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Abstract

This paper formulates an utility indifference pricing model for investors trad-
ing in a discrete time financial market under non-dominated model uncertainty.
The investors preferences are described by strictly increasing concave random
functions defined on the positive axis. We prove that under suitable conditions
the multiple-priors utility indifference prices of a contingent claim converge to
its multiple-priors superreplication price. We also revisit the notion of certainty
equivalent for random utility functions and establish its relation with the abso-
lute risk aversion.
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1 Introduction

In this paper, we are examine different definitions of prices for a contingent claim and
their relation in the context of uncertainty. Risk and uncertainty are at the heart of
economic life, and modeling the way an agent will react to them is a central thematic
of the economic research (see for instance (?)). By uncertainty we refer to Knightian
uncertainty and we distinguish between the known unknown (risk) and unknown
unknown (uncertainty) as introduced by F. Knight (?). In other words the agent can-
not be certain about the choice of a given prior modelling the outcome of a situation.
Issues related to uncertainty arise in various concrete situations in social science and
economics, such as policy-making but also in many aspects of modern finance such as
model risk when pricing and risk-managing complex derivatives products or capital
requirement quantification when looking at regulation for banks and others finan-
cial entities. As illustrated for instance in the Ellsberg Paradox (see (?)), when facing
uncertainty an agent displays uncertainty aversion: she tends to prefer a situation
where the unknown unknown is reduced. This is the pendant of the risk aversion
when the agent faces only risk. And it is well known that if one wants to represent
the preferences of the agent in this context, the axiomatic of the von Neumann and
Morgenstern expected utility criterium (see (?)) are not verified even if the Savage’s
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extension (see (?)), where subjective probability measures depending on each agent
are introduced, is considered. In this paper, we follow the pioneering approach intro-
duced by (?) where under suitable axiomatic on the investor preferences, the utility
functional is of the form of a worst case expected utility: infP∈QEPU(·, X), where Q
is the set of all possible probability measures representing the agent’s beliefs. Note
that this approach can also be used for robustness considerations where a set of mod-
els resulting from small perturbations of the initial reference model is taken. This
is related for instance to the work of (?) where a term corresponding to the relative
entropy given a certain reference probability measure is added to the utility func-
tional. The framework of (?) was extended by (?) who introduced a penalty term to
the utility functional. Finally, (?) represent the preferences by a more general func-
tional infP∈QG(EPU(X), P ) where G is a so-called uncertainty index reflecting the
decision-maker’s attitudes toward uncertainty.

From an economic and practical point of view an important and welcome feature
is to consider a set of probability measures Q which is non-dominated. This means
that no probability measure determines the set of events that can happen or not. The
relevance of this idea is illustrated by the concrete example of volatility uncertainty,
see (?), (?)) and (?). However this increases significantly the mathematical difficulty
as some of the classical tools of probability theory such as conditional expectation
or essential supremum are ill-suited (since they are defined with respect to a given
probability measure). These type of issues have contributed to the development of
innovative mathematical tools such as quasi-sure stochastic analysis, non-linear ex-
pectations, G-Brownian motions. On these topics, we refer amongst others to (?), (?)
or (?).

The No Arbitrage (NA) notion is central to many problems in quantitative finance.
It asserts that starting from a zero wealth it is not possible to reach a positive one
(non negative almost surely and strictly positive with strictly positive probability).
The characterisation of this condition or of the No Free Lunch condition is called the
Fundamental Theorem of Asset Pricing (FTAP in short) and makes the link between
those notions and the existence of equivalent risk-neutral probability measures (also
called martingale measures or pricing measures) which are equivalent probability
measures that turn the (discounted) asset price process into a martingale. This was
initially formalised in (?), (?) and (?) while (?) obtain the FTAP in a general discrete-
time setting under the NA condition. The literature on the subject is huge and we
refer to (?) for a general overview. The martingale measures allow for pricing issues
and another fundamental result, the Superhedging Theorem (see for instance (?) or
(?)) relates those pricing measures to the set of no-arbitrage prices for a given con-
tingent claim. The so-called superreplication price is the minimal amount needed for
an agent selling a claim in order to superreplicate it by trading in the market. To the
best of our knowledge it was first introduced in (?) in the context of transaction costs.
This is a hedging price with no risk but unfortunately it is not always of practical use
as it is often too onerous: for example the superreplication price of a call option may
be equal to the underlying initial price in an incomplete market (see (?)).

All these concepts have seen a renewed interest in the context of uncertainty, see
amongst others (?), (?), (?), (?), (?), (?), (?), (?) and (?). In this paper, we have chosen
to work under the discrete-time framework introduced in (?). We outline briefly in
Sections ?? and ?? some of the interesting features of this framework, in particular
with respect to time-consistency.

Utility indifference price or reservation price was first introduced in ? in the
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context of transaction costs as the minimal amount of money to be paid to an agent
selling a contingent claim G so that added to her initial capital, her utility when
selling G and hedging it by trading dynamically in the market is greater or equal to
the one she would get without selling this product (see Definition ??). This notion of
price is linked to certainty equivalent and takes into account the preferences of the
agent. Unfortunately it is very difficult to compute outside the constant absolute risk
aversion case (i.e. for exponential utility functions).

Note also that the notions of superreplication or utility indifference pricing can be
related to the concept of risk measures introduced by (?) as illustrated in Propositions
?? and ??. For more details on risk measures in the context of multiple-priors we refer
for instance to (?), (?) and more recently (?).

Intuitively speaking, the utility indifference price allows for some preference base
risk-seeking behavior while the superreplication price corresponds to a totally risk
averse agent. In the paper we investigate the effect of increasing risk aversion on
utility based prices: when absolute risk aversion tends to infinity, the reservation
price should tend to the superreplication price. Our main contribution is presented in
Theorem ??. We consider a sequence of investors whose preferences are represented
by a sequence of random utility functions (see Definition ??) trading in a discrete-time
financial market in the presence of uncertainty. We establish that under suitable
conditions, the multiple-priors utility indifference prices of a given contingent claim
(for the seller) converge to its multiple-priors superreplication price. For non random
utility functions (see Theorem ??) those conditions are implied by the convergence to
infinity of the absolute risk-aversion (see Definition ??) of the agents.

In the mono-prior case for constant absolute risk averse agents, the convergence of
reservation prices to the superreplication price was shown by ? for Brownian models
and in ? in a general semimartingale setting. A nonexponential case was treated in ?,
but with severe restrictions on the utility functions. The case of general utilities was
considered in ? in discrete-time market models and in ? for continuous time ones.

To the best of our knowledge Theorem ?? is the first general asymptotic result
in the multiple-priors framework. Note that simultaneously ? obtains some con-
vergence result for a different utility based price and constant absolute risk averse
agents. In Theorem ??, we apply Theorem ?? and prove that the convergence result
occurs for a large class of non-random utility functions while in Proposition ?? we
obtain the pendant asymptotic result for the multiple-priors subreplication and util-
ity indifference buyer prices. We also show the convergence of the associated risk
measures (see Proposition ??).

To solve our problem, we use some arguments of (?) that are adapted to our
multiple-priors framework together with results of (?, Theorems 2.2 and 2.3). We
also use some elements of quasi-sure stochastic analysis as developed in (?) and (?).

We revisit as well, in a static context, the notion of certainty equivalent introduced
in (?). We extend it for random utility functions and in the presence of multiple-priors
and we establish that the absolute risk aversion allows the ranking of the multiple-
priors certainty equivalent despite the presence of uncertainty aversion (see Propo-
sition ??). This part is also related to (?) where an alternative notion of indifference
buyer (and seller) prices are introduced for non-random utility functions in a static
setting under the representation of (?).

The article is structured as follows: Section ?? presents our framework, some
definitions and results needed in the rest of the paper. Section ?? revisits the link
between certainty equivalent and absolute risk aversion in our set-up. Section ??
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presents the main theorem on the convergence of the utility indifference prices to
the superreplication price. Finally, Section ?? contains the remaining proofs and
technical results.

2 The model

This section presents our multiple-priors framework and the definitions of the sub-
and superreplication prices and of the utility buyer and seller indifference prices.

2.1 Uncertainty modelisation

We model uncertainty as in (?) and (?) and use similar notations as in (?).
For any Polish space X (i.e complete and separable metric space), we denote by B(X)
its Borel sigma-algebra and by P(X) the set of all probability measures on (X,B(X)).
For some P ∈ P(X) fixed, we denote by BP (X) the completion of B(X) with respect to
P and we introduce the universal sigma-algebra defined by Bc(X) :=

⋂
P∈P(X) BP (X).

It is clear that B(X) ⊂ Bc(X). In the rest of the paper, we will use the same notation
for P ∈ P(X) and for its (unique) extension on Bc(X). For a given Q ⊂ P(X), a set
N ⊂ X is called a Q-polar if for all P ∈ Q, there exists some AP ∈ Bc(X) such that
P (AP ) = 0 and N ⊂ AP . We say that a property holds true Q-quasi-surely (q.s.), if
it is true outside a Q-polar set. Finally we say that a set is of Q-full measure if its
complement is a Q-polar set. A function f : X → Y (where Y is an other Polish space)
is universally-measurable or Bc(X)-measurable (resp. Borel-measurable or B(X)-
measurable) if for all B ∈ B(Y ), f−1(B) ∈ Bc(X) (resp. f−1(B) ∈ B(X)). Similarly we
will speak of universally-adapted or universally-predictable (resp. Borel-adapted or
Borel-predictable) processes.
We fix a time horizon T ∈ N and introduce a sequence (Ωt)1≤t≤T of Polish spaces. We
denote by Ωt := Ω1 × · · · × Ωt, with the convention that Ω0 is reduced to a singleton.
An element of Ωt will be denoted by ωt = (ω1, . . . , ωt) = (ωt−1, ωt) for (ω1, . . . , ωt) ∈
Ω1×· · ·×Ωt and (ωt−1, ωt) ∈ Ωt−1×Ωt (to avoid heavy notation we drop the dependency
in ω0). For all 0 ≤ t ≤ T − 1, we denote by SKt+1 the set of universally-measurable
stochastic kernel on Ωt+1 given Ωt, see (?, Definition 7.12 p134, Lemma 7.28 p174).
Fix some 1 ≤ t ≤ T , Pt−1 ∈ P(Ωt−1) and pt ∈ SKt. Using Fubini’s Theorem, see (?,
Proposition 7.45 p175), we define a probability measure on Bc(Ωt) as follows

Pt−1 ⊗ pt(A) :=

∫
Ωt−1

∫
Ωt

1A(ωt−1, ωt)pt(dωt, ω
t−1)Pt−1(dωt−1), (1)

where A ∈ Bc(Ωt). To model the uncertainty we consider a family of random sets
Qt+1 : Ωt � P(Ωt+1), for all 0 ≤ t ≤ T − 1. The set Qt+1(ωt) can be seen as the set
of all possible models for the t + 1-th period given the state ωt until time t. From
the random sets (Qt+1)0≤t≤T−1 we build the sets of probability measures

(
Qt
)

1≤t≤T
where Qt governs the market until time t and determines which events are relevant
or not in Bc(Ωt). To do that, as in (?), (?), we have to make the following assumption
which is now classical in the recent litterature on multiple-priors models.

Assumption 2.1 For all 0 ≤ t ≤ T − 1, Qt+1 is a non-empty and convex valued
random set such that

Graph(Qt+1) =
{

(ωt, P ) ∈ Ωt ×P(Ωt+1), P ∈ Qt+1(ωt)
}

is an analytic set.
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Recall that an analytic set is the continuous image of some Polish space, see (?, Theo-
rem 12.24 p447), see also (?, Chapter 7) for more details on analytic sets. Assumption
?? allows to apply the Jankov-von Neumann Theorem (see for example (?, Proposition
7.49 p182)) and to get some universally-measurable selector qt+1 of Qt+1. Then, for
each time 1 ≤ t ≤ T , the set Qt ⊂ P(Ωt) is completely determined by the random sets
of one-step models Qs+1 (for s = 0, · · · , t− 1) in the following way

Qt := {Q1 ⊗ q2 ⊗ · · · ⊗ qt, Q1 ∈ Q1, qs+1 ∈ SKs+1, qs+1(·, ωs) ∈ Qs+1(ωs) Qs-a.s. s ∈ {1, . . . , t− 1}},
(2)

where we denote Qs := Q1 ⊗ q2 ⊗ · · · ⊗ qs for any 2 ≤ s ≤ t.
The technical Assumption ?? plays a key role to obtain measurability properties re-
quired to prove the FTAP, the Superreplication Theorem and also to apply a dynamic
programming procedure in multiple-priors utility maximisation problem (see for in-
stance (?), (?), (?) or (?)). More precisely, if Xt+1 : Ωt+1 → R is lower-semianalytic (see
(?, Definition 7.21)), then Xt : Ωt → R defined by

Xt(ω
t) = inf

P∈Qt+1(ωt)

∫
Ωt+1

Xt+1(ωt, ωt+1)P (dωt+1)

remains lower-semianalytic. More generally, this framework allows to construct fam-
ilies of dynamic sublinear expectations (see (?, Lemma 4.10) and also (?)). For similar
issues in the continuous-time setting we also refer also amongst others to (?), (?) and
(?). Apart from Assumption ??, we make no specific assumptions on the set of priors:
QT is neither assumed to be dominated by a given reference probability measure nor
to be weakly compact. For example, in the continuous-time case, dominated set of pri-
ors can arise when there is uncertainty on the drift of the underlying process while
non-dominated set of priors may arise if there is uncertainty on the volatility of this
process (see for example (?)). In the case of volatility uncertainty, the corresponding
set is however weakly compact (see for instance (?), (?), (?, Proposition 3) and also (?)).

We focus briefly on the time-consistency issue: how are the agent decisions or risk
evaluations at different times interrelated once the information has been updated.
Roughly speaking, time-consistency means that a decision taken tomorrow will sat-
isfies today’s objective. Recall that this issue appears already in mono-prior setting,
in the study of dynamic risk measures for instance, and is linked with the law of it-
erated conditional expectations and the dynamic programming principle. We refer to
the surveys (?) and (?) for detailed overviews.
Now when introducing multiple-priors one has to be even more careful with time-
consistency. In (?, Appendix D) a simple example illustrates what can happen if one
is not cautious on the structure of the initial set of priors: one cannot hope to find an
optimal solution using the dynamic programming principle when trying for instance
to maximise a worst case expected utility problem. To deal with this, one has to as-
sume that the set of prior is stable under pasting which roughly means that different
priors can be mixed together (see (?, Assumption 4)). Given (??), it is clear that our set
of priors are stable under pasting. Indeed, if Q1, Q2 ∈ QT with Q1 = Q1

1⊗ q1
2⊗· · ·⊗ q1

T ,
Q2 = Q2

1 ⊗ q2
2 ⊗ · · · ⊗ q2

T , then R := Q1
1 ⊗ q1

2 · · · ⊗ q1
t−1 ⊗ q2

t ⊗ · · · ⊗ q2
T ∈ QT for all

2 ≤ t ≤ T−1. In a sense, the setQT is large enough (unlike in the example considered
in (?, Appendix D) ). In (?, Definition 3.1) the equivalent notion of rectangularity is
introduced (see also (?, Sections 3, 4) for more details and a graphical interpretation).
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For 1 ≤ t ≤ T fixed, we introduce the following spaces

W0
t :=

{
X : Ωt → R ∪ {±∞}, Bc(Ωt)-measurable

}
,

W∞t :=W0
t ∩

{
X, ∃M ≥ 0, |X| ≤M Qt-q.s.

}
.

Finally, we will add a superscript + when considering non-negative elements (it will
be also used for denoting positive parts).

2.2 The traded assets and the trading strategies

Let S := {St, 0 ≤ t ≤ T} be a universally-adapted d-dimensional process where for
0 ≤ t ≤ T , St =

(
Sit
)

1≤i≤d represents the price of d risky securities in the finan-
cial market in consideration. To solve measurability issues, we make the following
assumption already present in (?) and (?).

Assumption 2.2 The price process S is Borel-adapted.

Trading strategies are represented by universally-adapted d-dimensional processes
φ := {φt, 1 ≤ t ≤ T} where for all 1 ≤ t ≤ T , φt =

(
φit
)

1≤i≤d represents the investor’s
holdings in each of the d assets at time t. The set of trading strategies is denoted by
Φ.
We assume that trading is self-financing and that the riskless asset’s price is constant
equal to 1. The value at time t of a portfolio φ starting from initial capital x ∈ R is
given by V x,φ

t = x+
∑t

s=1 φs∆Ss.

2.3 Multiple-priors no-arbitrage condition

As already eluded to in the introduction, the issue of no-arbitrage in the context of
uncertainty has seen a renewed interest. In this paper we follow the definition intro-
duced by (?) that we recall below. We outline briefly some of the interesting feature
of this definition. First it looks like a natural and intuitive extension of the classical
mono-prior arbitrage condition. This argument is strengthened by the FTAP gen-
eralisation proved by (?). Under appropriate measurability conditions the NA(QT )
is equivalent to the following: for all Q ∈ QT , there exists some P ∈ RT such that
Q� P where

RT := {P ∈ P(ΩT ), ∃Q′ ∈ QT , P � Q
′

and P is a martingale measure}. (3)

The classical notion of equivalent martingale measure is replaced by the fact that for
all priors Q ∈ QT , there exists a martingale measure P such that Q is absolutely
continuous with respect to P and one can find an other prior Q′ ∈ QT such that P is
absolutely continuous with respect to Q′. The extension in the same multiple-priors
setting of the Superhedging Theorem and subsequent results on worst-case expected
utility maximisation (see (?), (?), (?) and (?) is an other convincing element.

Assumption 2.3 The NA(QT ) condition holds true if for φ ∈ Φ, V 0,φ
T ≥ 0 QT -q.s.

implies that V 0,φ
T = 0 QT -q.s.

For the convenience of the reader we recall the following definition and proposi-
tion from (?) concerning the multiple-priors conditional support of the price incre-
ments or more precisely of its affine hull (denoted by Aff from now).
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Definition 2.4 For all 0 ≤ t ≤ T − 1 we define the random set Dt+1 : Ωt � Rd by

Dt+1(ωt) := Aff
(⋂{

A ⊂ Rd, closed, Pt+1

(
∆St+1(ωt, .) ∈ A

)
= 1, ∀Pt+1 ∈ Qt+1(ωt)

})
. (4)

Proposition 2.5 Assume that the NA(QT ) condition and Assumptions ??, ?? hold
true. Then for all 0 ≤ t ≤ T − 1, there exists some Qt-full measure set Ωt

NA ∈ Bc(Ωt)
such that for all ωt ∈ Ωt

NA, Dt+1(ωt) is a vector space. For all ωt ∈ Ωt
NA there exists

αt(ω
t) > 0 such that for all h ∈ Dt+1(ωt) there exists Ph ∈ Qt+1(ωt) satisfying

Ph

(
h

|h|
∆St+1(ωt, .) < −αt(ωt)

)
> αt(ω

t). (5)

Note that in (?), the equivalence between Assumption ?? and condition ?? is estab-
lished. In the case where there is only one risky asset and one period, the interpre-
tation of (??) is straightforward. It simply means that there exists a prior (i.e. some
probability P+) for which the price of the risky asset increases enough and an other
one (P−) for which the price decreases, i.e P± (∓∆S(·) < −α) > α where α > 0. The
number α serves as a measure of the gain/loss and of their size. Note that for an
agent buying or selling some quantity of the risky asset, there is always a prior in
which she is exposed to a potential loss
For all x ≥ 0, we introduce the set of terminal wealth including the possibility of
throwing away money defined by

CTx := {V x,φ
T , φ ∈ Φ} −W0,+

T . (6)

In the sequel we will write X ∈ CTx if there exists some φ ∈ Φ and Z ∈ W0,+
T such that

X = V x,φ
T − Z QT q.s. Under the assumptions of Lemma ?? (which will be crucial in

Section ??), the set CTx has a classical closure property (in the QT quasi-sure sense,
see (?, Theorem 2.2)).

Lemma 2.6 Assume that Assumptions ?? and ?? hold true. Fix some z ≥ 0 and let
B ∈ W0

T such that B /∈ CTz . Then there exists some ε > 0 such that

inf
φ∈Φ

sup
P∈QT

P (V z,φ
T < B − ε) > ε. (7)

Proof. Assume that (??) does not hold true. Then, for all n ≥ 1, there exist some
φn ∈ Φ such that P (Vn < B − 1

n) ≤ 1
n for all P ∈ QT , where Vn := V z,φn

T . Set Kn :=(
Vn − (B − 1

n)
)

1{Vn≥B− 1
n
} ∈ W

0,+
T , then Vn − Kn ∈ CTz . Moreover P (|Vn − Kn − B| >

1
n) = P (Vn < B− 1

n) ≤ 1
n for all P ∈ QT . Thus limn→∞ supP∈QT P (|Vn−Kn−B| > 1

n) = 0
and using Proposition ??, there exists a subsequence (nk)k≥1 such that (Vnk−Knk)k≥1

converges to B QT -q.s. (i.e. on a QT -full measure set). Applying (?, Theorem 2.2), we
get that B ∈ CTz , a contradiction. 2

Remark 2.7 Note that to apply (?, Theorem 2.2) we do not need Assumptions ?? to
hold true. Similarly it applies under a weaker assumption than Assumption ??.

2.4 Multiple-priors superreplication and subreplication prices

The multiple-priors superreplication price is the minimal initial amount that an
agent will ask for delivering some contingent claim G ∈ W0

T so that she is fully
hedged at T when trading in the market. The multiple-priors subreplication price
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is the maximal amount an agent will accept to pay in order to receive some contin-
gent claim while being fully hedge at T by trading in the market. Note that the
superreplication price is a seller price while the subreplication price is a buyer price.
We also introduce the set of strategies which dominate G QT -q.s. starting from a
given wealth x ∈ R

A(G, x) :=
{
φ ∈ Φ, V x,φ

T ≥ G QTq.s.
}
. (8)

Definition 2.8 Let G ∈ W0
T . The multiple-priors superreplication price of G is de-

fined by

π(G) := inf {z ∈ R, A(G, z) 6= ∅} , (9)

and π(G) = +∞ if A(G, z) = ∅ for all z ∈ R. The multiple-priors subreplication price
of G is defined by

πsub(G) := sup {z ∈ R, A(−G,−z) 6= ∅} , (10)

and πsub(G) = −∞ if A(−G,−z) = ∅ for all z ∈ R.

We recall now for the convenience of the reader (?, Theorem 2.3) slightly adapted
to our setup (the same comment as in Remark ?? applies)

Theorem 2.9 Assume that Assumptions ?? and ?? hold true and letG ∈ W0
T be fixed.

Then π(G) > −∞ and A(G, π(G)) 6= ∅.

If G is replicable, i.e if there exists some xG and φG ∈ Φ such that G = V xG,φG
T

QT -q.s., then π(G) = xG = π
(
V xG,φG
T

)
. Note that under some measurability assump-

tion on G, the Superreplication Theorem is still true: π(G) = supP∈RT EPG, see (?,
Superhedging Theorem) and (??) for the definition of RT .

Note that if G ∈ W∞T , it is clear that π(G) ≤ ||G||∞. This is the case if G represents
the payoff of a put option or a digital option but not for a call option. This illustrates
that the case G ∈ W∞T can be sometimes too restrictive especially in a multiple-priors
setting and explains why in the rest of the paper, we will try to avoid results limited
to W∞T . The price to pay is often related to integrability issues. The next lemma
resumes some basic results on superreplication prices.

Lemma 2.10 Let G ∈ W0
T then πsub(G) = −π(−G). Moreover π(G) = +∞ if and only

if A(G, z) = ∅ for all z ∈ R. If Assumption ?? holds true then π(0) = 0. If furthermore
Assumption ?? holds true and G ∈ W0,+

T , then π(G) = 0 implies that G = 0 QT -q.s.

Proof. The two first assertions are clear. By definition π(0) ≤ 0. Assume that π(0) < 0

and let ε > 0 such that π(0) < −ε. Then there exists some φ ∈ Φ such that V 0,φ
T ≥ ε > 0

QT -q.s. a contradiction withNA(QT ). For the last assertion, assume that there exists
some P ∈ QT such that P (G(·) > 0) > 0. Using Theorem ?? there exists φ0 ∈ Φ such
that V π(G),φ0

T ≥ G QT -q.s. Thus P (V 0,φ0
T > 0) > 0 which contradicts NA(QT ) . 2

We now turn to some pricing rules which takes into account the preferences of the
agents.
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2.5 Utility functions and utility indifference prices

In this paper we focus on utility function defined on the half-real line whose definition
follows.

Definition 2.11 A random utility function U : ΩT × (0,∞)→ R ∪ {−∞} satisfies the
following conditions

i) for every x > 0, U (·, x) : ΩT → R is universally-measurable,

ii) for all ωT ∈ ΩT , U
(
ωT , ·

)
: (0,∞) → R is concave, strictly increasing and twice

continuously differentiable on (0,∞).

We extend U by (right) continuity in 0 and set U(·, x) = −∞ if x < 0.

Example 2.12 We give some concrete examples of random utility functions. The first
one arises if the agent analyzes her gain or loss with respect to a (random) reference
point B rather than with respect to zero has suggested for instance by ?. Formally,
let U be a non-random function satisfying Definition ?? and B ∈ W∞,+T . Set for all
ωT ∈ ΩT , x ≥ 0, U(ωT , x) = U(x+ ||B||∞−B(ωT )) and U(ωT , x) = −∞ for x < 0. Then
it is clear that U satisfies also the condition of Definition ??.
The second example allows to consider random absolute risk aversion (see Definition
?? for the precise statement of this concept). The idea is to use classical utility func-
tions but with random coefficients. For example, we can consider U(ωT , x) = xβ1(ωT )

or U(ωT , x) = −e−β2(ωT )x for x ≥ 0 (and U(·, x) = −∞ for x < 0) where β1, β2 ∈ W0
T and

0 < β1(·) < 1, β2(·) > 0QT -q.s. We can imagine various situations for β2 (which can be
easily adapted for β1): β2 can be uniformly distributed on [βPmin, β

P
max] for all P ∈ QT

(with βPmax ≥ βPmin > 0) or alternatively it could follow a Poisson law of parameter
λP > 0 for all P ∈ QT .

We now turn to pricing issues and first define some particular sets of strategies for a
claim G ∈ W0

T and some x ∈ R (recall (??))

Φ(U,G, x) :=
{
φ ∈ Φ, EPU

+(·, V x,φ
T (·)−G(·)) < +∞,∀P ∈ QT

}
A(U,G, x) := Φ(U,G, x) ∩ A(G, x).

Note that for x ≥ π(G), A(U,G, x) might be empty. Indeed, from Theorem ?? there ex-
ists some φ ∈ A(G, x), but φmight not belong to Φ(U,G, x). In Lemma ?? we will prove
that under suitable conditions, A(G, x) = A(U,G, x) for all x ≥ 0. This is the reason
why in Φ(U,G, x) we do not consider strategies such that EPU−(·, V x,φ

T (·)−G(·)) <∞.

We now introduce the quantity u(G, x) which represents the maximum worst-case
expected utility starting from initial capital x and delivering G at the terminal date

u(G, x) := sup
φ∈A(U,G,x)

inf
P∈QT

EPU
(
·, V x,φ

T (·)−G(·)
)
, (11)

where u(G, x) = −∞ if A(U,G, x) = ∅.
We are now in position to define the (seller) multiple-priors utility indifference price
or reservation price, which generalizes in the presence of uncertainty, the concept in-
troduced by ?. It represents the minimal amount of money to be paid to an agent sell-
ing a contingent claim G so that added to her initial capital, her multiple-priors util-
ity when selling G and hedging it by trading dynamically in the market is greater or
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equal than the one she would get without selling this product. Similarly the (buyer)
multiple-priors utility indifference price represents the maximum amount of money
an agent is ready to pay in order to buy G so that subtracted to her initial capital,
her multiple-priors expected utility when buying G and hedging it by trading dynam-
ically in the market is greater or equal than the one she would get without buying
this product.

Definition 2.13 Let G ∈ W0
T be a contingent claim. The (seller) multiple-priors util-

ity indifference price is given by

p(G, x) := inf {z ∈ R, u(G, x+ z) ≥ u(0, x)} , (12)

where we set p(G, x) = +∞ if u(G, x+ z) < u(0, x), for all z ∈ R. The (buyer) multiple-
priors utility indifference price is given by

pB(G, x) := sup {z ∈ R, u(−G, x− z) ≥ u(0, x)} , (13)

where we set pB(G, x) = −∞ if u(−G, x− z) < u(0, x), for all z ∈ R.

It is easy to see that pB(G, x) = −p(−G, x). We will see in Lemma ??, that under
suitable integrability conditions p(G, x) ≤ π(G), for all G ∈ W0,+

T . Whatever the
preference of the agent is, she will always evaluate a reservation price which is lower
than the superreplication price. The superreplication price is, in the sense that we
will define below, the price corresponding to an infinite absolute risk averse agent.
The following proposition presents some other properties.

Proposition 2.14 We fix some x ≥ 0 and assume that Assumptions ?? and ?? hold
true and that u(0, x) > −∞.
1. Let G ∈ W0

T . Then p(G, x) ≥ π(G) − x > −∞, pB(G, x) ≤ πsub(G) + x < ∞. In
particular −x ≤ p(0, x) ≤ 0.
2. Let G ∈ W0,+

T and assume that EPU+(·, V x,φ
T (·)) < +∞, ∀φ ∈ Φ, ∀P ∈ QT . Then

p(G, x) ≥ p(0, x).
3. If u(0, x− δ) < u(0, x) for all δ > 0, then p(0, x) = pB(0, x) = 0.

Proof. 1. For any G ∈ W0
T since Assumptions ?? and ?? hold true, Theorem ?? yields to

π(G) > −∞. Let z ∈ R be such that x+z < π(G). By definition of π(G), A(G, x+z) = ∅
and thus u(G, x + z) = −∞ (see (??)). This implies that u(G, x + z) < u(0, x) and
recalling (??), we get that p(G, x) > z. Letting z go to π(G) − x, we obtain that
p(G, x) ≥ π(G)− x > −∞. Applying the preceding inequality to −G and recalling (??)
and (??), pB(G, x) ≤ πsub(G) + x < +∞. By definition p(0, x) ≤ 0 and −x ≤ p(0, x)
follows from π(0) = 0 (see Lemma ??).
2. The fact that p(G, x) ≥ p(0, x) for G ∈ W0,+

T follows from the monotonicity property
that will be proven in Proposition ?? below since the fact that EPU+(·, V x,φ

T (·)) < +∞,
∀φ ∈ Φ and ∀P ∈ QT implies that A(U,G, x) = A(G, x) and A(U, 0, x) = A(0, x).
3. We assume now that u(0, x − δ) < u(0, x) for all δ > 0. Then (??) implies that
p(0, x) ≥ 0 and p(0, x) = pB(0, x) = 0 follows immediately. 2

2.6 Risk measures

We make the link with monetary risk measures introduced in (?), see also (?). Recall
that a risk measure allows to quantify by some number ρ(X) a financial position
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described by some X ∈ X where X ⊂ W0
T is a linear space of random variables

(containing the constant random variables) and X(ωT ) represents the discounted net
worth of the position at the end of the trading period if the scenario ωT ∈ ΩT is
realized. More precisely,

Definition 2.15 A monetary risk measure is a mapping ρ : G ∈ X → ρ(G) ∈ R ∪
{±∞} that verifies
1. for G,H ∈ X , if G ≥ H QT -q.s., then ρ(G) ≤ ρ(H) (monotonicity),
2. if m ∈ R, then ρ(G+m) = ρ(G)−m (cash invariance).
The measure ρ is said to be a normalized if ρ(0) = 0 and convex if
3. for all 0 ≤ λ ≤ 1, G,H ∈ X , ρ(λG+ (1− λ)H) ≤ λρ(G) + (1− λ)ρ(H) (convexity).

We refer to (?, Section 4) (where similar definitions are introduced) for a detailed in-
terpretation of these properties.
We now discuss the relations with the multiple-priors sub- and superreplication prices
as well as with the buying and selling prices. From the cash invariance property, a
risk-measure can also be seen as a capital requirement: ρ(G) is the amount of cash
to be held in addition to the financial instrument G for the aggregate position to be
acceptable (from the point of view of a risk-manager, regulator,...). With this in mind,
the acceptance set of ρ is often defined by {G ∈ X , ρ(G) ≤ 0}. In our context, to
measure the risk of a position one can set for some x ≥ 0

ρx : G ∈ X → p(−G, x), (14)

see for example (?, Definition 1.2). We also consider the following measure

ρ : G ∈ X → π(−G). (15)

Assume for a moment that ρx and ρ verify the cash invariance property of Definition
??. We consider an agent with initial capital x who is willing to buy and hedge (by
trading dynamically in the market) an option whose non-negative payoff is repre-
sented by some G ∈ X+ for a price pb. Then we have that ρx(G − pb) = ρx(G) + pb =
p(−G, x) + pb = −pB(G, x) + pb (see (??) and (??)) and the position is acceptable for
the measure ρx as long as she can buy the contingent claim at or below her buyer
multiple-priors utility indifference price pB(G, x). From the point of view of the mea-
sure ρ, the position is acceptable as soon as ρ(G − pb) = π(−G) + pb = −πsub(G) + pb
(see Lemma ??) and the position is acceptable as long as she can buy the contingent
claim at or below her multiple-priors subreplication price πsub(G).

Alternatively, if the agent is now considering selling the option at price ps and
hedging it, the short position in the contingent claim is represented by −G ∈ X− and
in this case the risk of her position is measured by ρx(−G + ps) = ρx(−G) − ps =
p(G, x) − ps: this position will be acceptable if she can sell the option at or above
her seller multiple-priors utility indifference price. From the point of view of the
measure ρ the position will be acceptable if she can sell the option at or above her
multiple-priors superreplication price π(G).

Note finally that if ρx is a normalized convex monetary measure of risk onW0
T , we

have that 0 = ρx(0) ≤ 1
2 (ρx(G) + ρx(−G)). Recalling Definition ??, this implies that

psub(G, x) ≤ p(G, x). Similarly one gets πsub(G) ≤ π(G) (see Lemma ??).
The two following propositions establish that ρ and ρx (see (??) and (??)) are nor-

malized convex monetary measures of risk under some well chosen conditions.

Proposition 2.16 If Assumptions ?? and ?? hold true then ρ is a normalized convex
monetary measure of risk onW0

T .
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Proof. We prove 1. of Definition ??. Fix some G,H ∈ W0
T such that G ≥ H QT -q.s.

From Theorem ?? there exists φ ∈ Φ such that V π(−H),φ
T ≥ −H ≥ −G QT -q.s. and

π(−H) ≥ π(−G). The cash invariance and the convexity are also straightforward and
the normalization condition follows from Lemma ??. 2

Proposition 2.17 Let x ≥ 0 be fixed. Assume that A(U,G, x) = A(G, x) for all
G ∈ W0

T .
1. The mapping ρx is a monetary measure of risk onW0

T .
2. If Assumptions ?? and ?? hold true and u(0, x) > −∞ then ρx is a convex monetary
measure of risk on {G ∈ W0

T , u(−G, z) <∞,∀z ∈ R}.
3. If furthermore we assume that u(0, x− δ) < u(0, x) for all δ > 0, then ρx is normal-
ized.

Remark 2.18 It will be clear from the proof that the cash invariance property holds
true without the assumption that A(U,G, x) = A(G, x) for all G ∈ W0

T . We will give in
Proposition ?? and Lemma ?? some conditions under which A(U,G, x) = A(G, x) and
u(G, z) <∞. Those conditions are needed in order to prove our asymptotic result (see
Theorem ??). Note that if we assume that U is bounded from above the two preceding
conditions are obviously satisfied.

Proof. See Appendix 2

3 Absolute risk aversion and certainty equivalent

We present now a formal definition of the notion of absolute risk aversion for a gen-
eral random utility function.

Definition 3.1 For any function U satisfying Definition ??, the absolute risk aver-
sion is defined for all (ωT , x) ∈ ΩT × (0,+∞) by

r(ωT , x) := −U
′′
(ωT , x)

U ′(ωT , x)
.

In the mono-prior case, i.e when QT = {P}, the absolute risk aversion is related to
the notion of certainty equivalent. If the preferences of an agent are represented by
a non-random utility function U and given an asset whose payoff at maturity is G,
the certainty equivalent e(G,P ) is the amount of cash that will make her indifferent
(in the sense of the expected utility evaluation) between receiving the cash and the
asset G

EPU(e(G,P )) = U(e(G,P )) = EPU(G(·)).
The risk premium ρ(G,P ) := EPG(·)−e(G,P ) is the amount that the agent is ready to
lose in order to be indifferent (in the sense of the expected utility evaluation) between
the sure quantity EPG(·)− ρ(G,P ) and the random variable G since

EPU(EPG(·)− ρ(G,P )) = U(e(G,P )) = EPU(G(·)).

We will see in Proposition ?? that under suitable assumptions ρ(G,P ) ≥ 0. The risk
premium is thus a measure of the risk-aversion of the agent: the higher the risk
premium, the more risk-adverse the agent is.
The following proposition recalls the definition of the certainty equivalent in a mono-
prior framework but for random utility functions and proposes an extension to the
multiple-priors framework.
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Proposition 3.2 Let G ∈ W0,+
T such that G(·) < +∞ QT -q.s.

1. Assume that U is an utility function verifying Definition ??, such that
supP∈QT EPU

−(·, y) < +∞ for all y > 0, EPU+(·, 1) < +∞ and EP |U(·, G(·))| < +∞ for
all P ∈ QT .
1.a. For all P ∈ QT , there exists a unique constant e(G,P ) ∈ [0,+∞) such that

EPU(·, e(G,P )) = EPU(·, G(·)). (16)

1.b If furthermore G ∈ W∞,+T , supP∈QT EPU
−(·, G(·)) < ∞ and infP∈QT EPU

′(·, z) > 0
for all z > 0, then there exists also an unique e(G) ∈ [0, ||G||∞] such that

inf
P∈QT

EPU(·, e(G)) = inf
P∈QT

EPU(·, G(·)) (17)

and in this case, we have that e(G) ≥ infP∈QT e(G,P ). We call e(G) the multiple-
priors certainty equivalent of G.
2. Assume now that U is a non-random utility function verifying Definition ?? such
that Dom U = {x ∈ R, U(x) > −∞} = (0,∞), EPU+(G(·)) < ∞ for all P ∈ QT and
also supP∈QT EPU

−(G(·)) < ∞. Then, there exists some unique e(G,P ) and e(G) in
[0,∞) such that

U(e(G,P )) =EPU(G(·)), ∀P ∈ QT (18)
U(e(G)) = inf

P∈QT
EPU(G(·)). (19)

Moreover, e(G,P ) ≤ EPG(·) for all P ∈ QT and

e(G) = inf
P∈QT

e(G,P ) ≤ inf
P∈QT

EPG(·).

Furthermore the multiple-priors risk premium defined by ρ(G) := supP∈QT ρ(G,P )
satisfies

0 ≤ ρ(G) ≤ sup
P∈QT

EPG(·)− e(G).

Remark that (??) is true assuming only that EPU−(G(·)) <∞ for all P ∈ QT .
Proof. See Appendix. 2

Finally, we consider two investors A and B with respective non-random utility
functions UA and UB satisfying Definition ??. Recall that in the mono-prior case
with QT = {P} investor A has greater absolute risk-aversion than investor B (i.e.
rA(x) ≥ rB(x) for all x > 0) if and only if investor A is globally more risk averse
than investor B, in the sense that the certainty equivalent of every contingent claim
is smaller for A than for B (i.e eA(G,P ) ≤ eB(G,P ) for any G ∈ W0,+

T ), see (?). We
propose the following generalization of this result in the multiple-priors framework.

Proposition 3.3 Let UA, UB be non-random utility functions with domain equal to
(0,∞) verifying Definition ??. Let

W+
T (U) :=W0,+

T ∩

{
G, G(·) < +∞ QT -q.s., EPU+(G(·)) <∞, ∀P ∈ QT , sup

P∈QT
EPU

−(G(·)) <∞

}
.

1. If for all x > 0, rA(x) ≥ rB(x) then eA(G) ≤ eB(G) for all G ∈ W+
T (U).

2. If for all G ∈ W+
T (U), eA(G) < eB(G) then rA(x) ≥ rB(x) for all x > 0.

13



Proof. See Appendix. 2

We prove in Proposition ?? that the absolute risk aversion allows the ranking
of the multiple-priors certainty equivalent despite the presence of uncertainty (and
thus uncertainty aversion). The reason for this is related to the specific multiple-
priors representation we have chosen. For more details we refer to (?, Theorem 5,
Example 2).

4 Convergence of utility indifference prices

Intuitively speaking an agent who is totally risk averse will use the superreplication
price : whatever the possible outcome (where possible outcomes are defined by a set
of probability measures), she doesn’t want to incur any loss (see (??)). We are going
to prove that under suitable assumptions the utility indifference price goes to the su-
perreplication price. For non-random utility functions, the convergence result holds
when the absolute risk reversion goes to infinity.
First we give some intuition of this result and show that for a utility function that
has a sort of infinite absolute risk aversion, the utility indifference price is equal
to the superreplication price for some contingent claim G ∈ W0,+

T . Fix some x ≥
π(G) and introduce the following utility function U∞ : R → R ∪ {−∞} defined by
U∞(y) = −∞1(−∞,x)(y). Note that the absolute risk aversion of U∞ is not defined.
However Un(y) = −e−n(y−x) for y ≥ 0 and Un(y) = −∞ for y < 0 satisfies Defini-
tion ?? and for y ≥ 0 fixed with y 6= x, limn→+∞ Un(y) = U∞(y). Then the absolute
risk aversion of the utility function Un satisfies limn→+∞ rn(y) = +∞ for all y ≥ 0.
Hence, one may say that U∞ has an infinite absolute risk aversion. We now show
that the superreplication price of G ∈ W0,+

T is equal to its utility indifference price
evaluated with the function U∞. Since for all φ ∈ Φ, y ∈ R, U+

∞(V y,φ
T (·) − G(·)) = 0,

we have that Φ(U∞, G, y) = Φ(U∞, 0, y) = Φ and A(U∞, y) = A(U∞, G, y). More-
over A(U∞, G, y) is not empty for all y ≥ π(G) (see Theorem ??). First, it is easy
to see that u∞(0, x) = 0. Now we fix some 0 ≤ z < π(G) and φ ∈ A(U∞, G, x + z).
There exists some P ∈ QT such that P (V z,φ

T (·) − G(·) < 0) > 0 or equivalently
P (V z+x,φ

T (·) − G(·) < x) > 0 which implies that EPU∞(·, V x+z,φ
T (·) − G(·)) = −∞.

Hence for all φ ∈ A(U∞, G, x + z), infP∈QT EPU∞(·, V x+z,φ
T (·) −G(·)) = −∞ and it fol-

lows that u∞(G, x + z) = −∞ < u∞(0, x). From the definition of p(G, x) we get that
p(G, x) ≥ z and letting z go to π(G), p(G, x) ≥ π(G). Combining this with Lemma ??
below we have that p(G, x) = π(G).

Now we state precisely our convergence result. We consider a sequence of utility
functions (see Definition ??) Un : ΩT × R → R ∪ {−∞}, n ≥ 1 and some contingent
claim G ∈ W0,+

T . We denote for all n ≥ 1, x ≥ 0, ωT ∈ ΩT

un(G, x) := sup
φ∈A(Un,G,x)

inf
P∈QT

EPUn

(
·, V x,φ

T (·)−G(·)
)

(20)

pn(G, x) := inf {z ∈ R, un(G, x+ z) ≥ un(0, x)} (21)

rn(ωT , x) := −U
′′
n (ωT , x)

U ′n(ωT , x)
. (22)
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We review the assumptions needed in Theorem ?? in order to have the convergence
result.

Assumption 4.1 We have that ∆St,
1
αt
∈ Wr

t for all 1 ≤ t ≤ T and 0 < r < ∞ where
Wr
t :=

{
X : Ωt → R ∪ {±∞}, Bc(Ωt)-measurable, supP∈Qt EP |X|r <∞

}
.

Note that as in (?, Propositions 14 and 15) one can prove that for all r ∈ [1,∞],
Wr
t is a Banach space (up to the usual quotient identifying two random variables

that are Qt-q.s. equal) for the norm ||X||r,t :=
(
supP∈Qt EP |X|r

) 1
r if r < ∞ and

||X||∞,t := inf{M ≥ 0, X(·) ≤M Qtq.s.}. We will omit the index t when t = T .
In the light of Proposition ??, the condition 1

αt
∈ Wr

t is a kind of strong form of no-
arbitrage. Note that if αt is not constant, then even in the mono-prior case utility
maximisation problem may be ill posed (see Example 3.3 in ?), so an integrability
assumption on 1

αt
looks reasonable. Assumption ?? could be weakened to the exis-

tence of the WN
T -th moment for N large enough but this would lead to complicated

book-keeping with no essential gain in generality, which we prefer to avoid.
The asymptotic result for general random utility functions will be stated for some

fixed x0 > 0. However in the case of non-random utility functions we can avoid
Assumption ?? below and obtain the convergence result for all x > 0. We can also
use the natural assumption that limn→+∞ rn(x) = +∞ instead of Assumption ??, see
Theorem ??.
The first assumption states that Un is sufficiently measurable and regular in x0.

Assumption 4.2 We have that supn ||U±n (·, x0)||1 <∞ and that supn ||U ′n(·, x0)||q <∞
for some q > 1.

Remark 4.3 If we assume that supn U
±
n (·, x0) ∈ W1

T and that there exists some q > 1
such that supn ||U

′
n(·, x0)||q < ∞, then Assumption ?? is verified. Indeed let’s prove

for instance that supn ||EPU+
n (·, x0)||1 < +∞. For all P ∈ QT , n ≥ 1 we have that

EPU
+
n (·, x0) ≤ EP supn U

+
n (·, x0) and it follows that supn supP∈QT EPU

+
n (·, x0) ≤ || supn U

+
n (·, x0)||1.

We postulate now the assumption which will play the role of the convergence of the
absolute risk aversion to infinity for random utility function.

Assumption 4.4 For all 0 ≤ x < x0 and M ≥ 0,

lim
n→+∞

inf
P∈QT

P (Un(·, x) ≤ −M) = 1. (23)

Assumption ?? means that Un(·, x) goes to −∞ with respect to infP∈QT P for all 0 ≤
x < x0. We propose a first lemma with an alternative condition to (??).

Lemma 4.5 Suppose that for all n ≥ 1, Un verifies Assumption ?? and that for all
ε > 0 such that x0 > ε and all C ≥ 0

lim
n→∞

inf
P∈QT

P

({∫ x0

x0− ε2
U ′′n(·, v)dv < −C

ε

})
= 1. (24)

Then Assumption ?? holds true.
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Proof. Fix some ε > 0 such that x0 > ε and M ≥ 0. For all ωT ∈ ΩT Un(ωT , x0 −
ε) = Un(ωT , x0) −

∫ x0
x0−ε U

′
n(ωT , u)du. Using that U ′n(ωT , ·) is non-negative and non

decreasing (see Definition ??), we obtain that

Un(ωT , x0 − ε) +
ε

2
U ′n

(
ωT , x0 −

ε

2

)
≤ Un(ωT , x0 − ε) +

∫ x0− ε2

x0−ε
U ′n(ωT , v)dv ≤ Un(ωT , x0).

Now

U ′n

(
ωT , x0 −

ε

2

)
= U ′n(ωT , x0)−

∫ x0

x0− ε2
U ′′n(ωT , v)dv ≥ −

∫ x0

x0− ε2
U ′′n(ωT , v)dv

and all together

Un(ωT , x0 − ε) ≤ |Un(ωT , x0)|+ ε

2

∫ x0

x0− ε2
U ′′n(ωT , v)dv.

We fix some η > 0 and show that there exists someNη > 0 such that infP∈QT P (|Un(·, x0)| ≤ Nη) >
1− η

2 for all n. Indeed using (?, Lemma 13) and Assumption ?? we get that

sup
P∈QT

P (|Un(·, x0)| > k) ≤ 1

k
sup
P∈QT

EP (|Un(·, x0)|) ≤ 1

k
sup
n
‖Un(·, x0)‖1.

Thus there exists Nη > 0 such that supP∈QT P (|Un(·, x0)| > Nη) <
η
2 for all n. From

(??) with C = 2(Nη +M), there exists N = N(η,M, ε) such that for all n ≥ N ,

inf
P∈QT

P (Un(·, x0 − ε) ≤ −M)

≥ inf
P∈QT

P

(
{|Un(·, x0)| ≤ Nη} ∩

{∫ x0

x0− ε2
U ′′n(ωT , v)dv < −2(Nη +M)

ε

})

≥ inf
P∈QT

P ({|Un(·, x0)| ≤ Nη}) + inf
P∈QT

P

({∫ x0

x0− ε2
U ′′n(ωT , v)dv < −2(Nη +M)

ε

})
− 1

> 1− η.

Thus, (??) is proved for all x = x0 − ε > 0. Since Un is (strictly) increasing (??) is also
true for x = 0 and this concludes the proof.

2

We provide another lemma which gives sets of assumptions under which (??) (and
thus Assumption ?? under Assumption ??) is satisfied. It is stated under the assump-
tion that Un is strictly increasing in x0 uniformly in n.

Lemma 4.6 Let ε > 0 such that x0 > ε and C ≥ 0. Assume that there exists a strictly
positive random variable λ such that U ′n(ωT , x0) ≥ λ(ωT ) for all ωT ∈ ΩT , n ≥ 1 and
that either 1., 2. or 3. below are satisfied. Then (??) is verified.
1. For all n and ωT ∈ ΩT , U ′′n(ωT , ·) is non decreasing, and

lim
n→∞

inf
P∈QT

P

({
λ(·)rn(·, x0) >

2C

ε2

})
= 1. (25)

2. We have that

lim
n→∞

inf
P∈QT

P

(
λ(·)

∫ x0

x0− ε2
rn(·, v)dv >

C

ε

)
= 1. (26)

3. There exists some deterministic functions (rn)n≥1 satisfying limn rn(x) = +∞ and
rn(ωT , x) ≥ rn(x) for all x ∈ (0, x0].
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Remark 4.7 1. If we only assume that limn→+∞ rn(ωT , x) = +∞ for all x ∈ (0, x0],
ωT ∈ ΩT we cannot deduce a priori 2. Indeed applying Fatou’s Lemma we get that for
all ωT ∈ ΩT , there exists NωT such that for all k ≥ NωT , λ(ωT )

∫ x0
x0− ε2

rn(ωT , v)dv > C
ε ,

which means that

ΩT = ∪n ∩k≥n

{
λ(·)

∫ x0

x0− ε2
rk(·, v)dv >

C

ε

}
and using (?, Theorem 1) this implies that

lim
n→∞

sup
P∈QT

P

(
λ(·)

∫ x0

x0− ε2
rn(·, v)dv >

C

ε

)
= 1.

2. For assertion 1. that power utility functions or exponential utility functions
(with random coefficients, see Example ?? for the precise conditions) are examples
where U ′′n(ωT , ·) is non decreasing for all n and ωT ∈ ΩT .

3. Note lastly that it is easy to see that Definition ?? ii) or λ > 0 or Un strictly
increasing in x0 uniformly in n can be postulate only on a QT -full measure set.

Proof of Lemma ??. We start with 1. Since for all n and ωT ∈ ΩT , U ′′n(ωT , ·) is non
decreasing and U ′n(ωT , x0) ≥ λ(ωT ), we get that∫ x0

x0− ε2
U ′′n(·, v)dv ≤ ε

2
U ′′n(·, x0) = −ε

2
U ′n(·, x0)rn(·, x0) ≤ −ε

2
λ(·)rn(·, x0).

Thus (??) implies (??). For 2. since for all n and ωT ∈ ΩT , U ′n(ωT , x0) ≥ λ(ωT ), we get
that ∫ x0

x0− ε2
U ′′n(·, v)dv = −

∫ x0

x0− ε2
U ′n(·, v)rn(·, v)dv ≤ −λ(·)

∫ x0

x0− ε2
rn(·, v)dv.

Thus (??) implies (??). For 3. we prove that 2. holds true. Indeed Fatou’s Lemma
implies that limn→∞

∫ x0
x0− ε2

rn(v)dv = +∞ and we conclude since {λ(·)
∫ x0
x0− ε2

rn(v)dv >
C
ε } ⊂ {λ(·)

∫ x0
x0− ε2

rn(·, v)dv > C
ε }. 2

Example 4.8 We give a concrete example of some random utility function satisfying
Definition ?? and Assumptions ?? and ??. For all n ≥ 1, let Rn be a random variable
uniformly distributed in [bn, Bn] for all P ∈ QT with bn > 0, limn→∞ bn = +∞ and
B3
n − b3n < A for some A > 0. Note that as bn > 0 and limn→∞ bn = +∞, there exists

some b > 0 such that bn ≥ b for all n ≥ 1. Set now Un(ωT , x) = −e−Rn(ωT )(x−1) for
x ≥ 0 and Un(ωT , x) = −∞ for x < 0. We choose x0 = 1. As U ′n(·, 1) = Rn(·) ≥ b > 0

QT q.s., Un(·, 1) is uniformly increasing in n and ωT . Now ||U ′n(·, 1)||22 = B3
n−b3n

3 , thus
supn ||U ′n(·, 1)||2 < ∞. Then as Un(·, 1) = −1, Assumption ?? holds true. Finally for
all n ≥ 1, x > 0 and ωT ∈ ΩT we have rn(ωT , x) = Rn(ωT ) ≥ bn and limn bn = +∞, so
using Lemmata ?? and ??, Assumption ?? is verified.

Theorem 4.9 Let G ∈ W0,+
T and G 6= 0 QT -q.s. Assume that Assumptions ??, ??, ??

and ?? holds true as well as Assumptions ?? and ?? for some x0 > 0. For all n ≥ 1,
pn(G, x0) is well defined and limn→+∞ pn(G, x0) = π(G).

If G = 0QT -q.s. then π(G) = 0 (see Lemma ??) but in order to have that pn(G, x0) = 0,
one have to make further assumptions (see Proposition ??).
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Theorem 4.10 Let G ∈ W0,+
T G 6= 0 QT -q.s. Assume that Assumptions ??, ??, ??, ??

hold true. Assume furthermore that Un is a non-random utility function for all n ≥ 1
and that limn→∞ rn(x) = +∞. Then limn→+∞ pn(G, x) = π(G) for all x > 0.

Proof of Theorem ??. We fix some x > 0. As in (?), we replace Un by Ûn := αnUn + βn
for some αn > 0 and βn ∈ R, Ûn is still a non-random, concave, strictly increasing and
twice continuously differentiable function. The absolute risk aversion and the utility
indifference price for Un and Ûn (see (??)) are the same. Now, choosing αn = 1

U ′n(x) and

βn = −Un(x)
U ′n(x) we have that Ûn(x) = 0 and Û ′n(x) = 1 for all n ≥ 1. Thus Ûn satisfies

Assumptions ?? for x0 = x. Using Lemmata ?? and ??, Assumption ?? for Ûn holds
true for x0 = x and Theorem ?? applies to Ûn. 2

Recalling the definition of the subreplication price (see (??)) and the buyer multiple-
priors utility indifference price (see (??)), the following proposition is a simple conse-
quence of Theorem ??.

Proposition 4.11 Let G ∈ W∞,+T such that G 6= 0 QT -q.s. Assume that Assumptions
??, ??, ?? and ?? holds true as well as Assumptions ?? and ?? for some x0 > 0. Then,
for all n ≥ 1, pBn (G, x0) is well defined and limn→+∞ p

B
n (G, x0) = πsub(G).

Proof of Proposition ??. Let Ĝ = −G+ ||G||∞ ∈ W0,+
T . We apply Theorem ?? to Ĝ and

get that limn→∞ pn(Ĝ, x0) = π(Ĝ). From the cash invariance property in Proposition
??, we have that π(Ĝ) = π(−G) + ||G||∞ = −πsub(G) + ||G||∞, see Lemma ??. Now for
n ≥ 1, using the cash invariance property in Proposition ?? and recalling (??) we ob-
tain that pn(Ĝ, x0) = pn(−G, x0) + ||G||∞ = −pBn (G, x0) + ||G||∞ and the result follows.
2

Recalling the definition of the risk measures ρnx0 and ρ (see (??) and (??)), the fact
that pB(G, x) = −p(−G, x) and πsub(G) = −π(−G) (see Lemma ??), Proposition ?? can
be reformulated in terms of risk measures.

Proposition 4.12 Assume that Assumptions ??, ??, ?? and ?? holds true as well
as Assumptions ?? and ?? for some x0 > 0. Then limn→+∞ ρ

n
x0(G) = ρ(G) for all

G ∈ W∞,+T such that G 6= 0 QT -q.s.

The following proposition shows that whatever the strategy is, the wealth is uni-
formly bounded.

Proposition 4.13 Fix some x ≥ 0. Assume that Assumptions ??, ??, ??, ?? and ??
hold true. Then for all φ ∈ A(0, x) and for all 1 ≤ t ≤ T , we have for Qt-q.s. all ωt ∈ Ωt

that

|V x,φ
t (ωt)| ≤ x

t∏
s=1

(
1 +

|∆Ss(ωs)|
αs−1(ωs−1)

)
:= xMt(ω

t), (27)

where M1 = 1. Furthermore for all 1 ≤ t ≤ T , we have that Mt ≥ 1, that Mt, V
x,φ
t ∈

Wr
t for all r ∈ [0,∞) and that for all P ∈ QT and n ≥ 1

EPU
+
n (·, V x,φ

T (·)) ≤ Kx, (28)

where Kx := supn ||U+
n (·, x0)||1 + x||MT (·)||p supn ||U ′n(·, x0)||q < ∞ and where q is de-

fined in Assumption ?? and p is such that 1
p + 1

q = 1.
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Proof. See Appendix. 2

Lemma 4.14 Assume that Assumptions ?? and ?? hold true. Fix some G ∈ W0
T , x ≥ 0

and some random utility function U verifying Definition ??.
1. Assume that A(U,G, π(G) + x) = A(G, π(G) + x). Then p(G, x) ≤ π(G).
2. Assume that A(U,−G, π(−G) + x) = A(−G, π(−G) + x). Then πsub(G) ≤ pB(G, x).
3. Assume that Assumptions ?? and Assumption ?? stated for x hold true and that
G ∈ W0,+

T . Then for all n ≥ 1, A(Un, G, x) = A(G, x) and un(G, x) <∞.

Proof. 1. We apply Theorem ?? and obtain some φG ∈ A(G, π(G)). As U is non-
decreasing we have that

u(0, x) = sup
φ∈A(U,0,x)

inf
P∈QT

EPU(·, V x,φ
T (·)) ≤ sup

φ∈A(U,0,x)
inf

P∈QT
EPU

(
·, V x+π(G),φ+φG

T (·)−G(·)
)

≤ sup
φ∈A(U,G,x+π(G))

inf
P∈QT

EPU
(
·, V x+π(G),φ

T (·)−G(·)
)

= u(G, x+ π(G)),

where the second inequality follows from the fact that when φ ∈ A(U, 0, x) ⊂ A(0, x),
φ+φG ∈ A(G, π(G) +x) = A(U,G, π(G) +x) by assumption. So p(G, x) ≤ π(G) follows
from (??).
2. Now if A(U,−G, π(−G) + x) = A(−G, π(−G) + x), we obtain that p(−G, x) ≤ π(−G)
and recalling (??) and (??), we get that πsub(G) ≤ pB(G, x).
3. If A(G, x) = ∅ then A(Un, G, x) = ∅ and un(G, x) = −∞ < ∞ for all n ≥ 1. We
assume now that A(G, x) 6= ∅. For all n ≥ 1, using the monotonicity of Un, the fact
that G ≥ 0 QT -q.s., Proposition ?? (see (??)), we get that for any φ ∈ A(G, x) and
P ∈ QT

EPU
+
n (·, V x,φ

T (·)−G(·)) ≤ EPU+
n (·, V x,φ

T (·)) ≤ Kx <∞ (29)

Hence the integrals in (??) are well defined and we get that A(Un, G, x) = A(G, x).
The fact that un(G, x) <∞ for all n ≥ 1 follows immediately from (??). 2

To prove Theorem ?? we borrow some ideas of (?) adapted to the multiple-priors case.
Proof of Theorem ??. Since G ∈ W0,+

T is such that G 6= 0 QT -q.s., π(G) > 0 (see
Lemma ?? and the monotonicity property in Proposition ??). From Assumption ??,
supn ||U+

n (·, x0)||1 < ∞, so that 0 ∈ A(Un, 0, x0) (recall that x0 > 0) for all n ≥ 1 . This
implies that for all n ≥ 1

un(0, x0) ≥ inf
P∈QT

EPUn(·, x0) ≥ − sup
n
||U−n (·, x0)||1 > −∞, (30)

using Assumption ??.
We treat first the case π(G) = +∞. By definition for all x ∈ R, n ≥ 1, ∅ = A(G, x) =
A(Un, G, x) and recalling (??), un(G, x0 +z) = −∞ for all z ∈ R. Recalling (??) and (??)
we get that pn(G, x0) = +∞ for all n ≥ 1.
We assume now that π(G) <∞. Using Lemma ?? we have that pn(G, x0) ≤ π(G) <∞
for all n ≥ 1. Thus, to prove that limn→∞ pn(G, x0) = π(G) it is enough to show that
lim infn pn(G, x0) ≥ π(G). Assume that this is not the case. Hence we can find a
subsequence (nk)k≥1 and some η > 0 such that pnk(G, x0) ≤ π(G) − η for all k ≥ 1.
Since x0 > 0 and π(G) > 0, we may and will assume that η < min(π(G), x0). By
definition of pnk(G, x0) we have that

unk(G, x0 + π(G)− η) ≥ unk(0, x0).
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Assume that limk→+∞ unk(G, x0+π(G)−η) = −∞ is proved then lim infk→+∞ unk(0, x0) =
−∞. But using Assumption ?? (see (??)) lim infk→+∞ unk(0, x0) > −∞, a contradiction.
Thus, it remains to prove that limk→+∞ unk(G, y) = −∞ with y = x0 + π(G) − η <
x0 + π(G). For ease of notation, we will prove that limn→+∞ un(G, y) = −∞.
First we show that x0 +G /∈ CTy (see (??) for the definition of CTy ). Indeed if this is not
the case, there exists some X ∈ W0,+

T and φ ∈ Φ such that x0 +G = V y,φ
T −X QT -q.s.,

hence G ≤ V y−x0,φ
T QT -q.s. Therefore we must have y − x0 ≥ π(G): a contradiction.

Applying Lemma ??, we get some ε > 0 such that infφ∈Φ supP∈QT P (Aφ) > ε, where
Aφ := {V y,φ

T (·) < x0 + G(·) − ε}. Note that we can always assume that x0 ≥ ε. Hence
for all φ ∈ Φ, there exists some Pε,φ ∈ QT such that Pε,φ(Aφ) > ε. From Lemma ?? and
Theorem ??, we get that A(Un, G, y) = A(G, y) 6= ∅ since y ≥ π(G). We choose some
φ ∈ A(G, y). Using the monotonicity of Un and recalling (??) (since G(·) ≥ 0 QT -q.s.),
we get that

EPε,φ1ΩT \AφUn(·, V y,φ
T (·)−G(·)) ≤ EPε,φU

+
n (·, V y,φ

T (·)) ≤ Ky ≤ Kx0+π(G). (31)

Fix some J > 0 and set CJ := 2
ε

(
J +Kx0 +Kx0+π(G)

)
and BJ,n := {Un(·, x0 − ε) ≤

−CJ}. We apply Assumption ?? and obtain that there exists some NJ ≥ 1 (which does
not depend on φ) such that for all n ≥ NJ ,

Pε,φ (BJ,n) ≥ inf
P∈QT

P (BJ,n) > 1− ε

2
.

It follows that for all n ≥ NJ , Pε,φ (BJ,n ∩Aφ) > ε
2 and we get that

EPε,φ1AφUn

(
·, V y,φ

T (·)−G(·)
)
≤ EPε,φ1Aφ∩BJ,nUn(·, x0 − ε) + EPε,φ1Aφ\BJ,nUn(·, x0)

≤ −εCJ
2

+Kx0 = −J −Kx0+π(G),

using (??) and the definition of CJ . Combining the previous equation with (??), we
obtain for all n ≥ NJ that

inf
P∈QT

EPUn

(
·, V y,φ

T (·)−G(·)
)
≤ EPε,φUn

(
·, V y,φ

T (·)−G(·)
)
≤ −J.

As NJ doesn’t depend on φ, recalling the definition of un (see (??)), we obtain for all
that n ≥ NJ , un(y,G) ≤ −J . Since this is true for all J ≥ 0, limn→∞ un(G, y) = −∞
and the proof is complete. 2

5 Appendix

Proof of Proposition ??. We prove 1. of Definition ??. Fix some G,H ∈ W0
T such that

G ≥ H QT -q.s. As A(U,−H,x) = A(−H,x) ⊂ A(−G, x) = A(U,−G, x), it is easy to
check that for all z ∈ R, u(−H,x + z) ≤ u(−G, x + z) (recall that U is increasing, see
Definition ??). If ρx(H) = +∞, there is nothing to prove, while if ρx(H) = −∞, it
is clear that ρx(G) = −∞ also. Assume now that ρx(H) is finite and fix some ε > 0.
Then u(0, x) ≤ u(−H,x + p(−H,x) + ε) ≤ u(−G, x + p(−H,x) + ε) and we get that
p(−G, x) ≤ p(−H,x) + ε. As this is true for all ε, ρx(G) ≤ ρx(H) follows immediately.
We prove 2. of Definition ??. We fix some m ∈ R. It is clear (without the assumption
thatA(U,G, x) = A(G, x) for allG ∈ W0

T ) thatA(U,−(G+m), x) = A(U,−G, x+m) and
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it follows that u(−(G+m), x) = u(−G, x+m). One can easily see that ρx(G+m,x) =
+∞ (resp. = −∞) if and only if ρx(G, x) = +∞ (resp. = −∞). So we may assume that
ρx(G+m,x) is finite and fix some ε > 0. Then

u(0, x) ≤ u(−(G+m), x+ p(−(G+m), x) + ε) = u(−G, x+ p(−(G+m), x) +m+ ε).

Thus p(−G, x) ≤ p(−(G+m), x) +m+ ε follows. We have also that

u(0, x) ≤ u(−G, x+ p(−G, x) + ε) = u(−(G+m), x−m+ p(−G, x) + ε)

and p(−(G+m), x) ≤ p(−G, x)−m+ ε. Letting ε go to 0, we get that p(−G, x)−m =
p(−(G+m), x) as claimed.
We prove now the second part of the proposition. From Proposition ??, one gets that
p(−G, x) > −∞ and p(−H,x) > −∞ for some fixed G,H ∈ {X ∈ W0

T , u(−X, z) <
∞,∀z ∈ R}. We want to show that for all 0 < λ < 1

λp(−G, x) + (1− λ)p(−H,x) ≥ p(−(λG+ (1− λ)H), x). (32)

First if either p(−G, x) = +∞ or p(−H,x) = +∞, (??) is immediate (recall that
p(−G, x) > −∞ and p(−H,x) > −∞). So assume that p(−G, x) and p(−H,x) are both
finite and fix some ε > 0. Then setting zG = x+ε+p(−G, x) and zH = x+ε+p(−H,x),
we get that

u(0, x) ≤ u(−G, zG) and u(0, x) ≤ u(−H, zH)

u(0, x) ≤ λu(−G, zG) + (1− λ)u(−H, zH), (33)

since both right-hand side are finite. It remains to prove that

λu(−G, zG) + (1− λ)u(−H, zH) ≤ u(−(λG+ (1− λ)H), λzG + (1− λ)zH). (34)

Indeed (??) and (??) imply that ε+λp(−G, x)+(1−λ)p(−H,x) ≥ p(−(λG+(1−λ)H), x)
and as this is true for all ε > 0, the convexity of ρx is proven.
The third part of the proposition follows from Proposition ?? under the additional
assumption.

If u(−G, zG) = −∞ or u(−H, zH) = −∞ there is nothing to prove in (??) (recall
that u(−G, zG) < +∞ and u(−H, zH) < +∞). So we assume that u(−G, zG) and
u(−H, zH) are both finite. Recalling (??), there exists some φG ∈ A(U,−G, zG), φH ∈
A(U,−H, zH) such that

u(−G, zG)− ε ≤ inf
P∈QT

EPU
(
·, V zG,φG

T (·) +G(·)
)
,

u(−H, zH)− ε ≤ inf
P∈QT

EPU
(
·, V zH ,φH

T (·) +H(·)
)
.

It follows that

λu(−G, zG) + (1− λ)u(−H, zH)− ε ≤ inf
P∈QT

EPU
(
·, V λzG+(1−λ)zH ,λφG+(1−λ)φH

T (·) + λG(·) + (1− λ)H(·)
)

≤ u(−(λG+ (1− λ)H), λzG + (1− λ)zH),

where we have used the concavity of U and the fact that if φG ∈ A(U,−G, zG) =
A(−G, zG) and φH ∈ A(U,−H, zH) = A(−H, zH), then λφG + (1 − λ)φH ∈ A(−(λG +
(1− λ)H), λzH + (1− λ)zG) = A(U,−(λG+ (1− λ)H), λzG + (1− λ)zH) by assumption.
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As the previous inequality is true for all ε, (??) is proven. 2

Proof of Proposition ??. 1. We set for all y ≥ 0, P ∈ QT ψP (y) = EPU(·, y) and
ψ(y) = infP∈QT ψP (y). In the rest of the proof, the properties concerning ψP will be
stated for all P ∈ QT . It is clear that ψP is concave, strictly increasing and that ψ
is concave and non-decreasing. As for all y > 0, supP∈QT EPU

−(·, y) < +∞, we have
that Ri (Dom ψ) = Ri (Dom ψP ) = (0,+∞) (where Dom ψ = {y, ψ(y) > −∞} and
Ri(Dom ψ) is its relative interior). So ψ and ψP are continuous on (0,∞). Using the
monotonicity of U , for all 0 ≤ y ≤ 1 U(·, y) ≤ U+(·, 1) and as EPU+(·, 1) < +∞, the
monotone convergence theorem applies and we get that limy↘0 ψP (y) = ψP (0). Thus
the function ψP is right-continuous in 0 and it follows easily that ψ is also right-
continuous in 0.
Now let F (·) := limy→+∞ U(·, y) ∈ (−∞,∞]. Since EPU−(·, 1) < +∞ by assumption,
the monotone convergence theorem applied and we get that

lim
y↗+∞

ψP (y) = EPF (·) ∈ (−∞,+∞]. (35)

As P (G(·) <∞) = 1 and U is strictly increasing

F (·)− U(·, G(·)) > 0 P -a.s. (36)

1.a. Set for all y ≥ 0, ψP (y) = ψP (y) − EPU(·, G(·)) which is well-defined since
EP |U(·, G(·))| < +∞ for all P ∈ QT . It is clear that ψP is continuous on (0,+∞)
and right-continuous in 0. Thus

ψP (0) = EPU(·, 0)− EPU(·, G(·)) ≤ 0, (37)

since U is non-decreasing and G ∈ W0,+
T . As EPU(·, G(·)) ≤ EP |U(·, G(·))| < ∞

by assumption, if limy↗+∞ ψP (y) = +∞ then for y large enough ψP (y) > 0. Now
if limy↗+∞ ψP (y) < +∞, then (??) and (??) imply that EPU(·, G(·)) < EPF (·) =
limy↗+∞ ψP (y) and ψP (y) > 0 again for some y large enough. In both cases, the in-
termediate value theorem gives a unique e(G,P ) ∈ [0,+∞) such that ψP (e(G,P )) = 0
and (??) is proved.

1.b. Set ψ(y) = ψ(y)−infP∈QT EPU(·, G(·)) which is well-defined as supP∈QT EPU
−(·, G(·)) <

∞ and infP∈QT EPU
+(·, G(·)) <∞. The function ψ is continuous on (0,+∞) and right-

continuous in 0 and using (??), we get that

inf
P∈QT

EPU(·, G(·)) ≥ inf
P∈QT

EPU(·, 0) = ψ(0),

ψ(0) ≤ 0 follows. Since infP∈QT EPU
′(·, z) > 0 for all z > 0, ψ is strictly increasing on

(0,+∞). Indeed let 0 < x < y, then U(·, x) + (y − x)U ′(·, y) ≤ U(·, y) and this implies
that

inf
P∈QT

EPU(·, x) + (y − x) inf
P∈QT

EPU
′(·, y) ≤ inf

P∈QT
EPU(·, y).

As G ∈ W∞,+T , using the monotonicity of U we obtain for any ε > 0

inf
P∈QT

EPU(·, G(·)) ≤ inf
P∈QT

EPU(·, ||G||∞) = ψ(||G||∞) < ψ(||G||∞ + ε)
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and thus ψ(||G||∞+ε) > 0. We apply again the intermediate value theorem and there
exist a unique e(G) ∈ [0, ||G||∞] such that ψ(e(G)) = 0 and (??) is proved. Now for any
Q ∈ QT , (??) implies that

EQU(·, inf
P∈QT

e(G,P )) ≤ EQU(·, e(G,Q)) = EQU(·, G(·)). (38)

Therefore using (??), ψ(infP∈QT e(G,P )) ≤ ψ(e(G)) and e(G) ≥ infP∈QT e(G,P ) follows
since ψ is strictly increasing.

2. From Definition ?? and Dom(U) = (0,∞), U is continuous on (0,∞) and right-
continuous in 0. Fix some P ∈ QT . As EPU−(G(·)) < +∞, G ∈ W0,+

T and U is non-
decreasing, EPU(G(·))− U(0) ≥ 0 (recall that U is non random). Now as before P -a.s
U(G(ωT )) < limy→+∞ U(y) and since EPU

+(G(·)) < +∞, one can always conclude
that EPU(G(·)) − U(y) < 0 for y large enough and the intermediate value theorem
implies that (??) holds true.

Now sinceEPU(G(·)) ≥ U(0), infP∈QT EPU(G(·))−U(0) ≥ 0. Moreover as infP∈QT EPU(G(·))−
U(y) ≤ EPU(G(·))− U(y) < 0 for y large enough, the intermediate value theorem im-
plies (??). As before (see (??)) one can prove that infP∈QT e(G,P ) ≤ e(G). For some
P ∈ QT fixed, using Jensen’s inequality we have that

U(e(G)) ≤ EPU(G(·)) = U(e(G,P )) ≤ U (EPG(·)) .

Thus, by strict monotonicity of U , e(G) ≤ e(G,P ) ≤ EPG(·) and since this is true for
all P ∈ QT , we find that

e(G) ≤ inf
P∈QT

e(G,P ) ≤ inf
P∈QT

EPG(·).

2

Note that it is easy to find an example where ψ is constant and thus e(G) is not unique
if infP∈QT EPU

′(·, z) = 0

Proof of Proposition ??. We adapt the proof of (?, Proposition 2.47) to the multiple-
priors framework.
1. We first show that if for all x > 0, rA(x) ≥ rB(x), then eA(G,P ) ≤ eB(G,P ) for all
P ∈ QT and G ∈ W+

T (U). This will imply that eA(G) ≤ eB(G) using the second item of
Proposition ??. We fix some G ∈ W+

T (U) and P ∈ QT . Let D := UB((0,∞)) ⊂ (−∞,∞)
and define F : D → R by F (y) = UA

(
U−1
B (y)

)
. Then on D

F ′(·) =
U ′A(U−1

B (·))
U
′
B(U−1

B (·))
and F ′′(·) =

U ′A(U−1
B (·))(

U ′B(U−1
B (·))

)2 (rB(U−1
B (·))− rA(U−1

B (·))
)
. (39)

As U−1
B (·) > 0 on D, F is increasing and concave on D and UA(x) = F (UB(x)) for

all x > 0. Now let d := UB(0) ∈ [−∞,∞) be the lower bound of D. We distinguish
between two cases. First if d > −∞, we extend F by continuity in d, setting F (d) =
UA
(
U−1
B (d)

)
= UA(0) ∈ [−∞,∞). It is clear that F (d) ≤ F (y) for all y ∈ [d,+∞), that

F is concave on [d,+∞) and that UA(x) = F (UB(x)) holds also true for all x ≥ 0. Now,
using the fact that UA and UB are non-random, (??) and Jensen’s inequality, we get
that

UA(eA(G,P )) = EPUA(G(·)) = EPF (UB(G(·))) ≤ F (EP (UB(G(·)))) = F (UB(eB(G,P ))) = UA(eB(G,P )).
(40)
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Since UA is strictly increasing, we obtain that eA(G,P ) ≤ eB(G,P ) as claimed.
Now we treat the case where d = −∞. First P (G > 0) = 1. Indeed if P (G = 0) > 0,
EPU

−
B (G(·)) = EPU

−
B (G(·))1{G>0}(·) + U−B (0)P (G = 0) = +∞, a case that we have

excluded. Thus P (G > 0) = 1, the previous arguments apply and we also obtain
eA(G,P ) ≤ eB(G,P ).
2. Assume that eA(G) < eB(G) for all G ∈ W+

T (U) and there exists some x0 > 0 such
that rA(x0) < rB(x0). By continuity, there exists α > 0, such that rA(x) < rB(x) on
(x0−α, x0+α). We can choose α such that x0−α > 0. Let I := (UB(x0 − α), UB(x0 + α)) ⊂
D, then F is strictly convex on I (see (??)). Fix G̃ ∈ W+

T (U) and set G := x0 − α +

2α G̃

G̃+1
∈ W+

T (U). It is clear that G(·) ∈ (x0 − α, x0 + α). As in (??), using Jensen
inequality, the fact that F is (strictly) convex on I we get that for any P ∈ QT

UA(eA(G,P )) = EPF (UB(G(·))) ≥ F (EP (UB(G(·))) = F (UB(eB(G,P ))) = UA(eB(G,P )). (41)

This implies that eA(G,P ) ≥ eB(G,P ) for all P ∈ QT , thus eA(G) ≥ eB(G): a contra-
diction. Note that if P is such that one can find some G̃ which is not constant then
the first inequality in (??) is strict and one gets that eA(G,P ) > eB(G,P ). 2

Proof of Proposition ??. We use similar arguments as in the proof of (?, Theorem 4.17)
and (?, Lemma 5.7). We fix x ≥ 0, φ = (φt)1≤t≤T ∈ Φ such that φ ∈ A(0, x). For all
1 ≤ t ≤ T and ωt−1 ∈ Ωt−1

NA, we denote by φ⊥t (ωt−1) the orthogonal projection of φt(ωt−1)
on the vector space Dt(ωt−1) (recall Proposition ??). We have for all ωt−1 ∈ Ωt−1

NA, that

φt(ω
t−1)∆St(ω

t−1, ·) = φ⊥t (ωt−1)∆St(ω
t−1, ·) Qt(ωt−1)-q.s. (42)

see (?, Remark 3.10). As V x,φ
T ≥ 0 QT -q.s. and as Assumptions ??, ?? and ?? hold

true, (?, Lemma 4.3) applies together with (?, Lemma 3.4) and we obtain that the
set Ht−1 := {ωt−1 ∈ Ωt−1, V x,φ

t−1(ωt−1) + φt(ω
t−1)∆St(ω

t−1, ·) ≥ 0 Qt(ωt−1)-q.s.} is a
Qt−1-full measure set. We fix now some 1 ≤ t ≤ T , ωt−1 ∈ Ht−1 ∩ Ωt−1

NA and we prove
that

|φ⊥t (ωt−1)| ≤
|V x,φ
t−1(ωt−1)|
αt−1(ωt−1)

. (43)

If φ⊥t (ωt−1) = 0 there is nothing to prove. So we can assume that φ⊥t (ωt−1) 6= 0. First,
using (??), since ωt−1 ∈ Ht−1 ∩ Ωt−1

NA, we get that

V x,φ
t−1(ωt−1) + φ⊥t (ωt−1)∆St(ω

t−1, ·) ≥ 0 Qt(ωt−1)-q.s. (44)

Now, we proceed by contradiction and assume that (??) does not hold true. We set
B := {φ⊥t (ωt−1)∆St(ω

t−1, ·) < −αt−1(ωt−1)|φ⊥t (ωt−1)|}. From Proposition ??, there
exists some Pφ ∈ Qt(ωt−1) such that Pφ(B) > αt−1(ωt−1) > 0. But, for all ωt ∈ B we
have that

V x,φ
t−1(ωt−1) + φ⊥t (ωt−1)∆St(ω

t−1, ωt) < |V x,φ
t−1(ωt−1)| − αt−1(ωt−1)|φ⊥t (ωt−1)| < 0,

a contradiction with (??) and therefore (??) holds true.
We now establish (??) by induction. For t = 0 this is trivial. Assume now that for
some t ≥ 1, there exists some Qt−1-full measure set Ω̃t−1 ∈ Bc(Ωt−1) on which (??) is
true at stage t− 1. We denote by

Ωt
EQ := {(ωt−1, ωt) ∈ Ωt−1 × Ωt, φ

⊥
t (ωt−1)∆St(ω

t−1, ωt) = φt(ω
t−1)∆St(ω

t−1, ωt)}.
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It is clear that Ωt
EQ ∈ Bc(Ωt). For some P = Pt−1⊗pt ∈ Qt, recalling (??) and applying

Fubini’s Theorem (see (?, Proposition 7.45 p175)), we have that

P (ΩtEQ) =

∫
Ωt−1

∫
Ωt

1Ωt
EQ

(ωt−1, ωt)pt(dωt, ω
t−1)Pt−1(dωt−1)

=

∫
Ωt−1

NA

∫
Ωt

pt
(
φ⊥t (ωt−1)∆St(ω

t−1, ·) = φt(ω
t−1)∆St(ω

t−1, ·), ωt−1
)
Pt−1(dωt−1)

= 1.

Set Ω̂t−1 := Ω̃t−1∩Ht−1∩Ωt−1
NA and Ω̃t = Ωt

EQ∩
(

Ω̂t−1 × Ωt

)
. It is clear that Ω̃t ∈ Bc(Ωt)

and is a Qt-full measure set. We have that for all ωt = (ωt−1, ωt) ∈ Ω̃t

|V x,φ
t (ωt−1, ωt)| = |V x,φ

t−1(ωt−1) + φ⊥t (ωt−1)∆St(ω
t−1, ωt)|

≤ |V x,φ
t−1(ωt−1)|

(
1 +
|∆St(ωt−1, ωt)|
αt−1(ωt−1)

)
≤ xMt−1(ωt−1)

(
1 +
|∆St(ωt−1, ωt)|
αt−1(ωt−1)

)
,

where we have used the fact that ωt ∈ Ωt
EQ for the first equality, ωt−1 ∈ Ht−1 ∩ Ωt−1

NA

and (??) for the second inequality and ωt−1 ∈ Ω̃t−1 for the last one: (??) is proved.
For all 0 ≤ r < ∞ and 1 ≤ s ≤ T , as ∆Ss,

1
αs
∈ Wr

s (see Assumption ??), so both Mt

and V x,φ
t belong toWr

t for all 1 ≤ t ≤ T .
Fix now some n ≥ 1. Using the monotonicity, concavity and differentiability of
Un(ωT , ·), we get for all ωT ∈ ΩT that

Un(ωT , x) ≤ Un(ωT ,max(x, x0)) ≤ Un(ωT , x0) + max(x− x0, 0)U ′n(ωT , x0).

Thus

U+
n (ωT , x) ≤ U+

n (ωT , x0) + |x|U ′n(ωT , x0). (45)

And it follows that for all P ∈ QT

EPU
+
n (ωT , V x,φ

T (ωT )) ≤ sup
P∈QT

EPU
+
n (·, x0) + sup

P∈QT
EP

(∣∣∣V x,φ
T (·)

∣∣∣U ′n(·, x0)
)

≤ sup
P∈QT

EPU
+
n (·, x0) + x

(
sup
P∈QT

EP (MT (·))p
) 1

p
(

sup
P∈QT

EP
(
U ′n(·, x0)

)q) 1
q

≤ sup
n
||U+

n (·, x0)||1 + x||MT (·)||p sup
n
||U ′n(·, x0)||q = Kx <∞,

where we have used (??), (??), MT ∈ Wr
T for all r ≥ 1, Assumption ??, (?, Proposition

16) ( p verifies 1
p + 1

q = 1) and finally, again Assumption ?? for the last inequality. As
this is true for all P ∈ QT and as Kx does not depend on P and n, (??) is proved. 2

Proposition 5.1 Let (Xn)n≥1 and X be Rd-valued and Bc(ΩT )-measurable random
variables. If limn→∞ supP∈QT P (|Xn − X| > 1

n) = 0, then there exists a subsequence
(Xnk)k≥1 that converges to X QT -q.s. (i.e. on a QT -full measure set).
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Proof. Fix ε > 0 and consider the sub-sequence (Xnk)k≥1 such that supP∈QT P (Ak) ≤
1
2k

where Ak := {|Xnk(·) − X(·)| > 1
max(nk,ε)

}. As
∑

k≥1 supP∈QT P (Ak) < ∞, using
Borel-Cantelli’s Lemma for capacity (see (?, Lemma 5)), we get that supP∈QT P (lim supk Ak) =
0. Hence ΩT \lim supk Ak is a QT -full measure set on which |Xnk(·) − X(·)| ≤ ε holds
true for k big enough. 2
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