.

(2) We now prove the second statement in Theorem 2.5. Suppose that there exists
another point x′ ∈ Γ such that x′ 6= x and x′ ∈ Sit , ∀1 ≤ t ≤ m. According to Lemma
2.4, we only need to prove that R(x) ⊆ conv(x, ci). For any point p ∈ R(x), since
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R(x) ⊆ cone(x;v1,v2, . . . ,vm) from the first statement, there exist a set of positive
numbers λt ≥ 0, s.t.,

p = x +

m∑
t=1

λtvt.

Since x,x′ ∈ Sit for each 1 ≤ t ≤ m, we have

0 = |x− cit |2 − |x′ − cit |2 = −|x′ − x|2 + 2(x′ − x) · vt,

which yields that
2(x′ − x) · vt = |x− x′|2, 1 ≤ t ≤ m.

Furthermore, since x is a closest point on Γ to p, we have

|p− x|2 ≤ |p− x′|2 = |p− x|2 + 2(p− x) · (x− x′) + |x− x′|2,

and therefore,

|x− x′|2 ≥ 2(x′ − x) · (p− x)

= 2

m∑
t=1

λt(x
′ − x) · vt

=

(
m∑
t=1

λt

)
|x− x′|2.

Since x′ 6= x, we consequently have the inequality
m∑
t=1

λt ≤ 1,

which means that p ∈ conv(x, ci). Then, we have R(x) ⊆ conv(x, ci).

Corollary 2.7. For each boundary component γ(k)
i of Γ, if k ≥ 1, then ∀x ∈

γ
(k)
i , R(x) = conv(x, ci), where i = I(γ

(k)
i ) = {i1, i2, . . . , im}.

Proof. In the case of k ≥ 1, γ(k)
i contains infinitely many points, each of which is

contained and only contained by the set of spheres {Si1 , Si2 , . . . , Sim}. Therefore, the
second statement in Theorem 2.5 can be applied.

2.3. Partition of the union of d-balls. In the introduction, we have intro-
duced the concept of the Voronoi-type diagram in Eq. (1.6), which gives a partition
of Ed. According to Lemma 2.3, the partition of Ω

c
is directly based on the simple

function F (·) given by Eq. (2.3). Alternatively, one can also decompose Ω
c
using the

power distance or even simply treat Ω
c
as one entire cell. Thus, in this section, we

are only interested in the partition of Ω.
The mapping R maps any point x ∈ Γ to a subregion of Ω that collects all points

having x as a closest point. We now generalize the definition (2.15) of R as follows

(2.25) R(γ) =
⋃
x∈γ
R(x) ⊆ Ω, ∀γ ⊆ Γ,

which maps any subset γ of Γ to a subregion of Ω such that each point in the subregion
has a closest point in γ. As a consequence, each Voronoi-type cell Rvt(γ

(k)
i ) (appearing

in Eq. (1.6)) satisfies the following relationship

(2.26) Rvt(γ
(k)
i ) ∩ Ω = R(γ

(k)
i ), ∀0 ≤ k ≤ d− 1, 1 ≤ i ≤ nk.
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According to Theorem 2.5 and Corollary 2.7, in the case of 1 ≤ k ≤ d − 1, R(γ
(k)
i )

can be characterized by

(2.27) R(γ
(k)
i ) =

⋃
x∈γ(k)

i

conv(x, ci), ∀1 ≤ k ≤ d− 1, 1 ≤ i ≤ nk,

where i = I(γ
(k)
i ). In the case of k = 0, γ(0)

i is an intersection point (0-patch). Then,
according to the first statement in Theorem 2.5, we have

(2.28) conv(γ
(0)
i , ci) ⊆ R(γ

(0)
i ) ⊆ cone(γ

(0)
i ;v1,v2, . . . ,vm),

where i = I(γ
(0)
i ) = {i1, i2, . . . , im} and vt = ct − γ(0)

i with 1 ≤ t ≤ m.
To better understand the cell R(γ

(0)
i ), we define the following subregion of Ω by

(2.29) R0 :=

n0⋃
i=1

R(γ
(0)
i ).

Suppose that the classical Voronoi diagram of all intersection points {γ(0)
i }1≤i≤n0

is
given, which divides R3 into different Voronoi cells. The Voronoi cell corresponding
to γ(0)

i is denoted by Vor
(
γ

(0)
i

)
. As a consequence, the cell R(γ

(0)
i ) can be written as

(2.30) R(γ
(0)
i ) = R0 ∩Vor

(
γ

(0)
i

)
, 1 ≤ i ≤ n0.

R0 will be further analyzed later in Section 3.
Here, we provide two examples of the Voronoi-type partition. Figure 3 provides a

partition of some discs in E2, respectively obtained from the power diagram (computed
by F. McCollum’s package) and the proposed Voronoi-type diagram. In the Voronoi-
type diagram, the union of these discs is divided into circular sectors (in blue) and
polygons (in red). The polygons constitute R0, while the specific Voronoi-type cells
{R(γ

(0)
i )} are not illustrated. Figure 4 provides an example of the Voronoi-type

diagram of three intersected balls in E3. The union of these 3-balls is divided into
spherical sectors (in red), double-cone cells (in yellow) and tetrahedrons (in blue),
respectively corresponding to the 2-patches, 1-patches (circular arcs) and 0-patches
(intersection points) on Γ.

In summary, the group of subregions {R(γ
(k)
i )} with 0 ≤ k ≤ d−1 and 1 ≤ i ≤ nk

provide a partition of Ω. In fact, for any point p ∈ Ω, we have p ∈ R(γ
(k)
i ) if and

only if p has a closest point in γ(k)
i . Therefore, this newly-proposed diagram allows

to find efficiently a closest point on Γ to p and consequently, to compute the signed
distance fΓ(p). We mention that the volume (resp. area) of the union of balls (resp.
discs) can be computed based on the Voronoi-type diagram, which will be presented
in Section 3.

3. Application I: volume of the union of d-balls. The Voronoi-type diagram
can be used to calculate the volume of Ω, given all components of Γ.

3.1. General formula. Consider an arbitrary k-patch γ(k)
i on Γ, 1 ≤ k ≤ d−1,

1 ≤ i ≤ nk. We suppose that γ(k)
i is part of a k-sphere with center c

(k)
i and radius
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Fig. 3. The power diagram (left) and the Voronoi-type diagram (right) of a same group of
circles in E2.

Fig. 4. The union of three intersected 3-balls (left) and its Voronoi-type diagram (right).

r
(k)
i . According to Eq. (2.27), we can compute
(3.1)

R(γ
(k)
i ) =

⋃
x∈γ(k)

i

conv(x, ci)

=

{
y | y = λx +

m∑
t=1

λtcit , x ∈ γ
(k)
i , λ+

m∑
t=1

λt = 1, 0 ≤ λ, λt ≤ 1

}
=
{
y | y = λx + (1− λ)z, x ∈ γ(k)

i , z ∈ conv(ci), 0 ≤ λ ≤ 1
}
,

where i = I(γ
(k)
i ) = {i1, i2, . . . , im}. Then, we propose the following lemma on

calculating the d-dimensional volume (d-volume) of the cell R(γ
(k)
i ) when k ≥ 1.

Lemma 3.1. The d-volume of R(γ
(k)
i ) can be characterized as follows

(3.2) Vol(d)
(
R(γ

(k)
i )
)

= r
(k)
i B(k + 1, d− k) Vol(k)

(
γ

(k)
i

)
Vol(d−k) (conv(ci)),

where Vol(k)(γ) denotes the k-volume of a k-dimensional surface γ, r(k)
i denotes the

radius of the k-sphere containing γ(k)
i and B(·, ·) is the Beta function.
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Proof. We define two sets Σ := γ
(k)
i − c

(k)
i and Π := conv (ci)− c

(k)
i , where c(k)

i is
the center of the k-sphere containing γ(k)

i . From Lemma 2.2, we then conclude that
Σ ⊥ Π. Further, Σ and Π are respectively of dimension k and d − k − 1. According
to Eq. (3.1), we can write R(γ

(k)
i ) as follows

(3.3)

R(γ
(k)
i ) =

{
y
∣∣ y = c

(k)
i +

r

r
(k)
i

σ +

(
1− r

r
(k)
i

)
τ, σ ∈ Σ, τ ∈ Π, 0 ≤ r ≤ r(k)

i

}
.

Since Σ ⊥ Π, the volume infinitesimal dy can be written as

dy =

(
r

r
(k)
i

)k(
1− r

r
(k)
i

)d−k−1

drdσdτ.

We can consequently compute

(3.4)

Vol(d)
(
R(γ

(k)
i )
)

=

∫ r
(k)
i

0

(
r

r
(k)
i

)k(
1− r

r
(k)
i

)d−k−1

dr

∫
Σ

dσ

∫
Π

dτ

= r
(k)
i

(∫ 1

0

λk(1− λ)d−k−1dλ

)
Vol(k)

(
γ

(k)
i

)
Vol(d−k−1) (conv(ci))

= r
(k)
i B(k + 1, d− k) Vol(k)

(
γ

(k)
i

)
Vol(d−k−1) (conv (ci)) .

where B(·, ·) is the Beta function [15].

We now consider an abitrary intersection point γ(0)
i with 0 ≤ i ≤ n0. Suppose

that γ(0)
i is an endpoint of some 1-patches denoted by {γ(1)

ij }j=1,...,Ki
. Recall that

ΛI(γ
(0)
i )

denotes the affine space defined in (2.7) . In the degenerate case, γ(0)
i lies in

the affine space ΛI(γ
(0)
i )

which is in this case of dimension

(3.5) dim
(

ΛI(γ
(0)
i )

)
≤ d− 1,

as presented in the proof of Lemma 2.2. In this case, γ(0)
i is actually generated by

a (d − 1)-sphere and a tangent affine space. According to Theorem 2.5, we have
R(γ

(0)
i ) ⊆ ΛI(γ

(0)
i )

and therefore,

(3.6) dim
(
R(γ

(0)
i )
)
≤ d− 1.

As a consequence, the volume of the Voronoi-type cell corresponding to a degenerate
intersection point is

(3.7) Vol(d)
(
R(γ

(0)
i )
)

= 0.

This implies that the degenerate intersection points can be ignored in the computation
of Vol(d) (R0). In the nondegenerate case, γ(0)

i is generated by the intersection of a
(d− 1)-sphere and some line passing through the sphere. In this case, there do exist
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some 1-patches (circular arcs) having γ
(0)
i as an endpoint, implying that Ki > 0.

Further, it holds that

(3.8) dim
(

ΛI(γ
(1)
ij )

)
= d− 2, ∀j = 1, 2, . . . ,Ki,

according to Lemma 2.2. Then, we can denote the (d − 1)-dimensional face corre-
sponding to γ(1)

ij by

(3.9) Fij := conv
(
γ

(0)
i , cI(γ

(1)
ij )

)
,

where cI(γ
(1)
ij )

is a set of spherical centers given by (2.6) and Fij is actually a tetrahe-
dron in some (d− 1)-hyperplane. We define the set of all nondegenerate intersection
points as P̃0. Then, we propose the following lemma for computing Vol(d) (R0) where
R0 is defined in (2.29).

Lemma 3.2. The volume of R0 can be computed as

(3.10) Vol(d)(R0) =

n0∑
i=1

Ki∑
j=1

1

d

(
nij · γ(0)

i

)
Vol(d−1) (Fij) ,

where nij denotes the outward-pointing normal vector of Fij. We make a convention
that nij = 0 when γ(0)

i is a degenerate intersection point.

Proof. Denote by R̃0 the union of all Voronoi-type cells associated with nonde-
generate intersection points in P̃0, that is,

(3.11) R̃0 = R
(
P̃0

)
.

According to the definition (2.29) of R0 and Eq. (3.7), we know that

(3.12) Vol(d) (R0) = Vol(d)
(
R̃0

)
.

Claim 3.3. The boundary of R̃0 can be characterized as

(3.13) ∂R̃0 =
⋃

1≤i≤n0
1≤j≤Ki

Fij
⋃
F0,

where F0 is some subset on ∂R̃0 with dim (F0) ≤ d− 2.

The proof of Claim 3.3 is presented in Appendix B. According to the Gauss-Green
theorem, we can further compute

(3.14)

Vol(d)(R̃0) =

∫
R̃0

1

d
(∇ · y) dy

=
1

d

∫
∂R̃0

(n · y) dσy

=

n0∑
i=1

Ki∑
j=1

1

d

∫
Fij

(nij · y) dσy

=

n0∑
i=1

Ki∑
j=1

1

d

(
nij · γ(0)

i

)
Vol(d−1) (Fij) ,
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Fig. 5. Schematic diagram of notations associated with a spherical patch γ with center c and
radius r. αj is the angle variation between two neighboring circular arcs ej−1 and ej at the vertex
vj of γ.

where dσy denotes the surface measure. In the last equality, we use the fact that Fij
lies in a hyperplane and nij · y is constant.

In summary, given the components of its boundary Γ, we obtain an explicit ex-
pression of the volume of the union of balls Ω according to Lemma 3.1 and 3.2 as
follows

(3.15)

Vol(d)(Ω) =

d−1∑
k=1

nk∑
i=1

r
(k)
i B(k + 1, d− k) Volk

(
γ

(k)
i

)
Vold−k (conv (ci))

+

n0∑
i=1

Ki∑
j=1

1

d

(
nij · γ(0)

i

)
Vol(d−1) (Fij) .

Remark 3.4. In E3, the volume formula (3.15) is more convenient to implement
than the power diagram, because one no more needs to compute the boundary poly-
gons of the power cells, which can be very technical [7].

3.2. Analytical volume in 3D. We have given an explicit formula of the vol-
ume of Ω, which is based on the Voronoi-type diagram. In the cases of E2 and E3, the
different components of Γ are not difficult to compute. In this subsection, we consider
the case of E3 as an illustration.

The boundary of the union of 3-balls is constituted by the intersection points,
the circular arcs (or circles) and the spherical 2-patches. The length of a circular
arc is easy to compute and the area of a spherical 2-patch can be computed by the
Gauss-Bonnet theorem [8]. For the sake of completeness, we present here the explicit
formula of the area of a spherical 2-patch γ with the notations in Figure 5 as follows
(see [16] for details)

(3.16)
∑
j

αj +
∑
j

kej |ej |+
1

r2
Area (γ) = 2πχ,

where αj is the angle at vertex vi between two neighboring circular arcs ej−1 and ej ,
kej is the geodesic curvature of ej , |ej | is the length of ej , Area (γ) is the area of γ.
In addition, χ is the Euler characteristic of γ, which equals to 2 minus the number of
loops forming the boundary of γ.

From the volume formulation (3.15) in the previous subsection, we obtain the
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Table 1
Volumes of the union of SAS-balls for different molecules. The VDW radii and atomic centers

are derived from the protein data bank [5]. The solvent probe’s radius is set to 1. N represents the
number of SAS-balls and Vol represents the volume.

Caffeine 1YJO 1ETN 1B17 101M 2K4C
N 24 67 160 483 1413 2443
Vol 5.0327e+02 2.1100e+03 2.9076e+03 1.2786e+04 3.3379e+04 3.8126e+04

volume of the union (still denoted by Ω) of balls in E3:

(3.17)

Vol(3)(Ω) =
1

3

n2∑
i=1

r
(2)
i Area(γ

(2)
i ) +

1

6

n1∑
i=1

r
(1)
i d

(1)
i

∣∣∣γ(1)
i

∣∣∣
+

1

3

n0∑
i=1

Ki∑
j=1

(
nij · γ(0)

i

)
Area (Fij) ,

where r(2)
i denotes the radius of the 2-patch γ(2)

i , r(1)
i denotes the radius of the circular

arc γ(1)
i , d(1)

i denotes the distance between the centers of the two spheres generating
γ

(1)
i .

Example 3.5. In Table 1, we compute the volumes of different solvent excluded
surface (SAS) cavities [16] constituted by SAS-balls in E3. Each SAS-ball is centered
at the corresponding atomic center and has a radius equal to the sum of the van der
Waals (VDW) radius and the solvent probe’s radius.

In a high-dimensional space Ed with d > 3, it is difficult or costly to compute the
surface volumes of the boundary components of Γ. As a consequence, it is not easy to
compute the analytical volume based on the use of the Voronoi-type diagram, unless
the boundary components are known. In the power diagram, the same difficulty also
exists. In Appendix C, we present how the Voronoi-type diagram can be used to
compute approximately the volume for a simple example in hight dimension. Next,
let us consider another application of the Voronoi-type diagram to characterize a
molecular surface.

4. Application II: characterization of the SES. For the sake of complete-
ness, we introduce briefly how the Voronoi-type diagram can be used in the charac-
terization of the “smooth” molecular surface in E3, which has been presented in the
previous work [16] of some of us.

In the implicit solvation models in quantum chemistry, the solute molecule is
commonly regarded as a union of atomic balls, such as the van der Waals balls.
Meanwhile, the solvent molecule can be simply idealized as a spherical probe. As
introduced in Example 3.5, the SAS denoted by Γsas is the boundary of the union
of the SAS-balls whose radii are equal to the sum of the VDW radii {ri}Ni=1 and the
fixed probe’s radius rp. Denote the signed distance function to the SAS by fsas in the
form of (2.2). The solvent excluded surface (SES, denoted by Γses) is defined as the
level set of fsas as follows

(4.1) Γses := f−1
sas (−rp),

which is a well-known concept in the chemistry community and is also called the
“smooth” molecular surface. For a better visual understanding, Figure 6 illustrates
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the SES of the molecule 1B17. It is observed that the SES is composed of three types
of patches: convex spherical patches (in red), toroidal patches (in yellow) and concave
spherical patches (in blue). These patches corresponds respectively to the 2-patches,
the 1-patches (circular arcs in yellow) and the 0-patches (intersection points in blue)
on Γsas.

Fig. 6. The SES of the molecule 1B17 with the solvent probe’s radius rp = 1.5. The green arcs
are SES-singularities.

The Voronoi-type diagram gives a partition of the SAS-cavity, i.e., a set of non-
overlapping cells. For a given point in the SAS-cavity, one can obtain its closest point
to Γsas by determining which cell this point lies in. This means that the signed distance
fsas is computable. Further, with the same notations as introduced previously, the
SES-patch P(k)

i corresponding to the spherical patch γ
(k)
i on Γsas can be written

mathematically as

(4.2) P(k)
i = R(γ

(k)
i ) ∩ f−1

sas (−rp) = R(γ
(k)
i ) ∩ f−1

γ
(k)
i

(−rp), ∀k = 0, 1, 2.

where f
γ
(k)
i

denotes the signed distance function to γ(k)
i in the cell R(γ

(k)
i ). In sum-

mary, the SES can be completely characterized based on the Voronoi-type diagram
(see more details in [16]).

Remark 4.1. Generally speaking, given an arbitrary surface in 3D, the signed
distance from a point to this surface is difficult (or expensive) to compute analytically.
However, in the case of the boundary of the union of balls, the Voronoi-type diagram
allows to compute this value directly.

Remark 4.2. Any point x ∈ R3 is singular (in the sense that fsas is nondifferen-
tiable at x) if and only if it has more than one closest points on Γsas. The Voronoi-type
diagram allows us to count the number of closest points for any point x. Therefore, the
singularities on the SES can be computed a priori, see [16]. This concept is generally
known as medial axis which is discussed in the next section.

5. Application III: medial axis. The medial axis of an object is the set of all
points having more than one closest points on the object’s boundary. This concept
was first introduced by Blum [6] and was originally referred to as the topological
skeleton. It has been showed that the medial axis of an object is always homotopy
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equivalent to the object itself [12]. Therefore, the medial axis is useful for shape
description. The problem is that computing the medial axis of a general object can
be difficult. Usually, the object is first approximated by a finite union of balls and
then the medial axis of this union of balls can be computed [2, 1, 10].

Based on the proposed Voronoi-type diagram of the union of d-balls, we study
the medial axis of a union of d-balls in different cells. We first consider the medial
axis in the Voronoi-type cell R(γ

(k)
i ), for a spherical k-patch γ(k)

i with 1 ≤ k ≤ d− 1.
According to Corollary 2.7, we can claim that conv(ci) is part of the medial axis where
i = I(γ

(k)
i ). The reason is that ∀x ∈ conv(ci), any point on γ(k)

i is a closest point of
x. Then, we consider the medial axis in R0. For an arbitrary intersection point γ(0)

i ,
we know that the set ∂R(γ

(0)
i )∩Vor(γ

(0)
i ) is part of the medial axis (see Section 2.3),

where each point has at least two intersection points as its closest points.
Here, we illustrate a simple example of the medial axis of caffeine molecule in

Figure 7.

Fig. 7. Medial axis of caffeine molecule, composed of red points, yellow line segments and blue
faces, respectively in different Voronoi-type cells.

6. Conclusion. In this article, we have proposed a Voronoi-type diagram of the
union of d-balls, which can be seen as an alternative to the well-known power diagram.
We have introduced some properties of this new diagram, as well as its applications
in the volume computation, the characterization of molecular surfaces and the medial
axis of a union of balls. At this moment, the applications of this diagram are restricted
to E2 and E3. We expect more possible applications in the high dimensional spaces
in the future.

Appendix A. Proof of Claim 2.6. First, we consider a sphere Sit 3 x for a
fixed 1 ≤ t ≤ m. According to the definition (2.19) and Eq. (2.21), we can compute

(A.1)

|ζs(x)− cit |2 − |x− cit |2

= |xns + α(x)v|2 − 2 (vt, xns + α(x)v)

=
(
α2(x)|v|2 + x2

)
+ 2xα(x) (ns,v)− 2α(x)(v,vt)− 2x(vt,ns)

= 2α(x)(v,v − vt)− 2x(vt,ns)

= 2x

[
−(vt,ns) +

x

|v|2(2− α(x))
(v,v − vt)

]
,

where in the third and forth equality, we use the fact that α2(x)|v|2 +x2 = 2α(x)|v|2
and (ns,v) = 0 as vr ∈ As.
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Since (x + λvt,ns) ≤ bs, ∀λ ≥ 0, we know that (vt,ns) ≤ 0. In the case of
(vt,ns) < 0, according to Eq. (A.1), there exists a small enough number εit > 0 such
that ∀x ∈ [0, εit ],

|ζs(x)− cit | ≥ |x− cit | = rit .

Besides, in the case of (vt,ns) = 0 implying vt ∈ As, according to Eq. (2.23) and
(A.1), we have ∀0 ≤ x ≤ |v|,

|ζs(x)− cit | ≥ |x− cit | = rit .

In particular, when t = t0, we have both (vt,ns) = 0 and (v,v − vt) = 0. As a
consequence,

|ζs(x)− cit | = |x− cit | = rit ,

which means that ζs(x) ∈ Sit0 . So far, we have proved that ∀x ∈ [0, εit ], ζs(x) does
not lie in the interior of Sit and lies on the sphere Sit0 .

Second, we consider a sphere Sj 6∈ {Si1 , Si2 , . . . , Sim} that does not contain x. In
this case, we have |x − cj | − rj > 0. Therefore, there exists a small number εj > 0
such that ∀x ∈ [0, εj ],

|ζs(x)− x| ≤ 1

2
(|x− cj | − rj).

This yields that ∀x ∈ [0, εj ],

|ζs(x)− cj | ≥ |x− cj | − |ζs(x)− x| ≥ 1

2
(|x− cj |+ rj) > rj ,

that is to say, ζs(x) lies outside the sphere Sj .
In summary, there exists a possibly small number ε > 0 such that ∀x ∈ [0, ε],

ζs(x) does not cross any sphere Si and lies on the sphere Sit0 , which implies that
ζs(x) ∈ Γ.

Appendix B. Proof of Claim 3.3 . Recall the definition of the face

(B.1) Fij := conv
(
γ

(0)
i , cI(γ

(1)
ij )

)
, 1 ≤ i ≤ n0, 1 ≤ j ≤ Ki.

Given a nondegenerate intersection point γ(0)
i and the associated 1-patch γ

(1)
ij , the

(d − 1)-face Fij is actually a subset of R̃0, since, according to Lemma 2.4, Fij is a
subset of R(γ

(0)
i ). Further, taking any point y ∈ γ(1)

ij , we have the following result

(B.2) R(y) = conv
(
y, cI(γ

(1)
ij )

)
⊆ R

(
γ

(1)
ij

)
.

As y tends to γ(0)
i , R(y) tends to Fij . Any interior point of R(y) has y as a unique

closest point, which implies that the interior of R(y) lies completely outside R̃0. For
any point x ∈ Fij , we can then find a sequence of points {xn} outside R̃0 converging
to x. Therefore, we have Fij ⊆ ∂R̃0.

It is sufficient to prove that any point x ∈ ∂R̃0 belongs to either some face Fij or
some set F0 with dim(F0) ≤ d− 2. ∂R̃0 can be divided into two sets

(B.3) U1 := {x ∈ ∂R̃0 | all closest points of x belong to P̃0},
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and

(B.4) U2 := {x ∈ ∂R̃0 | there exists a closest point of x not contained in P̃0}.

In the following content, we prove that if x ∈ U1, then x belongs to a certain face Fij ,
while if x ∈ U2, then x belongs to F0 which will be defined later.

Step 1: In the case of x ∈ U1, we can find a sequence of points {xn} in Ω\R0

such that xn tends to x. Correspondingly, there exists a sequence of points {an} on
Γ, where an is one closest point of xn. Since x has finitely many closest points in P̃0

and the total number of k-patches is finite, we can extract a subsequence of an such
that this subsequence lies on some k-patch γ(k) with k ≥ 1 and converges to some
nondegenerate intersection point γ(0)

i . Without loss of generality, we can therefore
suppose that an tends to γ(0)

i and an ∈ γ(k), ∀n. As a consequence, γ(0)
i is on the

boundary of γ(k) and further, there exists a 1-patch γ(1)
ij on γ(k), satisfying

(B.5) cI(γ(k)) ⊆ cI(γ
(1)
ij )

.

Due to the fact that

(B.6) xn ∈ conv
(
an, cI(γ(k))

)
,

we then have

(B.7) x ∈ conv
(
γ

(0)
i , cI(γ(k))

)
⊆ conv

(
γ

(0)
i , cI(γ

(1)
ij )

)
= Fij ,

by taking n→∞.
Step 2: In the case of x ∈ U2, we want to prove that x belongs to some F0.

According to the definition of U2, x has at least one closest point a that is not a
nondegenerate intersection point. Here, we mention the fact that for any point y
belonging to the open line segment ax with endpoints a and x, a is the unique closest
point of y on Γ, which can be easily proven by contradiction.

On the one hand, if a is not an intersection point, then a lies on some k-patch
γ(k) with k ≥ 1. According to Theorem 2.5, we know that

(B.8) R(a) = conv
(
a, cI(γ(k))

)
.

Considering that the latter convex hull, we obtain that x ∈ conv(cI(γ(k))) of dimension
dim(conv(cI(γ(k)))) ≤ d − 2, since otherwise, x will has a unique closest point on Γ.
On the other hand, if a is a degenerate intersection point, then we have a ∈ ΛI(a)

with dim
(
ΛI(a)

)
≤ d−1. Since R(a) ⊆ ΛI(a) according to Theorem 2.5, it holds that

dim (R(a)) ≤ d− 1. Here, we actually have a ∈ R(a) and R(a) is a convex set from
Lemma 2.4. Due to the fact mentioned above, we obtain that x ∈ R(a) only lies on
∂R(a) of dimension dim (∂R(a)) ≤ d− 2.

As the number of k-patches and degenerate intersection points are finite, we can
conclude that

(B.9) x ∈
⋃
k≥1

conv(cI(γ(k)))
⋃

γ
(0)
i 6∈P̃0

∂R(γ
(0)
i ), ∀x ∈ U2,

where γ(0)
i in the second union is taken as all degenerate intersection points. Note

that the union on the right-hand side of Eq. (B.9) is of dimension less than or equal
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Table 2
Centers and radii of 2-spheres.

S
(2)
12 S

(2)
13 S

(2)
14 S

(2)
23 S

(2)
24 S

(2)
34

center (0, 1
2
, 0, 0) ( 1

2
, 0, 0, 0) ( 1

2
, 1
2
, 0, 0) ( 1

2
, 1
2
, 0, 0) ( 1

2
, 1, 0, 0) (1, 1

2
, 0, 0)

radius
√

3
4

√
3
4

√
1
2

√
1
2

√
3
4

√
3
4

Next 788730 788730 0 0 788494 788494

to d− 2. This implies that dim(U2) ≤ d− 2. Therefore, we can define F0 = U2, which
satisfies dim(F0) ≤ d− 2.

Appendix C. Approximate volume in high-dimensional spaces. In the
high-dimensional space Ed with d > 3, one can also compute the approximate volume
of the union of d-balls based on Eq. (3.15). As mentioned above, the k-volume of
a spherical k-patch γ(k)

i on Γ can be difficult to compute analytically. Therefore, we
consider to use the Monte Carlo method to approximate the volume.

We first take a k-sphere denoted by S(k), which is formed by the intersection of
some (d− 1)-spheres (or only one sphere in the case of k = d− 1). Then, we generate
a set of uniformly distributed random points on this k-sphere, using the method in
[13]. Suppose that the total number of the random points is Ntot and there are Next

exterior points that are not covered by any d-ball. The k-volume of all k-patches lying
on S(k) can be approximated as follows

(C.1) Volext ≈
Next

Ntot
Vol(k)(S(k)),

which is actually the volume of the exterior part of S(k). With the approximate
volume Volext for each k-sphere, we can consequently compute Vol (Ω) according to
Eq. (3.15). Here is a simple example in the case of four spheres in E4.

Example C.1. Take four 4-balls {B1, B2, B3, B4} in E4 with the same radius 1
and the centers (0, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0) and (1, 1, 0, 0). Compute the approx-
imate volume of the union of these 4-balls.

First, there are four 3-spheres {S(3)
1 , S

(3)
2 , S

(3)
3 , S

(3)
4 } corresponding to the four 4-balls.

We take a set of 106 uniformly distributed random points on the unit 3-sphere, denoted
by P . For each 3-sphere with center c, we test: ∀s ∈ P , whether c+s is covered by any
other balls or not. We use the Monte Carlo method and count the number of exterior
points for each 3-sphere: 634184, 633896, 634385 and 633850. As a consequence,
according to Eq. (C.1), we can compute approximately

(C.2) Vol(3)

(⋃
i

γ
(3)
i

)
≈ 634184 + 633896 + 634385 + 633850

106
× 2π2.

Second, there are six 2-spheres {S(2)
12 , S

(2)
13 , S

(2)
14 , S

(2)
23 , S

(2)
24 , S

(2)
34 }, which are gener-

ated by the intersection of six pairs of 3-spheres. Then, we take 106 random points
on the unit 2-sphere and use the Monte Carlo method to approximate the area of
the exterior part of each 2-sphere. Here is the table of the centers, the radii and the
number of the exterior points on the 2-spheres.



20 X. DUAN, C. QUAN, AND B. STAMM

Again, according to Eq. (C.1), we can compute approximately

(C.3) Vol(2)

(⋃
i

γ
(2)
i

)
≈ 788730 + 788730 + 788494 + 788494

106
× 4π ×

(√
3

4

)2

.

Third, due to symmetry, there is only one 1-sphere (circle) and any point on it lies

on all those 3-spheres. This 1-sphere has center ( 1
2 ,

1
2 , 0, 0) and radius

√
1
2 , satisfying

(C.4) x1 =
1

2
, x2 =

1

2
, x2

3 + x2
4 =

1

2
,

where (x1, x2, x3, x4) denote the Cartesian coordinates. The length of this 1-sphere
is
√

2π. Note that there is no intersection point on the boundary of the union of
these 4-balls. According to Eq. (3.15), we can finally approximate the volume of Ω
as follows

(C.5)

Vol(4)(Ω) =
1

4
Vol(3)

(⋃
i

γ
(3)
i

)
+

1

6
Vol(2)

(⋃
i

γ
(2)
i

)
×

(
1

2

√
3

4

)

+
1

4
×
√

2π ×

(
1

3

√
1

2

)
≈ 14.92.

In the above simple example, we have presented how Eq. (3.15) can be used
to approximate the volume of the union of d-balls. However, this might not be the
most convenient way to approximate the volume. For instance, we can take a box
covering Ω and then use the Monte Carlo method with a set of uniformly distributed
points in the box. In this case, one no longer needs to consider the k-spheres, but
to test whether or not a sampling point is covered by any d-ball. In fact, we have
observed that the results from both methods trend to the same value when the number
of sampling points increases, which verifies Eq. (3.15). What one effectively gains
using Eq. (3.15) is the reduction of 1 dimension, which might be negligible for high
dimensions.
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