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Abstract

We consider a discrete-time financial market model with finite time horizon and investors with
utility functions d efined on the non-negative half-line. We allow these functions to be random, non-
concave and non-smooth. We use a dynamic programming framework together with measurable
selection arguments to establish both the characterization of the no-arbitrage property for such
markets and the existence of an optimal portfolio strategy for such investors.

Key words: no-arbitrage condition ; non-concave utility functions; optimal investment
AMS 2000 subject classification: Primary 93E20, 91B70, 91B16 ; secondary 91G10, 28B20

1 Introduction

We consider investors trading in a multi-asset and discrete-time financial market. We revisit two
classical problems: the characterization of no arbitrage and the maximisation of expected utility from
the terminal wealth of an investor. There are strong connections between them: on one hand, no-
arbitrage is a necessary condition for the existence of optimal strategies, see e.g. Pliska [1997], on
the other hand, utility maximization is a means to construct dual objects (e.g. equivalent martingale
measures), see Rogers [1994] in the frictionless case and Sass and Smaga [2014] for the case under
transaction costs.

We consider a possibly non-concave and non-smooth random utility function U , defined on the
non-negative half-line. For instance, U may be “S-shaped” (i.e. convex up to a certain level of wealth
and concave beyond that) but our results apply to a broader class of utility functions, e.g. to piecewise
concave ones. We provide sufficient conditions which guarantee the existence of an optimal strategy.
Such problems lie outside mainstream optimization theory and constitute an area of intensive study
in recent years, see e.g. Bensoussan et al. [2015], He and Zhou [2011], Jin and Zhou [2008], Carlier
and Dana [2011].

We are working in the setting of Carassus et al. [2015] and extend its results in several direc-
tions. First, we remove a restrictive integrability hypothesis [Carassus et al., 2015, Assumption 2.7]:
EU−(·, 0) < ∞. Recall that the non-random version of this assumption: U(0) < −∞ does not hold
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true for the most widely used (concave) utility functions (logarithmic, U(x) = −xα for α < 0). Hence
Carassus et al. [2015] excluded some of the most important cases. Note also that U(0) = −∞ has the
rather natural interpretation of an investor being infinitely averse of bankruptcy. We propose here an
alternative, weaker integrability condition.

Second, we introduce a weaker version of the asymptotic elasticity assumption (see Assumption
4.10 below). In particular, Assumption 4.10 holds true for concave functions (see Remark 4.15) and
therefore our result extends the one obtained in Rásonyi and Stettner [2006] to random utility func-
tions.

Next, instead of using some Carathéodory utility function U as in Carassus et al. [2015] (i.e U
measurable in ω and continuous in x), we consider U which is measurable in ω and only upper semi-
continuous (usc in the rest of the paper) in x. Allowing non-continuous U is unusual in the financial
mathematics literature (see, however, Sass [2005]) but it is common in optimization theory. We high-
light that this generalisation has a potential to model the investor’s behaviour which can change
suddenly after reaching a desired wealth level. Such a change can be expressed by a jump of U .

Next, we do not require that the value function is finite for all initial wealth as it is usually
postulated in the maximisation of expected utility theory; instead we only assume the less restrictive
and more tractable Assumption 4.7.

Finally, in contrast to the preceding literature, we do not need complete sigma-algebras for our
arguments to work. This is an interesting technical aspect that can be useful in robust utility maxi-
mization where multiple probabilities are considered which lead to varying families of null sets.

We use methods that are different from the ones in Rásonyi and Stettner [2005], Rásonyi and
Stettner [2006], Carassus and Rásonyi [2016] and Carassus et al. [2015], where similar multistep
problems were treated. To solve our optimisation problem, we use dynamic programming as in those
papers but here we propose a different approach which provides simpler proofs. As in Nutz [2016],
we consider first a one period case where strategies are (deterministic) elements of Rd. Then we use
dynamic programming and measurable selection arguments, namely the Aumann Theorem (see, for
example, Corollary 1 in Sainte-Beuve [1974]) to solve the multi-period problem. We will also often
rely on the Projection Theorem (see for example Theorem 3.23 in Castaing and Valadier [1977]). Our
modelisation of (Ω,F ,F, P ) is more general than in Nutz [2016] since, as opposed to Nutz [2016], we
consider only one probability measure so we don’t have to postulate Borel spaces or analytic sets.
The same methodology is used to reprove classical results on the characterization of no-arbitrage (see
Rásonyi and Stettner [2005] and Jacod and Shiryaev [1998]) in our context of possibly incomplete
sigma-algebras, we present this in Section 3 below.

Our paper can also be regarded as a review of problems in non-concave optimisation which arise in
finance so detailed proofs are given. The paper is organized as follows: in section 2 we introduce our
setup; section 3 contains the results on no-arbitrage; section 4 presents the main theorem on expected
utility maximisation from terminal wealth; section 5 establishes the existence of an optimal strategy
for the one period case; we prove our main theorem on utility maximisation in section 6. Finally,
section 7 collects some technical results and proofs as well as elements about the measurability of
random sets.

2 Set-up

Fix a time horizon T ∈ N and let (Ωt)1≤t≤T be a sequence of non-empty sets equipped with the re-
spective sigma-algebras (Gt)1≤t≤T . For t = 1, . . . , T , we denote by Ωt the t-fold Cartesian product
Ωt = Ω1 × . . .×Ωt. An element of Ωt will be denoted by ωt = (ω1, . . . , ωt) for (ω1, . . . , ωt) ∈ Ω1 × . . .×Ωt.
We also denote by Ft the product sigma-algebra on Ωt, Ft = G1 ⊗ . . . ⊗ Gt. For the sake of simplicity,
we set Ω0 := {ω0} and F0 = G0 = {∅,Ω0}. We will omit the dependency in ω0 in the rest of the paper.
We denote by F the filtration (Ft)0≤t≤T .

Let P1 be a probability measure on F1 and qt+1 be a stochastic kernel on Gt+1×Ωt for t = 1, . . . , T−1.
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Namely we assume that for all ωt ∈ Ωt, B ∈ Gt+1 → qt+1(B|ωt) is a probability on Gt+1 and for all
B ∈ Gt+1, ωt ∈ Ωt → qt+1(B|ωt) is Ft-measurable. Here we DO NOT assume that G1 contains the null
sets of P1 or that Gt+1 contains the null sets of qt+1(.|ωt) for all ωt ∈ Ωt. Then we define for A ∈ Ft the
probability Pt by Fubini’s Theorem for stochastic kernels (see Lemma 7.1) via

Pt(A) =

∫
Ω1

∫
Ω2

· · ·
∫

Ωt

1A(ω1, . . . , ωt)qt(dωt|ωt−1) · · · q2(dω2|ω1)P1(dω1). (1)

Finally, (Ω,F ,F, P ) := (ΩT ,FT ,F, PT ) will be our basic filtered probability space. The expectation
under Pt will be denoted by EPt ; when t = T , we simply write E.

We introduce FTt , the filtration on ΩT associated to Ft, defined by

FTt = G1 ⊗ . . .⊗ Gt ⊗ {∅,Ωt+1} . . .⊗ {∅,ΩT }.

Let ΞTt be the set ofFTt -measurable random variables from ΩT to Rd. LetXt : ΩT →Ωt,Xt(ω1, . . . , ωT ) =
ωt be the coordinate mapping corresponding to t. Then FTt = σ(X1, . . . , Xt). So h ∈ ΞTt if and only if
there exists some g ∈ Ξt such that h = g(X1, . . . , Xt). This implies that h(ωT ) = g(ωt). For ease of
notation we will identify h and g and also Ft, FTt , Ξt and ΞTt .

Remark 2.1 If we choose Polish spaces for Ωt, t = 1, . . . , T then any probability measure P on Ω can
be decomposed in the form of (1) (see Dellacherie and Meyer [1979] III.70-7).

The positive (resp. negative) part of a number or a random variable X is denoted by X+ (resp.
X−). We will also write f±(X) for (f(X))± for any random variable X and (possibly random) function
f .
In the rest of the paper we will use generalised integral: for some ft : Ωt → R∪{±∞}, Ft-measurable,
such that

∫
Ωt f

+
t (ωt)Pt(dω

t) <∞ or
∫

Ωt f
−
t (ωt)Pt(dω

t) <∞, we define∫
Ωt
ft(ω

t)Pt(dω
t) :=

∫
Ωt
f+
t (ωt)Pt(dω

t)−
∫

Ωt
f−t (ωt)Pt(dω

t) ∈ R ∪ {−∞,∞}.

We refer to Lemma 7.1, Definition 7.2 and Proposition 7.3 of the Appendix for more details and prop-
erties. In particular, if ft is non-negative or if ft is such that

∫
Ωt f

+
t (ωt)Pt(dω

t) < ∞ (this will be the
two cases of interest in the paper) we can apply Fubini’s Theorem 1 to get∫

Ωt
ft(ω

t)Pt(dω
t) =

∫
Ω1

∫
Ω2

· · ·
∫

Ωt

ft(ω1, . . . , ωt)qt(dωt|ωt−1) · · · q2(dω2|ω1)P1(dω1).

We will denote by NPt the set of Pt negligible sets of Ωt i.e NPt = {N ⊂ Ωt, ∃M ∈ Ft, N ⊂
M and Pt(M) = 0}. Let F t = {A ∪N,A ∈ Ft, N ∈ NPt} and P t(A ∪N) = Pt(A) for A ∪N ∈ F t. Then
it is well known that P t is a measure on F t which coincides with Pt on Ft, (Ωt,F t, P t) is a complete
probability space and P t restricted toNPt is zero. For t = 0, . . . , T−1, let Ξt be the set of Ft-measurable
random variables mapping Ωt to Rd.

The following lemma makes the link between conditional expectation and kernel.

Lemma 2.2 Let 0 ≤ s ≤ t ≤ T . Let h ∈ Ξt such that
∫

Ωt h
+dPt <∞ then

E(h|Fs) = ϕ(X1, . . . , Xs)Ps–a.s., where

ϕ(ω1, . . . , ωs) =

∫
Ωs+1×...×Ωt

h(ω1, . . . , ωs, ωs+1, . . . ωt)qt(ωt|ωt−1) . . . qs+1(ωs+1|ωs).

1From now, we call Fubini’s theorem the Fubini theorem for stochastic kernel (see eg Lemma 7.1, Proposition 7.3).

3



Proof. For the sake of completeness, the proof is reported in Section 7.3 of the Appendix. 2

Let {St, 0 ≤ t ≤ T} be a d-dimensional Ft-adapted process representing the price of d risky
securities in the financial market in consideration. There exists also a riskless asset for which we
assume a constant price equal to 1. The notation ∆St := St − St−1 will often be used. If x, y ∈ Rd then
the concatenation xy stands for their scalar product. The symbol | · | denotes the Euclidean norm on
Rd (or on R).

Trading strategies are represented by d-dimensional predictable processes (φt)1≤t≤T , where φit
denotes the investor’s holdings in asset i at time t; predictability means that φt ∈ Ξt−1. The family of
all predictable trading strategies is denoted by Φ.

We assume that trading is self-financing. As the riskless asset’s price is constant 1, the value at
time t of a portfolio φ starting from initial capital x ∈ R is given by

V x,φ
t = x+

t∑
i=1

φi∆Si.

Example 2.3 For a better understanding of the present, abstract setting one may consider a simple
trinomial tree model where Ωt = {−1, 0, 1}, Gt := 2Ωt for each t = 1, . . . , T . Let St :=

∑t
j=1Xj ,

t = 1, . . . , T where the Xj are the respective coordinate mappings. The kernels qt+1(·|ωt) then assign
probabilities to the 3 possible outcomes {−1, 0, 1} conditionally to the past path ωt = (ω1, . . . , ωt). P1

is just a probability on {−1, 0, 1}. Strategies can be identified with functions φt : Ωt−1 → R expressing
the holding in the risky asset in the interval (t− 1, t].

3 No-arbitrage condition

The following absence of arbitrage condition or NA condition is standard, it is equivalent to the ex-
istence of a risk-neutral measure in discrete-time markets with finite horizon, see e.g. Dalang et al.
[1990].

(NA) If V 0,φ
T ≥ 0 P -a.s. for some φ ∈ Φ then V 0,φ

T = 0 P -a.s.

Definition 3.1 Let (Ω,F) be a measurable space and (T, T ) a topological space. A random set R is a
set valued function that assigns to each ω ∈ Ω a subset R(ω) of T . We write R : Ω � T . We say that
R is measurable if for any open set O ∈ T {ω ∈ Ω, R(ω) ∩ O 6= ∅} ∈ F . The graph of R is defined as
Gr(R) := {(ω, t) ∈ Ω× T : t ∈ R(ω)}.

We now provide classical tools and results about the (NA) condition and its “concrete” local charac-
terization, see Proposition 3.6, that we will use in the rest of the paper. We start with the set Dt+1 (see
Definition 3.1) where Dt+1(ωt) is the smallest affine subspace of Rd containing the support of the dis-
tribution of ∆St+1(ωt, .) under qt+1(.|ωt). If Dt+1(ωt) = Rd then, intuitively, there are no redundant as-
sets. Otherwise, for φt+1 ∈ Ξt, one may always replace φt+1(ωt, ·) by its orthogonal projection φ⊥t+1(ωt, ·)
on Dt+1(ωt) without changing the portfolio value since φt+1(ωt)∆St+1(ωt, ·) = φ⊥t+1(ωt)∆St+1(ωt, ·),
qt+1(·|ωt) a.s., see Remark 5.2 and Lemma 7.16 below as well as Remark 9.1 of Föllmer and Schied
[2002].

Definition 3.2 Let 0 ≤ t ≤ T be fixed. We define the random set D̃t+1 : Ωt � Rd by

D̃t+1(ωt) :=
⋂{

A ⊂ Rd, closed, qt+1

(
∆St+1(ωt, .) ∈ A|ωt) = 1

)}
. (2)

For ωt ∈ Ωt, D̃t+1(ωt) ⊂ Rd is the support of the distribution of ∆St+1(ωt, ·) under qt+1(·|ωt). We also
define the random set Dt+1 : Ωt � Rd by Dt+1(ωt) := Aff

(
D̃t+1(ωt)

)
, where Aff denotes the affine hull

of a set.
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Lemma 3.3 Let 0 ≤ t ≤ T be fixed. Then D̃t+1 and Dt+1 are both non-empty, closed-valued and
Ft-measurable random sets (see Definition 3.1). In particular, Graph(Dt+1) ∈ Ft ⊗ B(Rd).

Proof. The proof is reported in Section 7.3 of the Appendix. 2

In Lemma 3.4, which is used in the proof of Lemma 3.5 for projection purposes, we obtain a well-
known result : for ωt ∈ Ωt fixed and under a local version of (NA), Dt+1(ωt) is a vector subspace of
Rd (see for instance Theorem 1.48 of Föllmer and Schied [2002]). Then in Lemma 3.5 we prove that
under the (NA) assumption, for Pt almost all ωt, Dt+1(ωt) is a vector subspace of Rd. We also provide
a local version of the (NA) condition (see (4)).

Lemma 3.4 Let 0 ≤ t ≤ T and ωt ∈ Ωt be fixed. Assume that for all h ∈ Dt+1(ωt)\{0}

qt+1(h∆St+1(ωt, ·) ≥ 0|ωt) < 1.

Then 0 ∈ Dt+1(ωt) and the set Dt+1(ωt) is actually a vector subspace of Rd.

Proof. The proof is reported in Section 7.3 of the Appendix. 2

Lemma 3.5 Assume that the (NA) condition holds true. Then for all 0 ≤ t ≤ T − 1, there exists a
full measure set Ωt

NA1 such that for all ωt ∈ Ωt
NA1, 0 ∈ Dt+1(ωt), i.e Dt+1(ωt) is a vector space of Rd.

Moreover, for all ωt ∈ Ωt
NA1 and all h ∈ Rd we get that

qt+1(h∆St+1(ωt, ·) ≥ 0|ωt) = 1⇒ qt+1(h∆St+1(ωt, ·) = 0|ωt) = 1. (3)

In particular, if ωt ∈ Ωt
NA1 and h ∈ Dt+1(ωt) we obtain that

qt+1(h∆St+1(ωt, ·) ≥ 0|ωt) = 1⇒ h = 0. (4)

Proof. Let 0 ≤ t ≤ T be fixed. We introduce the following random set:

Πt :=
{
ωt ∈ Ωt, ∃h ∈ Dt+1(ωt), h 6= 0, qt+1(h∆St+1(ωt, ·) ≥ 0|ωt) = 1

}
.

Assume for a moment that Πt ∈ F t and that P t(Πt) = 0. Let ωt ∈ Ωt \ Πt. The fact that 0 ∈ Dt+1(ωt)
directly follows from the definition of Πt and from Lemma 3.4. We now prove (3). Let h ∈ Rd be fixed
such that qt+1(h∆St+1(ωt, ·) ≥ 0|ωt) = 1. If h = 0 there is nothing to prove. If h ∈ Dt+1(ωt) \ {0},
ωt ∈ Πt which is impossible. Now if h /∈ Dt+1(ωt) and h 6= 0, let h′ be the orthogonal projection of
h on Dt+1(ωt). We first show that qt+1(h′∆St+1(ωt, ·) ≥ 0|ωt) = 1. Indeed, if it were not the case the
set B := {h′∆St+1(ωt, ·) < 0} would verify qt+1(B|ωt) > 0. Set Lt+1(ωt) :=

(
Dt+1(ωt)

)⊥
. Using Lemma

7.16, since (h−h′) ∈ Lt+1(ωt), qt+1(A|ωt) = 1 where A := {(h−h′)∆St+1(ωt, ·) = 0}. We would therefore
obtain that qt+1(A ∩B|ωt) > 0 which implies that qt+1(h∆St+1(ωt, .) ≥ 0|ωt) < 1, a contradiction. Thus
qt+1(h′∆St+1(ωt, ·) ≥ 0|ωt) = 1. If h′ 6= 0, as h′ ∈ Dt+1(ωt), ωt ∈ Πt which is again a contradiction. Thus
h′ = 0 and as A ∩ {h′∆St+1(ωt, ·) = 0} ⊂ {h∆St+1(ωt, ·) = 0}, qt+1(h∆St+1(ωt, ·) = 0|ωt) = 1.
As Ωt \ Πt ∈ Ft there exists Ωt

NA1 ∈ Ft and N t ∈ NPt such that Ωt \ Πt = Ωt
NA1 ∪ N t and Pt(Ω

t
NA1) =

P t(Ω
t\Πt) = 1. Since Ωt

NA1 ⊂ Ωt \ Πt, it follows that for all ωt ∈ Ωt
NA1, 0 ∈ Dt+1(ωt) and for all h ∈ Rd,

(3) holds true.
We prove (4). Assume now that ωt ∈ Ωt

NA1 and h ∈ Dt+1(ωt) are such that qt+1(h∆St+1(ωt, ·) ≥ 0|ωt) =
1. Using (3) and Lemma 7.16 we get that h ∈ Lt+1(ωt). So h ∈ Dt+1(ωt) ∩ Lt+1(ωt) = {0} and (4) holds
true.

It remains to prove that Πt ∈ F t and P t(Πt) = 0. We introduce the random set

Ht(ωt) :=
{
h ∈ Dt+1(ωt), h 6= 0, qt+1(h∆St+1(ωt, ·) ≥ 0|ωt) = 1

}
.
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Then Πt =
{
ωt ∈ Ωt, Ht(ωt) 6= ∅

}
= proj|ΩtGraph(Ht).

We prove now that Graph(Ht) ∈ Ft ⊗ B(Rd). Indeed, we can rewrite that

Graph(Ht) = Graph(Dt+1)
⋂{

(ωt, h) ∈ Ωt × Rd, qt+1(h∆St+1(ωt, ·) ≥ 0|ωt) = 1
}⋂(

Ωt × Rd\{0}
)
.

As from Lemma 7.7,
{

(ωt, h) ∈ Ωt × Rd, qt+1(h∆St+1(ωt, ·) ≥ 0|ωt) = 1
}
∈ Ft ⊗ B(Rd) and from

Lemma 3.3, Graph(Dt+1) ∈ Ft ⊗ B(Rd), we obtain that Graph(Ht) ∈ Ft ⊗ B(Rd). The Projection
Theorem applies and Πt = {Ht 6= ∅} = proj|ΩtGraph(Ht) ∈ F t. From the Aumann Theorem there
exists a F t-measurable selector ht+1 : Πt → Rd such that ht+1(ωt) ∈ Ht(ωt) for every ωt ∈ Πt. We now
extend ht+1 on Ωt by setting ht+1(ωt) = 0 for ωt ∈ Ωt\Πt. It is clear that ht+1 remains F t-measurable.
Applying Lemma 7.8, there exists ht+1 : Ωt → Rd which is Ft-measurable and satisfies ht+1 = ht+1

Pt-almost surely. Then if we set

ϕ(ωt) = qt+1(ht+1(ωt)∆St+1(ωt, .) ≥ 0|ωt),
ϕ(ωt) = qt+1(ht+1(ωt)∆St+1(ωt, .) ≥ 0|ωt),

we get from Proposition 7.7 that ϕ is Ft-measurable and from Proposition 7.4 iii) that ϕ is F t-
measurable. Furthermore as {ωt ∈ Ωt, ϕ(ωt) 6= ϕ(ωt)} ⊂ {ωt ∈ Ωt, ht(ω

t) 6= ht+1(ωt)}, ϕ = ϕ Pt-almost
surely. This implies that

∫
Ωt ϕdP t =

∫
Ωt ϕdPt. Now we define the predictable process (φt)1≤t≤T by

φt+1 = ht+1 and φi = 0 for i 6= t+ 1. Then

P (V 0,φ
T ≥ 0) = P (ht+1∆St+1 ≥ 0) = Pt+1(ht+1∆St+1 ≥ 0)

=

∫
Ωt
ϕ(ωt)Pt(dω

t) =

∫
Ωt
ϕ(ωt)P t(dω

t)

=

∫
Πt
qt+1

(
ht(ω

t)∆St+1(ωt, ·) ≥ 0|ωt
)
P t(dω

t) +∫
Ωt\Πt

qt+1

(
0×∆St+1(ωt, ·) ≥ 0|ωt

)
P t(dω

t)

= P t(Π
t) + P t(Ω

t \Πt) = 1,

where we have used that if ωt ∈ Πt, ht+1(ωt) ∈ Ht(ωt) and otherwise ht+1(ωt) = 0. With the same
arguments we obtain that

P (V 0,φ
T > 0) = Pt(ht+1∆St+1 > 0)

=

∫
Πt
qt+1

(
ht+1(ωt)∆St+1(ωt, ·) > 0|ωt

)
P t(dω

t) +

∫
Ωt\Πt

qt+1

(
0 > 0|ωt

)
P t(dω

t)

=

∫
Πt
qt+1

(
ht+1(ωt)∆St+1(ωt, ·) > 0|ωt

)
P t(dω

t).

Let ωt ∈ Πt then qt+1

(
ht+1(ωt)∆St+1(ωt, ·) > 0|ωt

)
> 0. Indeed, if it is not the case then

qt+1

(
ht+1(ωt)∆St+1(ωt, ·) ≤ 0|ωt

)
= 1. As ωt ∈ Πt, ht+1(ωt) ∈ Dt+1(ωt) and qt+1

(
ht+1(ωt)∆St+1(ωt, ·) ≥ 0|ωt

)
=

1, Lemma 7.16 applies and ht+1(ωt) ∈ Lt+1(ωt). Thus we get that ht+1(ωt) ∈ Lt+1(ωt)∩Dt+1(ωt) = {0},
a contradiction. So if P t(Πt) > 0 we obtain that P (V 0,φ

T > 0) > 0. This contradicts the (NA) condition
and we obtain P t(Π

t) = 0, the required result. 2

Similarly as in Rásonyi and Stettner [2005] and Jacod and Shiryaev [1998], we prove a “quantitative”
characterization of (NA).

Proposition 3.6 Assume that the (NA) condition holds true and let 0 ≤ t ≤ T . Then there exists
Ωt
NA ∈ Ft with Pt(Ω

t
NA) = 1 and Ωt

NA ⊂ Ωt
NA1 (see Lemma 3.5 for the definition of Ωt

NA1) such that for
all ωt ∈ Ωt

NA, there exists a Ft-measurable ωt → αt(ω
t) ∈ (0, 1] such that for all h ∈ Dt+1(ωt)

qt+1

(
h∆St+1(ωt, ·) ≤ −αt(ωt)|h||ωt

)
≥ αt(ωt). (5)
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Proof. Let ωt ∈ Ωt
NA1 be fixed (Ωt

NA1 is defined in Lemma 3.5).
Step 1 : Proof of (5). Introduce the following set for n ≥ 1

An(ωt) :=

{
h ∈ Dt+1(ωt), |h| = 1, qt+1

(
h∆St+1(ωt, ·) ≤ − 1

n
|ωt
)
<

1

n

}
. (6)

Let n0(ωt) := inf{n ≥ 1, An(ωt) = ∅}. Note that if Dt+1(ωt) = {0}, then n0(ωt) = 1 < ∞. We assume
now that Dt+1(ωt) 6= {0} and we prove by contradiction that n0(ωt) < ∞. Assume that n0(ωt) =
∞ i.e for all n ≥ 1, An(ωt) 6= ∅. We thus get hn(ωt) ∈ Dt+1(ωt) with |hn(ωt)| = 1 and such that
qt+1

(
hn(ωt)∆St+1(ωt, ·) ≤ − 1

n |ω
t
)
< 1

n . By passing to a sub-sequence we can assume that hn(ωt) tends
to some h∗(ωt) ∈ Dt+1(ωt) (recall that the set Dt+1(ωt) is closed by definition) with |h∗(ωt)| = 1. Then
{h∗(ωt)∆St+1(ωt, · < 0} ⊂ lim infnBn(ωt), where Bn(ωt) := {hn(ωt)∆St+1(ωt, ·) ≤ −1/n}. Furthermore
as 1lim infnBn(ωt) = lim infn 1Bn(ωt), Fatou’s Lemma implies that

qt+1

(
h∗(ωt)∆St+1(ωt, ·) < 0|ωt

)
≤
∫

Ωt+1

1lim infnBn(ωt)(ωt+1)qt+1(ωt+1|ωt)

≤ lim inf
n

∫
Ωt+1

1Bn(ωt)(ωt+1)qt+1(ωt+1|ωt) = 0.

This implies that qt+1

(
h∗(ωt)∆St+1(ωt, ·) ≥ 0|ωt

)
= 1, and thus from (4) in Lemma 3.5 we get that

h∗(ωt) = 0 which contradicts |h∗(ωt)| = 1. Thus n0(ωt) < ∞ and we can set for ωt ∈ Ωt
NA1, αt(ωt) =

1
n0(ωt) . It is clear that αt ∈ (0, 1]. Then for all ωt ∈ Ωt

NA1, for all h ∈ Dt+1(ωt) with |h| = 1, by definition
of An0(ωt)(ω

t) we obtain

qt+1

(
h∆St+1(ωt, ·) ≤ −αt(ωt)|ωt

)
≥ αt(ωt). (7)

Step 2 : Measurability.
We now construct a function αt which is Ft-measurable and satisfies (5) as well. To do that we use
the Aumann Theorem again as in the proof of Lemma 3.5 but this time applied to the random set
An : Ωt � Rd where An(ωt) is defined in (6) if ωt ∈ Ωt

NA1 and An(ωt) = ∅ otherwise.
We prove that graph(An) ∈ Ft⊗B(Rd). From Lemma 7.7, the function (ωt, h)→ qt+1

(
h∆St+1(ωt, ·) ≤ − 1

n |ω
t
)

is Ft ⊗ B(Rd)-measurable. From Lemma 3.3, Graph(Dt+1) ∈ Ft ⊗ B(Rd) and the result follows from

Graph(An) = Graph(Dt+1)
⋂(

Ωt
NA1 × {h ∈ Rd, |h| = 1}

)
⋂{

(ωt, h) ∈ Ωt × Rd, qt+1

(
h∆St+1(ωt, ·) ≤ − 1

n
|ωt
)
<

1

n

}
.

Using the Projection Theorem, we get that {ωt ∈ Ωt, An(ωt) 6= ∅} ∈ F t. We now extend n0 to Ωt by
setting n0(ωt) = 1 if ωt /∈ Ωt

NA1. Then {n0 ≥ 1} = Ωt ∈ Ft ⊂ F t and for k > 1

{n0 ≥ k} = Ωt
NA1 ∩

⋂
1≤n≤k−1

{An 6= ∅} ∈ F t,

this implies that n0 and thus αt is F t-measurable. Using Lemma 7.8, we get some Ft-measurable
function αt such that αt = αt Pt almost surely, i.e there exists M t ∈ Ft such that Pt(M t) = 0 and
{αt 6= αt} ⊂ M t. We set Ωt

NA := Ωt
NA1

⋂(
Ωt \Mt

)
. Then Pt(Ω

t
NA) = 1 and as αt is Ft-measurable it

remains to check that (5) holds true.
For ωt ∈ Ωt

NA, αt(ωt) = αt(ω
t) (recall that ωt ∈ Ωt \Mt) and since ωt ∈ Ωt

NA1, (7) holds true and
consequently (5) as well. It is also clear that αt(ωt) ∈ (0, 1] and the proof is completed. 2

Remark 3.7 The characterization of (NA) given by (5) works only for h ∈ Dt+1(ωt). This is the reason
why we will have to project the strategy φt+1 ∈ Ξt onto Dt+1(ωt) in our proofs.

Example 3.8 Getting back to Example 2.3, (NA) holds iff, for all t = 1, . . . , T − 1 and ωt ∈ Ωt, either
both qt+1({1}|ωt) > 0 and qt+1({−1}|ωt) > 0 or qt+1({0}|ωt) = 1 hold, and either both P1({1}) > 0 and
P1({−1}) > 0 or P1({0}) = 1 hold.
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4 Utility problem and main result

We now describe the investor’s risk preferences by a possibly non-concave, random utility function.

Definition 4.1 A random utility is any function U : Ω × R → R ∪ {±∞} satisfying the following
conditions

• for every x ∈ R, the function U (·, x) : Ω→ R ∪ {±∞} is F-measurable,

• for all ω ∈ Ω, the function U (ω, ·) : R→ R ∪ {±∞} is non-decreasing and usc on R,

• U(·, x) = −∞, for all x < 0.

We introduce the following notations.

Definition 4.2 For all x ≥ 0, we denote by Φ(x) the set of all strategies φ ∈ Φ such that PT (V x,φ
T (·) ≥

0) = 1 and by Φ(U, x) the set of all strategies φ ∈ Φ(x) such that EU(·, V x,φ
T ) exists in a generalised

sense, i.e. either EU+(·, V x,φ
T (·)) <∞ or EU−(·, V x,φ

T (·)) <∞.

Remark 4.3 Under (NA), if φ ∈ Φ(x) then we have that Pt(V x,φ
t (·) ≥ 0) = 1 for all 1 ≤ t ≤ T see Lemma

7.17.

We now formulate the problem which is our main concern in the sequel.

Definition 4.4 Let x ≥ 0. The portfolio optimization problem on a finite horizon T with initial wealth
x is

u(x) := sup
φ∈Φ(U,x)

EU(·, V x,φ
T (·)). (8)

Remark 4.5 Assume that there exists some P -full measure set Ω̃ ∈ F such that for all ω ∈ Ω̃, x →
U(ω, x) is non-decreasing and usc on [0,+∞) We set U : Ω× R→ R ∪ {±∞}

U(ω, x) := U(ω, x)1
Ω̃×[0,+∞)

(ω, x) + (−∞)1Ω×(−∞,0)(ω, x).

Then U satisfies Definition 4.1, see Lemma 7.9 for the second item. Moreover, the value function
does not change u(x) = supφ∈Φ(U,x)EU(·, V x,φ

T (·)), and if there exists some φ∗ ∈ Φ(U, x) such that
u(x) = EU(·, V x,φ∗

T (·)), then φ∗ is an optimal solution for (8).

Remark 4.6 Let U be a utility function defined only on (0,∞) and verifying for every x ∈ (0,∞),
U (·, x) : Ω → R ∪ {±∞} is F-measurable and for all ω ∈ Ω, U (ω, ·) : (0,∞) → R ∪ {±∞} is non-
decreasing and usc on (0,∞). We may extend U on R by setting, for all ω ∈ Ω, U(ω, 0) = limx→0 U(ω, x)
and for x < 0, U(ω, x) = −∞. Then, as before, U verifies Definition 4.1 and the value function has not
changed.

We now present conditions on U which allow to assert that if φ ∈ Φ(x) then EU(·, V x,φ
T (·)) is well-

defined and that there exists some optimal solution for (8).

Assumption 4.7 For all φ ∈ Φ(U, 1), EU+
(
·, V 1,φ

T (·)
)
<∞.

Assumption 4.8 Φ(U, 1) = Φ(1).
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Remark 4.9 Assumptions 4.7 and 4.8 are connected but play a different role. Assumption 4.8 guar-
antees that EU

(
·, V 1,φ

T (·)
)

is well-defined for all Φ ∈ Φ(1) and allows us to relax Assumption 2.7 of
Carassus et al. [2015] on the behavior of U around 0, namely that EU−(·, 0) < ∞. Then Assumption
4.7 (together with Assumption 4.10) is used to show that u(x) <∞ for all x > 0.

In Proposition 6.1, we will show that under Assumptions 4.7, 4.8 and 4.10, EU+
(
·, V x,φ

T (·)
)
< ∞

for all x ≥ 0 and φ ∈ Φ(x). Thus Φ(U, x) = Φ(x). Note that if there exists some Φ ∈ Φ(U, x) such that
EU+

(
·, V x,φ

T (·)
)

=∞ and EU−
(
·, V x,φ

T (·)
)
<∞ then u(x) =∞ and the problem is ill-posed.

We propose some examples where Assumptions 4.7 or 4.8 hold true. Example ii) illustrates the
distinction between Assumptions 4.7 and 4.8 and justifies why we do not merge both assumptions and
postulate that EU+

(
·, V 1,φ

T (·)
)
<∞, for all φ ∈ Φ(1).

i) If U is bounded above then both Assumptions are trivially true. We get directly that Φ(U, x) =
Φ(x) for all x ≥ 0.

ii) Assume that EU−(·, 0) < ∞ holds true. Let x ≥ 0 and φ ∈ Φ(x) be fixed. Using that U− is
non-increasing for all ω ∈ Ω we get that

EU−(·, V x,φ
T (·)) ≤ EU−(·, 0) < +∞,

Thus EU(·, V x,φ
T (·)) is well-defined, Φ(U, x) = Φ(x) and Assumption 4.8 holds true.

iii) Assume that there exists some x̂ ≥ 1 such that U(·, x̂− 1) ≥ 0 P -almost surely and

û(x̂) := sup
φ∈Φ(x̂)

EU(·, V x̂,φ
T (·)) <∞,

where we set for φ ∈ Φ(x̂)\Φ(U, x̂), EU(·, V x̂,φ
T (·)) = −∞. Let φ ∈ Φ(1) be fixed. Then using that

U is non-decreasing for all ω ∈ Ω, we have that P -almost surely

U(·, V 1,φ
T (·) + x̂− 1) ≥ U(·, x̂− 1) ≥ 0.

Therefore U(·, V 1,φ
T (·) + x̂ − 1) = U+(·, V 1,φ

T (·) + x̂ − 1) P -almost surely. Now using that U+ is
non-decreasing for all ω ∈ Ω we get that for all φ ∈ Φ(1)

EU+(·, V 1,φ
T (·)) ≤ EU+(·, V 1,φ

T (·) + x̂− 1) = EU(·, V 1,φ
T (·) + x̂− 1) ≤ û(x̂) < +∞

and Assumptions 4.7 and 4.8 are satisfied. Instead of stipulating that û(x̂) < ∞ it is enough to
assume that EU(·, V x̂,φ

T (·)) <∞ for all φ ∈ Φ(x̂).

iv) We will prove in Theorem 4.17 that under the (NA) condition and Assumption 4.10, Assumptions
4.7 and 4.8 hold true if EU+(·, 1) < +∞ and if for all 0 ≤ t ≤ T |∆St|, 1

αt
∈ Wt (see (14) for the

definition ofWt).

Assumption 4.10 We assume that there exist some constants γ ≥ 0, K > 0, as well as a random
variable C satisfying C(ω) ≥ 0 for all ω ∈ Ω and E(C) < ∞ such that for all ω ∈ Ω, λ ≥ 1 and x ∈ R,
we have

U(ω, λx) ≤ Kλγ
(
U

(
ω, x+

1

2

)
+ C(ω)

)
. (9)

Remark 4.11 First note that the constant 1
2 in (9) has been chosen arbitrarily. Indeed, assume there

exists some constant x ≥ 0 such that for all ω ∈ Ω, λ ≥ 1 and x ∈ R

U(ω, λx) ≤ Kλγ (U(ω, x+ x) + C(ω)) . (10)
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Using the monotonicity of U , we can always assume x > 0. Set for all ω ∈ Ω and x ∈ R, U(ω, x) =
U(ω, 2xx). Then for all ω ∈ Ω, λ ≥ 1 and x ∈ R, we have that

U(ω, λx) = U(ω, 2λxx) ≤ Kλγ (U(ω, 2xx+ x) + C(ω)) = Kλγ
(
U

(
ω, x+

1

2

)
+ C(ω)

)
,

and U satisfies (9). It is clear that if φ∗ is an optimal solution for the problem
u(x) := supφ∈Φ(U, x

2x
)EU(·, V

x
2x
,φ

T (·)) then 2xφ∗ is an optimal solution for (8). Note as well that, since
K > 0 and C ≥ 0, it is immediate to see that for all ω ∈ Ω, λ ≥ 1 and x ∈ R

U+(ω, λx) ≤ Kλγ
(
U+

(
ω, x+

1

2

)
+ C(ω)

)
. (11)

Remark 4.12 We now provide some insight on Assumption 4.10. As the inequality (9) is used to
control the behaviour of U+(·, x) for large values of x, the usual assumption in the non-concave case
(see Assumption 2.10 in Carassus et al. [2015]) is that there exists some x̂ ≥ 0 such that EU+(·, x̂) <∞
as well as a random variable C1 satisfying E(C1) <∞ and C1(ω) ≥ 0 for all ω 2 such that for all x ≥ x̂,
λ ≥ 1 and ω ∈ Ω

U(ω, λx) ≤ λγ (U(ω, x) + C1(ω)) . (12)

We prove now that if (12) holds true then (10) is verified with x = x̂, K = 1 and C = C1. Indeed, for
x ≥ 0, using the monotonicity of U , we have for all ω ∈ Ω and λ ≥ 1 that

U(ω, λx) ≤ U(ω, λ(x+ x̂)) ≤ λγ (U(ω, x+ x̂) + C1(ω)) .

Therefore (10) is a weaker assumption than (12). Note as well that if we assume that (12) holds true
for all x > 0, then if 0 < x < 1 and ω ∈ Ω we have

U(ω, 1) ≤
(

1

x

)γ
(U(ω, x) + C1(ω)) ,

and U(ω, 0) := limx→0, x>0 U(ω, x) ≥ −C1(ω). This excludes for instance the case where U is the
logarithm. Furthermore, this also implies that EU−(·, 0) ≤ EC1 <∞ and we are back to Assumption
2.7 of Carassus et al. [2015]
Alternatively, recalling the way the concave case is handled (see Lemma 2 in Rásonyi and Stettner
[2005]), we could have introduced that there exists a random variable C2 satisfying E(C2) < ∞ and
C2 ≥ 0 such that for all x ∈ R, ω ∈ Ω

U+(ω, λx) ≤ λγ
(
U+(ω, x) + C2(ω)

)
. (13)

We have not done so as it is difficult to prove that this inequality is preserved through the dynamic
programming procedure when considering non-concave functions unless we assume that EU−(·, 0) <
∞ as in Carassus et al. [2015].

Remark 4.13 If there exists some set ΩAE ∈ F with P (ΩAE) = 1 such that (9) holds true only for
ω ∈ ΩAE , then setting as in Remark 4.5, U(ω, x) := U(ω, x)1ΩAE×R(ω, x), U satisfies (9) and the value
function in (8) does not change. We also assume without loss of generality that C(ω) ≥ 0 for all ω in
(9). Indeed, if C ≥ 0 P -a.s, we could consider C̃ := CIC≥0. Then Assumption 4.10 would hold true with
C̃ instead of C.

2In the cited paper C1 ≥ 0 a.s but this is not an issue, see Remark 4.13 below
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Remark 4.14 In the case where (12) holds true, we refer to remark 2.5 of Carassus and Rásonyi [2016]
and remark 2.10 of Carassus et al. [2015] for the interpretation of γ : for C1 = 0, it can be seen as a
generalization of the “asymptotic elasticity” of U at +∞ (see Kramkov and Schachermayer [1999]). So
(12) requires that the (generalized) asymptotic elasticity at +∞ is finite. In this case and if U is differ-
entiable there is a nice economic interpretation of the “asymptotic elasticity” as the ratio of “marginal
utility”: U ′(x) and the “average utility”: U(x)

x , see again Section 6 of Kramkov and Schachermayer
[1999] for further discussions. The case C1 > 0 allows bounded utilities. In Carassus et al. [2015] it is
proved that unlike in the concave case, the fact that U is bounded from above (and therefore satisfies
(10)) does not imply that the asymptotic elasticity is bounded.
We propose now an example of an unbounded utility function satisfying (10) and such that
lim supx→∞

xU ′(x)
U(x) = +∞. This shows (as the counterexample of Carassus et al. [2015]), that Assump-

tion 4.10 is less strong that the usual “asymptotic elasticity”. Let U : R→ R be defined by

U(x) = −∞1(−∞,0)(x) +
∑
p≥0

p1[p,p+1− 1
2p+1 )(x) + fp(x)1[p+1− 1

2p+1 ,p+1)(x)

where fp(x) = 2p+1x+ (p+ 1)
(
1− 2p+1

)
for p ∈ N. Then U satisfies Definition 4.1 and we have

U ′(x) =
∑
p≥0

2p+11[p+1− 1
2p+1 ,p+1)(x).

We prove that (10) holds true. Note that for all x ≥ 0 we have x − 1 ≤ U(x) ≤ x + 1. Let x ≥ 0 and
λ ≥ 1 be fixed. Then we get that

U(λx) ≤ λx+ 1 ≤ λ (U(x+ 1) + 1) + 1 ≤ λ (U(x+ 1) + 2) ,

and (10) is true with K = x = 1 and C = 2. Now for k ≥ 0, let xk = k + 1 − 1
2k+2 . We have

U(xk) = fk(xk) = k + 1
2 and

xkU
′(xk)

U(xk)
= 2k+1

(
k + 1− 1

2k+2

)
k + 1

2

→k→∞ +∞.

Remark 4.15 We propose further examples where Assumption 4.10 holds true.

i) Assume that U is bounded from above by some integrable random constant C1 ≥ 0 and that
EU−(·, 1

2) <∞. Then for all x ≥ 0, λ ≥ 1, ω ∈ Ω we have

U(ω, λx) ≤ C1(ω) ≤ λU
(
ω, x+

1

2

)
+ λ

(
C1(ω)− U

(
ω, x+

1

2

))
≤ λU

(
ω, x+

1

2

)
+ λ

(
C1(ω) + U−

(
ω,

1

2

))
,

and (9) holds true for x ≥ 0 with K = 1, γ = 1 and C(·) = C1(·) + U−(·, 1
2). As U(·, x) = −∞ for

x < 0, (9) is true for all x ∈ R.

ii) Assume that U satisfies Definition 4.1 and that the restriction of U to [0,∞) is concave and non-
decreasing and that EU−(·, 1) < ∞. We use similar arguments as in Lemma 2 in Rásonyi and
Stettner [2006]. Indeed, let x ≥ 2, λ ≥ 1 be fixed we have

U(ω, λx) ≤ U(ω, x) + U
′
(ω, x)(λx− x) ≤ U(ω, x) +

U(ω, x)− U(ω, 1)

x− 1
(λ− 1)x

≤ U(ω, x) + 2(λ− 1) (U(ω, x)− U(ω, 1))

≤ U(ω, x) + 3(λ− 1

3
) (U(ω, x)− U(ω, 1))

≤ 3λ
(
U(ω, x) + U−(ω, 1)

)
,

11



where we have used the concavity of U for the first two inequalities and the fact that x ≥ 2 and
U is non-decreasing for the other ones. Thus from the proof that (12) implies (10), we obtain that
(10) holds true with K = 3, γ = 1, x = 2 and C(·) = U−(·, 1).

We can now state our main result.

Theorem 4.16 Assume the (NA) condition and that Assumptions 4.7, 4.8 and 4.10 hold true. Let
x ≥ 0. Then, u(x) <∞ and there exists some optimal strategy φ∗ ∈ Φ(U, x) such that

u(x) = EU(·, V x,φ∗

T (·)).

Moreover φ∗t (·) ∈ Dt(·) a.s. for all 0 ≤ t ≤ T .

We will use dynamic programming in order to prove our main result. We will combine the approach
of Rásonyi and Stettner [2005], Rásonyi and Stettner [2006], Carassus and Rásonyi [2016], Carassus
et al. [2015] and Nutz [2016]. As in Nutz [2016], we will consider a one period case where the initial
filtration is trivial (so that strategies are in Rd) and thus the proofs are much simpler than in the other
cited papers. The price to pay is that in the multi-period case where we use intensively measurable
selection arguments (as in Nutz [2016]) in order to obtain Theorem 4.16. In our model, there is only
one probability measure, so we don’t have to introduce Borel spaces and analytic sets. Thus our
modelisation of (Ω,F ,F, P ) is more general than the one of Nutz [2016] restricted to one probability
measure. As we are in a non concave setting we use similar ideas to those of Carassus and Rásonyi
[2016] and Carassus et al. [2015].

Finally, as in Rásonyi and Stettner [2005], Rásonyi and Stettner [2006], Carassus and Rásonyi
[2016] and Carassus et al. [2015], we propose the following result as a simpler but still general setting
where Theorem 4.16 applies. We introduce for all 0 ≤ t ≤ T

Wt :=
{
X : Ωt → R ∪ {±∞}, Ft-measurable, E|X|p <∞ for all p > 0

}
(14)

Theorem 4.17 Assume the (NA) condition and that Assumption 4.10 hold true. Assume furthermore
that EU+(·, 1) < +∞ and that for all 0 ≤ t ≤ T |∆St|, 1

αt
∈ Wt. Let x ≥ 0. Then, for all φ ∈ Φ(x) and

all 0 ≤ t ≤ T , V x,φ
t ∈ Wt. Moreover, there exists some optimal strategy φ∗ ∈ Φ(U, x) such that

u(x) = EU(·, V x,φ∗

T (·)) <∞

Proof of the main theorems will appear in Section 6.

Remark 4.18 The assumptions of Theorem 4.17 clearly hold for the model of Example 2.3 above when
U is deterministic satisfying Assumption 4.10. However, they also hold for many models with an
infinite Ω.

5 One period case

Let (Ω,H, Q) be a probability space (we denote byE the expectation underQ) and Y (·) anH-measurable
Rd-valued random variable. Let D ⊂ Rd be the smallest affine subspace of Rd containing the support
of the distribution of Y (·). We assume that D contains 0. The condition corresponding to (NA) in the
present setting is

Assumption 5.1 There exists some constant 0 < α ≤ 1 such that for all h ∈ D

Q(hY (·) ≤ −α|h|) ≥ α. (15)

Remark 5.2 below is exactly Remark 8 of Carassus and Rásonyi [2016] (see also Lemma 2.6 of Nutz
[2016]).
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Remark 5.2 Let h ∈ Rd and let h′ ∈ Rd be the orthogonal projection of h on D. Then h− h′ ⊥ D hence
{Y (·) ∈ D} ⊂ {(h− h′)Y (·) = 0}. It follows that

Q(hY (·) = h′Y (·)) = Q((h− h′)Y (·) = 0) ≥ Q(Y (·) ∈ D) = 1

by the definition of D. Hence Q(hY (·) = h′Y (·)) = 1.

Assumption 5.3 We consider a random utility V : Ω× R→ R satisfying the following conditions

• for every x ∈ R, the function V (·, x) : Ω→ R is H-measurable,

• for every ω ∈ Ω, the function V (ω, ·) : R→ R is non-decreasing and usc on R,

• V (·, x) = −∞, for all x < 0.

Let x ≥ 0 be fixed. We define

Hx :=
{
h ∈ Rd, Q(x+ hY (·) ≥ 0) = 1

}
, (16)

Dx := Hx ∩D. (17)

It is clear that Hx and Dx are closed subsets of Rd. We define

v(x) = (−∞)1(−∞,0)(x) + 1[0,+∞)(x) sup
h∈Hx

EV (·, x+ hY (·)) . (18)

From Remark 5.2,

v(x) = (−∞)1(−∞,0)(x) + 1[0,+∞)(x) sup
h∈Dx

EV (·, x+ hY (·)). (19)

Remark 5.4 It will be shown in Lemma 5.9 that under Assumptions 5.1, 5.3, 5.5 and 5.7, for all h ∈ Hx,
E(V (·, x + hY (·)) is well-defined and more precisely that EV +(·, x + hY (·)) < +∞. So, under this set
of assumptions, Φ(V, x), the set of h ∈ Hx such that EV (·, x+ hY (·)) is well-defined, equals Hx.

We present now the assumptions which allow to assert that there exists some optimal solution for
(18). First we introduce an “asymptotic elasticity” assumption.

Assumption 5.5 There exist some constants γ ≥ 0, K > 0, as well as some H-measurable C with
C(ω) ≥ 0 for all ω ∈ Ω and E(C) <∞, such that for all ω ∈ Ω, for all λ ≥ 1, x ∈ R we have

V (ω, λx) ≤ Kλγ
(
V

(
ω, x+

1

2

)
+ C(ω)

)
. (20)

Remark 5.6 The same comments as in Remark 4.13 apply. Furthermore, note that since K > 0 and
C ≥ 0 we also have that for all ω ∈ Ω, all λ ≥ 1 and x ∈ R

V +(ω, λx) ≤ Kλγ
(
V +

(
ω, x+

1

2

)
+ C(ω)

)
. (21)

We introduce now some integrability assumption on V +.

Assumption 5.7 For every h ∈ H1,

EV +(·, 1 + hY (·)) <∞. (22)

The following lemma corresponds to Lemma 2.1 of Rásonyi and Stettner [2006] in the deterministic
case.
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Lemma 5.8 Assume that Assumption 5.1 holds true. Then Dx ⊂ B(0, xα) where B(0, xα) = {h ∈
Rd, |h| ≤ x

α} and Dx is a convex, compact subspace of Rd.

Proof. Let h ∈ Dx. Assume that |h| > x
α and let ω ∈ {hY (·) ≤ −α|h|}. Then x + hY (ω) < x − α|h| < 0

and from Assumption 5.1 Q(x+hY (·) < 0) ≥ Q(hY (·) ≤ −α|h|) ≥ α > 0, a contradiction. The convexity
and the closedness of Dx are clear and compactness follows from the boundness property. 2

This lemma corresponds in the deterministic case to Lemma 4.8 of Carassus et al. [2015] (see also
Lemma 2.3 of Rásonyi and Stettner [2006] and Lemma 2.8 of Nutz [2016]).

Lemma 5.9 Assume that Assumptions 5.1, 5.3, 5.5 and 5.7 hold true. Then there exists aH-measurable
L ≥ 0 satisfying E(L) <∞ and such that for all x ≥ 0 and h ∈ Hx

V +(·, x+ hY (·)) ≤
(
(2x)γK + 1

)
L(·) Q− a.s. (23)

Proof. The proof is reported in Section 7.3 of the Appendix 2

Lemma 5.10 Assume that Assumptions 5.1, 5.3, 5.5 and 5.7 hold true. Let D be the set valued
function that assigns to each x ≥ 0 the set Dx. Then Graph(D) := {(x, h) ∈ [0,+∞)× Rd, h ∈ Dx} is a
closed subset of R× Rd. Let ψ : R× Rd → R ∪ {±∞} be defined by

ψ(x, h) :=

{
EV (·, x+ hY (·)), if (x, h) ∈ Graph(D)

−∞, otherwise.
(24)

Then ψ is usc on R× Rd and ψ < +∞ on Graph(D).

Proof. Let (xn, hn)n≥1 ∈ Graph(D) be a sequence converging to some (x∗, h∗) ∈ R × Rd. We prove first
that (x∗, h∗) ∈ Graph(D). It is clear that x∗ ≥ 0. Set for n ≥ 1 En := {ω ∈ Ω, xn + hnY (ω) ≥ 0} and
E∗ := {ω ∈ Ω, x∗ + h∗Y (ω) ≥ 0}. Since lim supnEn ⊂ E∗, Fatou’s lemma gives

Q (x∗ + h∗Y (·) ≥ 0) = E1E∗(·) ≥ E lim sup
n

1En(·) ≥ lim sup
n

E1En(·) = 1,

so h∗ ∈ Hx∗ . Since D is closed by definition we have h∗ ∈ Dx∗ and (x∗, h∗) ∈ Graph(D).
We prove now that ψ is usc on Graph(D). The upper semicontinuity on R×Rd will follow immediately
from Lemma 7.9. By Assumption 5.3 x ∈ R→ V (x, ω) is usc on R for all ω ∈ Ω and thus

lim sup
n

V (ω, xn + hnY (ω)) ≤ V (ω, x∗ + h∗Y (ω)).

By Lemma 5.9 for all ω ∈ Ω

V (ω, xn + hnY (·)) ≤ V +(ω, xn + hnY (·)) ≤ (|2xn|γK + 1)L(ω) ≤ (|2x∗|γK + 2)L(ω)

for n big enough. We can apply Fatou’s Lemma (the limsup version) and ψ is usc on Graph(D). ¿From
Lemma 5.9 it is also clear that ψ < +∞ on Graph(D). 2

We are now able to state our main result of this section.

Theorem 5.11 Assume that Assumptions 5.1, 5.3, 5.5 and 5.7 hold true. Then for all x ≥ 0, v(x) <∞
and there exists some optimal strategy ĥ ∈ Dx such that

v(x) = E(V (·, x+ ĥY (·))).

Moreover, v : R→ [−∞, ∞) is non-decreasing and usc on R.
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Proof. Fix x ≥ 0. We show first that v(x) <∞. Indeed, using Lemma 5.9, for all h ∈ Dx,

E(V (·, x+ hY (·))) ≤ E(V +(·, x+ hY (·))) ≤
(
(2x)γK + 1

)
EL(·) <∞.

From Lemma 5.10, h ∈ Rd → E(V (·, x + hY (·))) is usc on Rd and thus on Dx (recall that Dx is closed
and see Lemma 7.9). Since by (19), v(x) = suph∈Dx E(·, V (x + hY (·))) and Dx is compact (see Lemma
5.8), applying Theorem 2.43 of Aliprantis and Border [2006] there exists some ĥ ∈ Dx such that

v(x) = E(V (·, x+ ĥY (·))). (25)

We show that v is usc on [0,+∞). As previously, the upper semicontinuity on R will follow immediately
from Lemma 7.9. Let (xn)n≥0 be a sequence of non-negative numbers converging to some x∗ ∈ [0,+∞).
Let ĥn ∈ Dxn be the associated optimal strategies to xn in (25). Let (nk)k≥1 be a subsequence such
that lim supn v(xn) = limk v(xnk). By Lemma 5.8 |ĥnk | ≤ xnk/β ≤ (x∗+1)/β for k big enough. So we can
extract a subsequence (that we still denote by (nk)k≥1) such that there exists some h∗ with ĥnk → h∗.
As the sequence (xnk , ĥnk)k≥1 ∈ Graph(D) converges to (x∗, h∗) and Graph(D) is closed (see Lemma
5.10), we get that h∗ ∈ Dx∗ . Using Lemma 5.10

lim sup
n

v(xn) = lim
k
v(xnk) = lim

k
EV (·, xnk + ĥnkY (·)) ≤ EV (·, x∗ + h∗Y (·)) ≤ v(x∗),

where the last inequality holds true because h∗ ∈ Dx∗ and therefore v is usc on [0,+∞) and it is
trivially non-decreasing. 2

6 Multi-period case

Proposition 6.1 Let Assumptions 4.7, 4.8 and 4.10 hold true. Then EU+
(
·, V x,φ

T (·)
)
< ∞ for all

x ≥ 0 and φ ∈ Φ(x). This implies that Φ(U, x) = Φ(x).

Proof. Fix 0 ≤ x ≤ 1 and let φ ∈ Φ(x). Then V x,φ
T ≤ V 1,φ

T , φ ∈ Φ(1) = Φ(1, U) and EU+
(
·, V x,φ

T (·)
)
≤

EU+
(
·, V 1,φ

T (·)
)
< ∞ by Assumption 4.7. Now, if x ≥ 1 and φ ∈ Φ(x) then Assumption 4.10 implies

that for all ω ∈ Ω

U(ω, V x,φ
T (ω)) = U

(
ω, 2x

(
1

2
+

T∑
t=1

φt(ω
t−1)

2x
∆St(ω

t)

))
≤ (2x)γK

(
U(ω, V

1, φ
2x

T (ω)) + C(ω)

)
.

By Assumption 4.8, φ
2x ∈ Φ(1

2) ⊂ Φ(1) = Φ(1, U). Thus

EU+
(
·, V x,φ

T (·)
)
≤ (2x)γK

(
EU+

(
·, V 1, φ

2x
T (·)

)
+ E(C)

)
<∞

using Assumption 4.7 and Assumption 4.10). We conclude that Φ(x) = Φ(U, x). 2

We introduce now the dynamic programming procedure. First we set for all t ∈ {0, . . . , T − 1},
ωt ∈ Ωt and x ≥ 0

Ht+1
x (ωt) :=

{
h ∈ Rd, qt+1(x+ h∆St+1(ωt, ·) ≥ 0|ωt) = 1

}
, (26)

Dt+1
x (ωt) := Ht+1

x (ωt) ∩Dt+1(ωt). (27)

For x < 0 we set Ht+1
x (ωt) = ∅.

We define for all t ∈ {0, . . . , T} the following functions Ut from Ωt×R→ R. Starting with t = T , we set
for all x ∈ R, all ωT ∈ Ω

UT (ωT ) := U(ωT ). (28)
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Using for t ≥ 1 the full-measure set Ω̃t ∈ Ft that will be defined by induction in Propositions 6.7 and
6.8, we set for all x ∈ R and ωt ∈ Ωt

Ut(ω
t, x) := (−∞)1(−∞,0)(x) + 1Ω̃t×[0,+∞)(ω

t, x) sup
h∈Ht+1

x (ωt)

∫
Ωt+1

Ut+1(ωt, ωt+1, x+ h∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt).

(29)

Finally, for t = 0,

U0(x) := (−∞)1(−∞,0)(x) + 1[0,+∞)(x) sup
h∈H1

x

∫
Ω1

U1(ω1, x+ h∆S1(ω1))P1(dω1). (30)

Remark 6.2 We will prove by induction that Ut is well-defined (see (32)), i.e the integrals in (29) and
(30) are well-defined in the generalised sense.

The Pt full measure set Ω̃t in (29) is related to measurability issues that will be tackled in Propo-
sition 6.9.

Lemma 6.3 Let 0 ≤ t ≤ T − 1 and H be a fixed R-valued and Ft-measurable random variable. Then
the random sets Ht+1

H , Dt+1
H are closed-valued and with graph in Ft ⊗ B(Rd).

Proof. First it is clear that Ht+1
H is closed-valued. As Dt+1 is closed-valued (see Lemma 3.3) it follows

that Dt+1
H is closed-valued as well. The fact that Graph(Ht+1

H ) ∈ Ft ⊗ B(Rd) follows immediately from

Graph(Ht+1
H ) =

{
(ωt, h) ∈ Ωt × Rd, H(ωt) ≥ 0, qt+1

({
H(ωt) + h∆St+1(ωt, .) ≥ 0

}
= 1|ωt

)}
,

and Lemma 7.7. We know from Lemma 3.3 that Graph(Dt+1) ∈ Ft ⊗ B(Rd) and it follows that
Graph(Dt+1

H ) = Graph(Dt+1) ∩Graph(Ht+1
H ) ∈ Ft ⊗ B(Rd), too. 2

Finally we introduce

CT (ωT ) := C(ωT ), for ωT ∈ ΩT , where C is defined in Assumption 4.10

Ct(ω
t) :=

∫
Ωt+1

Ct+1(ωt, ωt+1)qt+1(dωt+1|ωt) for t ∈ {0, . . . , T − 1}, ωt ∈ Ωt. (31)

Lemma 6.4 The functions ωt ∈ Ωt → Ct(ω
t) are well-defined, non-negative (for all ωt), Ft-measurable

and satisfy E(Ct) = E(CT ) < ∞. Furthermore, for all t ∈ {1, . . . , T}, there exists Ωt
C ∈ Ft and with

Pt(Ω
t
C) = 1 and such that Ct <∞ on Ωt

C . For t = 0 we have C0 <∞.

Proof. We proceed by induction. Assumption 4.10 implies the statements for t = T . Assume now that
Ct+1 is Ft+1-measurable, Ct+1 ≥ 0 and E(Ct+1) = E(CT ) < ∞. From Proposition 7.4 i) applied to
f = Ct+1 we get that ωt → Ct(ω

t) is Ft-measurable and clearly Ct(ωt) ≥ 0 for all ωt. From the Fubini
theorem

E(Ct) =

∫
Ωt

∫
Ωt+1

Ct+1(ωt, ωt+1)qt+1(dωt+1|ωt)Pt(dωt)

=

∫
Ωt+1

Ct+1(ωt+1)Pt+1(dωt+1) = E(Ct+1) = E(CT ) <∞.

and the induction step is complete. For the second part of the lemma, we apply Lemma 7.5 to f = Ct+1

and we obtain that Ωt
C := {ωt ∈ Ωt, Ct(ω

t) <∞} ∈ Ft and Pt(Ωt
C) = 1. 2
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Propositions 6.6 to 6.9 below carry out a dynamic programming procedure. They hold true under
the following set of conditions. Let 1 ≤ t ≤ T be fixed.

Ut
(
ωt, ·

)
: R→ R is well-defined, non-decreasing and usc on R for all ωt ∈ Ωt, (32)

Ut (·, ·) : Ωt × R→ R{±∞} is Ft ⊗ B(R)-measurable, (33)∫
Ωt
U+
t (ωt, H(ωt−1) + ξ(ωt−1)∆St(ω

t))Pt(dω
t) <∞, (34)

for all ξ ∈ Ξt−1 and H = x+
∑t−1

s=1 φs∆Ss where x ≥ 0, φ1 ∈ Ξ0, . . . , φt−1 ∈ Ξt−2

and Pt(H(·) + ξ(·)∆St(·) ≥ 0) = 1,

Ut(ω
t, λx) ≤ λγK

(
Ut

(
ωt, x+

1

2

)
+ Ct(ω

t)

)
, for all ωt ∈ Ωt, λ ≥ 1, x ∈ R. (35)

Remark 6.5 Note that from (32) and (33) we have that −Ut is a F t-normal integrand (see Definition
14.27 in Rockafellar and Wets [1998] and Corollary 14.34 of Rockafellar and Wets [1998]). However
to prove that this property is preserved in the dynamic programming procedure we need to show
separately that (32) and (33) are true.

The next proposition is a first step in the construction of Ω̃t.

Proposition 6.6 Let 0 ≤ t ≤ T − 1 be fixed. Assume that (NA) condition holds true and that (32),
(33), (34) and (35) hold true at stage t + 1. Then there exists Ω̃t

1 ∈ Ft such that Pt(Ω̃t
1) = 1 and such

that for all ωt ∈ Ω̃t
1 the function (ωt+1, x)→ Ut+1(ωt, ωt+1, x) satisfies the assumptions of Theorem 5.11

with Ω = Ωt+1, H = Gt+1, Q(·) = qt+1(·|ωt), Y (·) = ∆St+1(ωt, ·), V (·, y) = Ut+1(ωt, ·, y).

Proof. We will review one by one the assumptions needed to apply Theorem 5.11 in the context
Ω = Ωt+1, H = Gt+1, Q(·) = qt+1(·|ωt), Y (·) = ∆St+1(ωt, ·), V (·, y) = Ut+1(ωt, ·, y).In the sequel we
shortly call this the context t+ 1.
From (32) at t + 1 for all ωt ∈ Ωt and ωt+1 ∈ Ωt+1, the function x ∈ R → Ut+1(ωt, ωt+1, x) is non-
decreasing and usc on R. ¿From (33) at t+ 1 for all fixed ωt ∈ Ωt and x ∈ R, the function ωt+1 ∈ Ωt+1 →
Ut+1(ωt, ωt+1, x) is Gt+1-measurable and thus Assumption 5.3 is satisfied in the context t+ 1. We move
now to the assumptions that are verified for ωt chosen in some specific Pt-full measure set. First from
Lemma 3.5 for all ωt ∈ Ωt

NA1 we have 0 ∈ Dt+1(ωt) (recall that in Section 5 we have assume that D
contains 0). From Proposition 3.6, Assumption 5.1 holds true for all ωt ∈ Ωt

NA in the context t+ 1.
We handle now Assumption 5.5 in context t + 1. Let ωt ∈ Ωt

C be fixed where Ωt
C is defined in Lemma

6.4. From (35) at t+ 1 we have that for all ωt+1 ∈ Ωt+1, λ ≥ 1 and x ∈ R

Ut+1(ωt, ωt+1, λx) ≤ λγK
(
Ut+1

(
ωt, ωt+1, x+

1

2

)
+ Ct+1(ωt, ωt+1)

)
.

Now from Lemma 6.4 since ωt ∈ Ωt
C , we get that

∫
Ωt+1

Ct+1(ωt, ωt+1)qt+1(ωt+1|dωt) = Ct(ω
t) < ∞ and

thus Assumption 5.5 in context t + 1 is verified for all ωt ∈ Ωt
C . We want to show that for ωt in some

Pt full measure set to be determined and for all h ∈ Ht+1
1 (ωt) we have that∫

Ωt+1

U+
t+1(ωt, ωt+1, 1 + h∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt) <∞.

We introduce the following random set I1 : Ωt � Rd

I1(ωt) :=

{
h ∈ Ht+1

1 (ωt),

∫
Ωt+1

U+
t+1(ωt, ωt+1, 1 + h∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt) =∞

}
. (36)

Arguing by contradiction and using measurable selection arguments we will prove that I1(ωt) = ∅
for Pt-almost all ωt ∈ Ωt. We show first that Graph(I1) ∈ Ft ⊗ B(Rd). It is clear from (33) at t + 1
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that (ωt, ωt+1, h)→ U+
t+1(ωt, ωt+1, 1 + h∆St+1(ωt, ωt+1)) is Ft ⊗ Gt+1 ⊗ B(Rd)-measurable. Using Propo-

sition 7.4 ii) we get that (ωt, h)→
∫

Ωt+1
U+
t+1(ωt, ωt+1, 1 + h∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt) is Ft ⊗B(Rd)-

measurable (taking potentially the value +∞). From Lemma 6.3, we obtain Graph(Ht+1
1 ) ∈ Ft⊗B(Rd)

and Graph(I1) ∈ Ft ⊗ B(Rd) follows.
Applying the Projection Theorem we obtain that {I1 6= ∅} ∈ F t and using the Aumann Theorem there
exists some F t-measurable h1 : {I1 6= ∅} → Rd such that for all ωt ∈ {I1 6= ∅}, h1(ωt) ∈ I1(ωt). We
extend h1 on all Ωt by setting h1(ωt) = 0 on Ωt\{I1 6= ∅}. Using Lemma 7.8 we get some Ft-measurable
h1 : Ωt → Rd and Ωt

I1
∈ Ft such that Pt(Ωt

I1
) = 1 and Ωt

I1
⊂ {ωt ∈ Ωt, h1(ωt) = h1(ωt)}. Arguing as in

the proof of Lemma 3.5 and using the Fubini Theorem (see Lemma 7.1) we get that

Pt+1 (1 + h1(·)∆St+1(·) ≥ 0) =

∫
Ωt
qt+1(1 + h1(ωt)∆St+1(ωt, ·) ≥ 0|ωt)Pt(dωt)

=

∫
Ωt
qt+1(1 + h1(ωt)∆St+1(ωt, ·) ≥ 0|ωt)P t(dωt) = 1.

Now assume that P t({I1 6= ∅}) > 0. Since h1 ∈ Ξt and Pt+1(1 + h1(·)∆St+1(·) ≥ 0) = 1 from (34) at t+ 1
applied to H = 1 ∫

Ωt+1

U+
t+1(ωt+1, 1 + h1(ωt)∆St+1(ωt+1))Pt+1(dωt+1) <∞.

We argue as in Lemma 3.5 again. Let

ϕ1(ωt) =

∫
Ωt+1

U+
t+1(ωt, ωt+1, 1 + h1(ωt)∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt),

ϕ1(ωt) =

∫
Ωt+1

U+
t+1(ωt, ωt+1, 1 + h1(ωt)∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt).

It is clear that ϕ1 is Ft-measurable and that ϕ1 is F t-measurable. Furthermore as {ωt ∈ Ωt, ϕ1(ωt) 6=
ϕ1(ωt)} ⊂ {ωt ∈ Ωt, h1(ωt) 6= h1(ωt)}, ϕ1 = ϕ1 Pt-almost surely. This implies that

∫
Ωt ϕ1dP t =

∫
Ωt ϕ1dPt

and using again the Fubini Theorem (see Lemma 7.1) we get that∫
Ωt+1

U+
t+1(ωt+1, x+ h1(ωt)∆St+1(ωt+1)Pt+1(dωt+1)

=

∫
Ωt
ϕ1(ωt)Pt(dω

t) =

∫
Ωt
ϕ1(ωt)P t(dω

t)

≥
∫
{I1 6=∅}

(+∞)P t(dω
t) = +∞.

Therefore we must have P t({I1 6= ∅}) = 0 i.e P t({I1 = ∅}) = 1. Now since {I1 = ∅} ∈ F t there exists
Ωt
int ⊂ {I1 = ∅} such that Ωt

int ∈ Ft and Pt(Ωt
int) = P t({I1 = ∅}) = 1. For all ωt ∈ Ωt

int, Assumption 5.7
in the context t+ 1 is true and we can now define Ω̃t

1 ⊂ Ωt

Ω̃t
1 := Ωt

NA ∩ Ωt
int ∩ Ωt

C . (37)

It is clear that Ω̃t
1 ∈ Ft, Pt(Ω̃t

1) = 1 and the proof is complete. 2

The next proposition enables us to initialize the induction argument that will be carried on in
Proposition 6.9.

Proposition 6.7 Assume that the (NA) condition and Assumptions 4.7, 4.8 and 4.10 hold true. Then
UT satisfies (32), (33), (34) and (35) for t = T . We set Ω̃T = Ω.
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Proof. As UT = U , (32) for t = T is true. We show that for all ωT ∈ ΩT , x ∈ R → UT (ωT , x) is right-
continuous and for all x ∈ R, ωT ∈ ΩT → UT (x, ωT ) is FT -measurable (this is just the second point
of Definition 4.1) so that we can use Lemma 7.14 and establish (33) for t = T . Let ωT ∈ ΩT be fixed.
From (32) at T , x ∈ R→ UT (ωT , x) is non-decreasing and usc on R, thus applying Lemma 7.10 we get
that x ∈ R→ UT (ωT , x) is right-continuous on R.
Let ξ ∈ ΞT−1 andH = x+

∑T−1
t=1 φt∆St where x ≥ 0, φ1 ∈ Ξ0, . . . ,φT−1 ∈ ΞT−2 and PT (H(·)+ξ(·)∆ST (·) ≥

0) = 1. Let (φξi )1≤i≤T ∈ Φ be defined by φξT = ξ and φξi = φi for 1 ≤ i ≤ T −1 then V x,φξ

T = H+ξ∆ST and
thus φξ ∈ Φ(x). Using Proposition 6.1 we get that EU+(·, V x,φξ

T (·)) = EU+
T (·, H(·) + ξ(·)∆ST (·)) < ∞

(recall that U = UT ). Therefore (34) is verified for t = T . Finally, from Assumption 4.10, (35) for t = T
is true. 2

The next proposition proves that if (32), (33), (34) and (35) hold true at t+1 then they are also true
at Ut for some well chosen Ω̃t.

Proposition 6.8 Let 0 ≤ t ≤ T − 1 be fixed. Assume that the (NA) condition holds true and that (32),
(33), (34) and (35) are true at t + 1 (where Ut+1 is defined from a given Ω̃t+1 see (29)). Then there
exists some Ω̃t ∈ Ft with Pt(Ω̃

t) = 1 such that (32), (33), (34) and (35) are true for t.
Moreover for all H = x +

∑t
s=1 φs∆Ss, with x ≥ 0 and φ1 ∈ Ξ0, . . . , φt ∈ Ξt−1, such that Pt(H ≥ 0) = 1

there exists some Ω̃t
H ∈ Ft such that P (Ω̃t

H) = 1, Ω̃t
H ⊂ Ω̃t and some ĥHt+1 ∈ Ξt such that for all ωt ∈ Ω̃t

H ,
ĥHt+1(ωt) ∈ Dt+1

H(ωt)(ω
t) and

Ut(ω
t, H(ωt)) =

∫
Ωt+1

Ut+1(ωt, ωt+1, H(ωt) + ĥHt+1(ωt)∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt). (38)

Proof. First we define Ω̃t and prove that (32) and (33) are true for Ut. Applying Proposition 6.6, we get
that for all ωt ∈ Ω̃t

1, the function (ωt+1, x) → Ut+1(ωt, ωt+1, x) satisfies the assumptions of Lemma 5.9
and Theorem 5.11 with Ω = Ωt+1, H = Gt+1, Q = qt+1(·|ωt), Y (·) = ∆St+1(ωt, ·), V (·, y) = Ut+1(ωt, ·, y)
where V is defined on Ωt+1 × R. In particular, for ωt ∈ Ω̃t

1 and all h ∈ Ht+1
x (ωt), recalling (23) we have∫

Ωt+1

U+
t+1(ωt, ωt+1, x+ h∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt) <∞. (39)

Now, we introduce U t : Ωt × R defined by

U t(ω
t, x) := (−∞)1(−∞,0)(x) + 1[0,∞)(x)1Ω̃t

1
(ωt) sup

h∈Dt+1
x (ωt)

∫
Ωt+1

Ut+1(ωt, ωt+1, x+ h∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt).

From (39), U t is well-defined (in the generalised sense). First, we prove that U t is F t⊗R-measurable
and then we will show that this implies that Ut is Ft ⊗ R-measurable for a well chosen Ω̃t. To show
that U t is F t ⊗ B(R)-measurable, we use Lemma 7.14 (and Remark 7.15) after having proved that it
is an extended Carathéodory function (see Definition 7.13). Applying Theorem 5.11, we get that for
all ωt ∈ Ω̃t

1, the function x ∈ R→ U t(ω
t, x) is non-decreasing and usc on R. Actually, this is true for all

ωt ∈ Ωt since outside Ω̃t
1, x ∈ R → Ut(ω

t, x) is constant equal to zero on [0,∞) and to −∞ on (−∞, 0).
Let now ωt ∈ Ωt be fixed. As x ∈ R → U t(ω

t, x) is non-decreasing and usc on R we can apply Lemma
7.10 and we get that x ∈ R→ U t(ω

t, x) is right-continuous on R. For x ≥ 0 fixed, applying Lemma 6.9
with H = x (here Ωt

H = Ω̃t
1) we obtain that ωt ∈ Ωt → suph∈Rd ux(ωt, h) is F t-measurable. Finally, from

the definitions of U t and ux, we get that

U t(ω
t, x) = (−∞)1(−∞,0) + 1[0,∞)(x)1

Ω̃t1
(ωt) sup

h∈Rd
ux(ωt, h),

and this implies that ωt ∈ Ωt → U t(ω
t, x) is F t-measurable for all x ∈ R and thus that U t is an

extended Carathéodory function as claimed
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Finally, we prove the Ft ⊗ B(R)-measurability of Ut. To do that we apply Lemma 7.11 and we obtain
some Ωt

mes ∈ Ft such that Pt(Ωt
mes) = 1 and some Ft⊗R-measurable Ũt : Ωt×R→ R∪{±∞} such that

for all x ∈ R, {ωt ∈ Ωt, U t(ω
t, x) 6= Ũt(ω

t, x)} ⊂ Ωt\Ωt
mes. We are now in a position to define Ω̃t and set

Ω̃t := Ω̃t
1 ∩ Ωt

mes. (40)

We have that for all x ∈ R, ωt ∈ Ωt,

Ut(ω
t, x) = (−∞)1(−∞,0)(x) + 1[0,∞)(x)1Ωt

mes
(ωt)1Ω̃t

1
(ωt) sup

h∈Ht+1
x (ωt)

∫
Ωt+1

Ut+1(ωt, ωt+1, x+ h∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt)

= (−∞)1(−∞,0)(x) + 1[0,∞)(x)1Ωt
mes

(ωt)1Ω̃t
1
(ωt) sup

h∈Dt+1
x (ωt)

∫
Ωt+1

Ut+1(ωt, ωt+1, x+ h∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt)

= 1Ωt
mes

(ωt)U t(ω
t, x) + (−∞)1Ωt\Ωt

mes
(ωt)1(−∞,0)(x)

= 1Ωt
mes

(ωt)Ũt(ω
t, x) + (−∞)1Ωt\Ωt

mes
(ωt)1(−∞,0)(x),

and the Ft⊗B(R)-measurability of Ut follows immediately, i.e (33) is true at t. From the third equality
(32) is true for t since for all ωt ∈ Ωt, x ∈ R→ U t(ω

t, x) is well-defined, non-decreasing and usc on R.
We turn now to the assumption on asymptotic elasticity i.e (35) for t. If ωt /∈ Ω̃t, then (35) is true since
Ct(ω

t) ≥ 0 for all ωt. Let ωt ∈ Ω̃t be fixed. Let x ≥ 0, λ ≥ 1, h ∈ Rd such that qt+1(λx+ h∆St+1(ωt, .) ≥
0|ωt) = 1 be fixed. By (35) for t+ 1 for all ωt+1 ∈ Ωt+1, we have that

Ut+1

(
ωt, ωt+1, λx+ h∆St+1(ωt, ωt+1)

)
≤ λγKUt+1

(
ωt, ωt+1, x+

1

2
+
h

λ
∆St+1(ωt, ωt+1)

)
+λγCt+1(ωt, ωt+1).

By integrating both sides (recall (39)) we get that∫
Ωt+1

Ut+1

(
ωt, ωt+1, λx+ h∆St+1(ωt, ωt+1)

)
qt+1(dωt+1|ωt) ≤

λγK

∫
Ωt+1

Ut+1

(
ωt, ωt+1, x+

1

2
+
h

λ
∆St+1(ωt, ωt+1)

)
qt+1(dωt+1|ωt) + λγK

∫
Ωt+1

Ct+1(ωt, ωt+1)qt+1(dωt+1|ωt).

Since Ct(ωt) =
∫

Ωt+1
Ct+1(ωt, ωt+1)qt+1(dωt+1|ωt) (see Lemma 6.4) and h ∈ Ht+1

λx (ωt) implies that h
λ ∈

Ht+1
x (ωt) ⊂ Ht+1

x+ 1
2

(ωt), we obtain by definition of Ut (see (29)) that∫
Ωt+1

Ut+1

(
ωt, ωt+1, λx+ h∆St+1(ωt, ωt+1)

)
qt+1(dωt+1|ωt) ≤ λγKUt

(
ωt, x+

1

2

)
+ λγKCt(ω

t).

Taking the supremum over all h ∈ Ht+1
λx (ωt) we conclude that (35) is true for t for x ≥ 0. If x < 0, then

(35) is true by definition of Ut.
We now prove (38) for Ut. First, from Proposition 6.6 and Theorem 5.11 and since Ω̃t ⊂ Ω̃t

1, we have
for all ωt ∈ Ω̃t and x ≥ 0 that there exists some ξ∗ ∈ Dt+1

x (ωt) such that

Ut(ω
t, x) =

∫
Ωt+1

Ut+1(ωt, ωt+1, x+ ξ∗∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt). (41)

Let H = x+
∑t−1

s=1 φs∆Ss, with x ≥ 0 and φs ∈ Ξs for s ∈ {1, . . . , t− 1}, be fixed such that P (H ≥ 0) = 1.
Let Ω̃t

H := Ω̃t ∩ {ωt ∈ Ωt, H(ω) ≥ 0}. Then Ω̃t
H ∈ Ft and P (Ω̃t

H) = 1. We introduce

ψH(ωt) :=

{
h ∈ Dt+1

H(ωt)(ω
t) : Ut(ω

t, H(ωt)) =

∫
Ωt+1

Ut+1

(
ωt, ωt+1, H(ωt) + h∆St+1(ωt, ωt+1)

)
qt+1(dωt+1|ωt)

}
,

for ωt ∈ Ω̃t
H and ψH(ωt) = ∅ otherwise. To prove (38) it is enough to find a Ft-measurable selector for

ψH . From the definitions of ψH and uH (see (43)) we obtain that (recall that Ω̃t
H ⊂ Ω̃t and Ω̃t

H ⊂ Ωt
H ,

see (40) and the definition of Ωt
H in Lemma 6.9).

Graph(ψH) =
{

(ωt, h) ∈
(

Ω̃t
H × Rd

)
∩Graph(Dt+1

H ), Ut(ω
t, H(ωt)) = uH(ωt, h)

}
.
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From Lemma 6.3 we have that Graph(Dt+1
H ) ∈ Ft ⊗ B(Rd). We have already proved that (ωt, y) →

Ut(ω
t, y) is Ft ⊗ B(R)-measurable and, as H is Ft-measurable, we obtain that ωt → Ut(ω

t, H(ωt)) is
Ft-measurable. Now applying Lemma 6.9 we obtain that uH is Ft ⊗ B(Rd)-measurable. The fact that
Graph(ψH) ∈ Ft ⊗ B(Rd) follows immediately.

So we can apply the Projection Theorem and get that {ψH 6= ∅} ∈ F t and, using the Aumann
Theorem, there exists some F t-measurable h

H
t+1 : {ψH 6= ∅} → Rd such that for all ωt ∈ {ψH 6= ∅},

h
H
t+1(ωt) ∈ ψH(ωt). Then we extend hHt+1 on all Ωt by setting hHt+1 = 0 on Ωt \ {ψH 6= ∅}. Now applying

Lemma 7.8 we get some Ft-measurable ĥHt+1 : Ωt → Rd and some Ω
t
H ∈ Ft such that P (Ω

t
H) = 1 and

Ω
t
H ⊂ {h

H
t+1 = ĥHt+1}. We prove now that the set {ψH 6= ∅} is of full measure. Indeed, let ωt ∈ Ω̃t

H

be fixed. Using (41) for x = H(ωt) ≥ 0, there exists h∗(ωt) ∈ ψH(ωt). Therefore Ω̃t
H ⊂ {ψH 6= ∅} and

P t({ψH 6= ∅}) = 1. So for all ωt ∈ Ω
t
H ∩ Ω̃t

H we have

Ut(ω
t, H(ωt)) =

∫
Ωt+1

Ut+1(ωt, ωt+1, H(ωt) + h
H
t+1(ωt)∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt)

=

∫
Ωt+1

Ut+1(ωt, ωt+1, H(ωt) + ĥHt+1(ωt)∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt).

So setting

Ω̃t
H = Ω̃t

H ∩ Ω
t
H ⊂ Ω̃t (42)

(38) is proved for t.
We are now left with the proof of (34) for Ut. Let ξ ∈ Ξt−1 and H = x +

∑t−1
s=1 φs∆Ss where x ≥ 0

and φ1 ∈ Ξ0, . . . , φt−1 ∈ Ξt−2 and such that Pt(H(·) + ξ(·)∆St(·) ≥ 0) = 1. We fix some ωt ∈ Ω̃t. Let
X(ωt) = H(ωt−1) + ξ(ωt−1)∆St(ω

t) then X is Ft-measurable. We apply (38) to X(ωt) (and Dt+1
X(ωt)(ω

t)),

and we get some ωt ∈ Ωt → ĥt+1(ωt) which is Ft-measurable and Ω̃t
X ∈ Ft such that Pt(Ω̃t

X) = 1 and
such that for all ωt ∈ Ω̃t

X , qt+1

(
X(ωt) + ĥt+1(ωt)∆St+1(ωt, ·) ≥ 0|ωt

)
= 1 and

Ut(ω
t, X(ωt)) =

∫
Ωt+1

Ut+1(ωt, ωt+1, X(ωt) + ĥt+1(ωt)∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt).

Using Jensen’s Inequality

U+
t (ωt, X(ωt)) ≤

∫
Ωt+1

U+
t+1(ωt, ωt+1, X(ωt) + ĥt+1(ωt)∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt).

Thus as Pt(Ω̃t
X) = 1∫

Ω̃tX

U+
t (ωt, X(ωt))Pt(dω

t) =

∫
Ωt
U+
t (ωt, X(ωt))Pt(dω

t)

≤
∫

Ωt+1

U+
t+1(ωt+1, X(ωt) + ĥt+1(ωt)∆St+1(ωt+1))Pt+1(dωt+1) <∞,

because of (34) for t+1 which applies since X = x+
∑t−1

s=1 φs∆Ss+ξ∆St where x ≥ 0, φ1 ∈ Ξ1, . . . , φt−1 ∈
Ξt−2, ξ ∈ Ξt−1 and ĥt+1 ∈ Ξt : (34) for t is proved. 2

Lemma 6.9 Fix some 0 ≤ t ≤ T−1 and x ≥ 0. LetH := x+
∑t−1

s=1 φs∆Ss, where φ1 ∈ Ξ0, . . . , φt−1 ∈ Ξt−2

and Pt(H ≥ 0) = 1. Assume that the (NA) condition holds true and that (32), (33), (34) and (35) are
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true at t+ 1. Let uH : Ωt × Rd → R ∪ {±∞} be defined by

uH(ωt, h) :=



∫
Ωt+1

Ut+1(ωt, ωt+1, H(ωt) + h∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt),
if (ωt, h) ∈

(
Ωt
H × Rd

)
∩Graph(Dt+1

H ),

−∞ if (ωt, h) /∈ Graph(Dt+1
H ),

0 otherwise.

(43)

where Ωt
H := Ω̃t

1

⋂
{ωt ∈ Ωt, H(ωt) ≥ 0}. Then uH is well-defined, Ft ⊗ B(Rd)-measurable and for all

ωt ∈ Ωt, uH(ωt, ·) is usc. Morevover, ωt ∈ Ωt → suph∈Rd uH(ωt, h) is F t-measurable.

Remark 6.10 In the proof below we will show that for (ωt, h) ∈
(
Ωt
H × Rd

)
∩Graph(Dt+1

H ) the integral
in (43) is well-defined. Note that this is not necessarily the case for all (ωt, h) ∈ Ωt × Rd.

Proof. From (33) at t + 1, Ut+1 is Ft ⊗ Gt+1 ⊗ B(Rd)-measurable and since H and ∆St+1 are respec-
tively Ft and Ft+1-measurable, we obtain that (ωt, ωt+1, h) ∈ Ωt × Ωt+1 × Rd → Ut+1(ωt, ωt+1, H(ωt) +
h∆St+1(ωt, ωt+1)) is Ft ⊗ Gt+1 ⊗ B(Rd)-measurable. We introduce

ũH : (ωt, h) ∈
(

Ωt
H × Rd

)
∩Graph(Dt+1

H )→
∫

Ωt+1

Ut+1(ωt, ωt+1, H(ωt) + h∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt).

First we show that ũH is well-defined in the generalised sense. Indeed, let (ωt, h) ∈
(
Ωt
H × Rd

)
∩

Graph(Dt+1
H ) be fixed. We can show as in Proposition 6.8 that (39) holds true and thus∫

Ωt+1

U+
t+1(ωt, ωt+1, H(ωt) + h∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt) <∞,

So ũH is well-defined (but may be infinite-valued).
We now prove that uH is Ft ⊗B(Rd)-measurable. We can apply Proposition 7.4 iv) to S =

(
Ωt
H × Rd

)
∩

Graph(Dt+1
H ), with f(ωt, h, ωt+1) equal to both U±t+1(ωt, ωt+1, H(ωt)+h∆St+1(ωt, ωt+1)), since

(
Ωt
H × Rd

)
∩

Graph(Dt+1
H ) ∈ Ft⊗B(Rd) (see Lemma 6.3), and both (ωt, h, ωt+1) ∈ Ωt×Rd×Ωt+1 → U±t+1(ωt, ωt+1, H(ωt)+

h∆St+1(ωt, ωt+1)) are Ft⊗B(Rd)⊗Gt+1-measurable. So we obtain that ũH is
[
Ft ⊗ B(Rd)

]
S-measurable,

where
[
Ft ⊗ B(Rd)

]
S denotes the trace sigma algebra of Ft⊗B(Rd) on S. Now we extend ũH to Ωt×Rd

by setting ũH(ωt, h) = −∞ if (ωt, h) /∈ Graph(Dt+1
H ) and ũH(ωt, h) = 0 if (ωt, h) ∈ Graph(Dt+1

H ) and
ωt /∈ Ωt

H . Since
[
Ft ⊗ B(Rd)

]
S ⊂ Ft ⊗ B(Rd), Ωt

H ∈ Ft and Graph(Dt+1
H ) ∈ Ft × B(Rd), this extension

of ũH is again Ft ⊗ B(Rd)-measurable. As it is clear that this extension of ũH and uH coincide, the
measurability of uH is proved.
We turn now to the usc property. Let ωt ∈ Ωt

H ⊂ Ω̃t
1 be fixed. Applying Proposition 6.6 to Ut+1

and we get Ut+1 satisfies the assumptions of Lemma 5.10 with Ω = Ωt+1, H = Gt+1, Q = qt+1(·|ωt),
Y (·) = ∆St+1(ωt, ·), V (·, y) = Ut+1(ωt, ·, y) where V is defined on Ωt+1 × R. Therefore the function
φωt(·, ·) defined on R× Rd by

φωt(x, h) =

{∫
Ωt+1

Ut+1(ωt, ωt+1, x+ h∆St+1(ωt, ωt+1))qt+1(dωt+1|ωt) if x ≥ 0 and h ∈ Dt+1
x (ωt)

−∞ otherwise

is usc on R × Rd (see (24)). In particular, for x = H(ωt) ≥ 0 fixed, the function h ∈ Rd → uH(ωt, h) =
φωt(H(ωt), h) is usc on Rd. Now for ωt /∈ Ωt

H , as uH is equal to 0 if h ∈ Dt+1
H(ωt)(ω

t) and to −∞ otherwise,
Lemma 7.9 applies and h ∈ Rd → uH(ωt, h) is usc on all Rd.
Finally, we apply Corollary 14.34 in Rockafellar and Wets [1998] and find that −uH is a F t- normal
integrand 3. Now from Theorem 14.37 of Rockafellar and Wets [1998], we obtain that ωt ∈ Ωt →

3Corollary 14.34 of Rockafellar and Wets [1998] holds true only for complete σ-algebra. That is the reason why −uH is a
F t- normal integrand and not a Ft- normal integrand.
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suph∈Rd uH(ωt, h) is F t-measurable and this concludes the proof. 2

Proof. of Theorem 4.16. Integrability issues. We fix some φ ∈ Φ(x) = Φ(U, x) (recall Proposition
6.1). Since Proposition 6.7 holds true, we can apply Proposition 6.8 for t = T − 1, and by backward
induction, we can therefore apply Proposition 6.8 for all t = T −2, . . . , 0. In particular, we get that (34)
holds true for all 0 ≤ t ≤ T . So choosing H = V x,φ

t−1 and ξ = φt we get that (recall Remark 4.3, from
φ ∈ Φ(x) we get that Pt(V x,φ

t (·) ≥ 0) = 1)∫
Ωt
U+
t

(
ωt, V x,φ

t (ωt)
)
Pt(dω

t) <∞. (44)

This implies that
∫

Ωt Ut

(
ωt, V x,φ

t (ωt)
)
Pt(dω

t) is defined in the generalised sense and that we can apply
the Fubini Theorem for generalised integral (see Proposition 7.3)∫

Ωt
Ut

(
ωt, V x,φ

t (ωt)
)
Pt(dω

t) =

∫
Ωt−1

∫
Ωt

Ut

(
ωt−1, ωt, V

x,φ
t (ωt−1, ωt)

)
qt−1(dωt|ωt−1)Pt−1(dωt−1). (45)

Construction of φ∗
We fix some x ≥ 0 and build our candidate for the optimal strategy by induction. We start at t = 0
and use (38) in Proposition 6.8 with H = x ≥ 0. We set φ∗1 := ĥx1 and we obtain that (recall that
F0 =

{
∅,Ω0

}
), P1(x + φ∗1∆S1(.) ≥ 0) = 1 and U0(x) =

∫
Ω1
U1 (ω1, x+ φ∗1∆S1(ω1)P1(dω1). Assume that

until some t ≥ 1 we have found some φ∗1 ∈ Ξ0, . . . , φ
∗
t ∈ Ξt−1 and some Ω

1 ∈ F1, . . . ,Ω
t−1 ∈ Ft−1 such

that for all i = 1, . . . , t− 1, Ω
i ⊂ Ω̃i, Pi(Ω

i
) = 1, for all i = 0, . . . , t− 1, φ∗i+1(ωi) ∈ Di+1(ωi) and

Pt
(
x+ φ∗1∆S1(ω1) + · · ·+ φ∗t (ω

t−1)∆St(ω
t−1, ωt) ≥ 0

)
= 1,

and finally, for all ωt ∈ Ω
t

Ut−1

(
ωt−1, V x,φ∗

t−1 (ωt−1)
)

=

∫
Ωt

Ut

(
ωt−1, ωt, V

x,φ∗

t−1 (ωt−1) + φ∗t (ω
t−1)∆St(ω

t−1, ·)
)
qt(dωt|ωt−1).

We apply Proposition 6.8 with H(·) = V x,φ∗

t (·) = V x,φ∗

t−1 (·)+φ∗t (·)∆St(·) (recall that Pt(V x,φ∗

t ≥ 0 = 1) and
there exists Ω

t
:= Ω̃t

V x,φ
∗

t

∈ Ft such that Ω
t ⊂ Ω̃t, Pt(Ω

t
) = 1 and some Ft-measurable ωt → φ∗t+1(ωt) :=

ĥ
V x,φ

∗
t
t+1 (ωt) such that for all ωt ∈ Ω

t, φ∗t+1(ωt) ∈ Dt+1(ωt)

qt+1(V x,φ∗

t (ωt) + φ∗t+1(ωt)∆St+1(ωt, ·) ≥ 0|ωt) = 1,

Ut

(
ωt, V x,φ∗

t (ωt)
)

=

∫
Ωt+1

Ut+1

(
ωt, ωt+1, V

x,φ∗

t (ωt) + φ∗t+1(ωt)∆St+1(ωt, ·)
)
qt+1(dωt+1|ωt). (46)

Now since Pt(Ω
t
) = 1, we obtain by the Fubini Theorem that

Pt+1(V x,φ∗

t+1 ≥ 0) =

∫
Ωt
qt+1(V x,φ∗

t (ωt) + φ∗t+1(ωt)∆St+1(ωt, ·) ≥ 0|ωt)Pt(dωt) = 1

and we can continue the recursion.
Thus, we have found φ∗ = (φ∗t )1≤t≤T such that for all t = 0, . . . , T , Pt(V x,φ∗

t ≥ 0) = 1, i.e φ∗ ∈ Φ(x). We
have also found some Ω

t ∈ Ft, such that Ω
t ⊂ Ω̃t, Pt(Ω

t
) = 1 and for all ωt ∈ Ω

t, (46) holds true for all
t = 0, . . . , T − 1. Moreover, from Proposition 6.1, φ∗ ∈ Φ(U, x) and we have that E(U(V x,φ∗

T )) <∞.
Optimality of φ∗
Step 1: Using (45) with φ = φ∗ and the fact that PT−1(ΩT−1) = 1, we get that

E(U(V x,φ
∗

T )) =

∫
Ω

T−1

∫
ΩT

UT

(
ωT−1, ωT , V

x,φ∗

T−1 (ωT−1) + φ∗T (ωT−1)∆ST (ωT−1, ωT )
)
qT (dωT |ωT−1)PT−1(dωT−1).
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Using (46) for t = T − 1 and again the fact that PT−1(Ω
T−1

) = 1, we have that

E(U(V x,φ∗

T )) =

∫
ΩT−1

UT−1

(
ωT−1, V x,φ∗

T−1 (ωT−1)
)
PT−1(dωT−1).

By backward induction, we therefore obtain that E(U(V x,φ∗

T )) = U0(x). As φ∗ ∈ Φ(U, x), we get that
U0(x) ≤ u(x). So φ∗ will be optimal if U0(x) ≥ u(x).

Step 2: We fix again some φ ∈ Φ(U, x) (recall Proposition 6.1). We get that V x,φ
t ≥ 0 Pt-a.s. for all

t = 1, . . . , T (recall Remark 4.3). As φ1 ∈ H1
x we obtain that

U0(x) ≥
∫

Ω1

U1(ω1, x+ φ1∆S1(ω1))P1(dω1).

As P2(V x,φ
1 + φ2∆S2 ≥ 0) = 1, there exists some P1-full measure set Ω̂1 ∈ F1 such that for all ω1 ∈ Ω̂1,

q2

(
V x,φ

1 (ω1) + φ2(ω1)∆S2(ω1, ·)) ≥ 0|ω1

)
= 1 i.e q2

(
φ2(ω1) ∈ H2

V x,φ1 (ω1)
(ω1)|ω1

)
= 1 (see Lemma 7.7).

So for ω1 ∈ Ω̂1, we have that

U1(ω1, V
x,φ

1 (ω1)) ≥
∫

Ω2

U2

(
ω1, ω2, V

x,φ
1 (ω1) + φ2(ω1)∆S1(ω1, ω2)

)
q2(dω2|ω1). (47)

¿From (44),
∫

Ω2 U
+
2

(
ω2, V x,φ

2 (ω2)
)
P2(dω2) <∞ and we can apply the Fubini Theorem (see (45)) and∫

Ω2

U2

(
ω2, V x,φ

2 (ω2)
)
P2(dω2) =

∫
Ω̂1

∫
Ω2

U2

(
ω1, ω2, V

x,φ
1 (ω1) + φ2∆S1(ω1, ω2)

)
q2(dω2|ω1)P1(dω1).

Using again (44),
∫

Ω1 U
+
1

(
ω1, V x,φ

1 (ω1)
)
P1(dω1) < ∞ and integrating (in the generalised sense) both

side of (47) we obtain∫
Ω1

U1(ω1, V
x,φ

1 (ω1))P1(dω1) ≥
∫

Ω2

U2

(
ω2, V x,φ

2 (ω2)
)
P2(dω2).

ThereforeU0(x) ≥
∫

Ω2 U2

(
ω2, V x,φ

2 (ω2)
)
P2(dω2). We can go forward since for P2-almost all ω2 we have

that q3

(
φ3(ω2) ∈ H3

V x,φ2 (ω2)
(ω2)|ω2

)
= 1, . . . , for PT−1 almost all ωT−1 we have that

qT

(
φT (ωT−1) ∈ HT

V x,φT−1(ωT−1)
(ωT−1)|ωT−1

)
= 1,

we obtain using again (44) and the Fubini Theorem (see (45)) that

U0(x) ≥
∫

Ω1

∫
Ω2

· · ·
∫

ΩT

U
(
ωT , V x,φT (ωT )

)
qT (dωT |ωT−1) · · · q2(dω2|ω1)P1(dω1). (48)

So we have that U0(x) ≥ E(U(·, V x,φ
T (·))) for any φ ∈ Φ(U, x) and the proof is complete since u(x) =

E(U(·, V x,φ∗

T (·))) <∞. 2

Proof. of Theorem 4.17. To prove Theorem 4.17, we want to apply Theorem 4.16 and thus we need to
establish that Assumptions 4.7 and 4.8 hold true. To do so we will prove (51) below. First we show
that for all x ≥ 0, φ ∈ Φ(x) and 0 ≤ t ≤ T , we have for Pt-almost all ωt ∈ Ωt

|V x,φ
t (ωt)| ≤ x

t∏
s=1

(
1 +

|∆Ss(ωs)|
αs−1(ωs−1)

)
. (49)
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To do so we first fix x ≥ 0, some φ = (φt)t=1,...T ∈ Φ(x) and 1 ≤ t ≤ T . For ωt−1 ∈ Ωt−1 fixed, we denote
by φ⊥t (ωt−1) the orthogonal projection of φt(ωt−1) on Dt(ωt). Recalling Remark 5.2 we have

qt

(
φ⊥t (ωt−1)∆St(ω

t−1, ·) = φt(ω
t−1)∆St(ω

t−1, ·)|ωt−1
)

= 1,

and thus φ⊥t (ωt−1) ∈ Dt
V x,φt−1 (ωt−1)

(ωt−1) (see (27) for the definition of Dtx). As the NA condition holds

true, Lemma 3.5 applies and 0 ∈ Dt(ωt+1). We can then apply Lemma 5.8 and we obtain that

|φ⊥t (ωt−1)| ≤
V x,φ
t−1(ωt−1)

αt−1(ωt−1)
. (50)

Furthermore, as it is well-known that ωt−1 ∈ Ωt−1 → φ⊥t (ωt−1) is Ft−1-measurable we obtain, applying
the Fubini Theorem (see Lemma 7.1), that Pt

(
φ⊥t ∆St = φt∆St

)
= 1 and we denote by Ωt

EQ the Pt-full
measure set on which this equality is verified. We need to slightly modify the set Ωt

EQ to use it for
different periods. We proceed by induction. We start at t = 1 (recall that Ω0 := {ω0}) with Ω1

EQ. For

t = 2 we reset, with an abuse of notation, Ω2
EQ = Ω2

EQ∩
(

Ω1
EQ × Ω2

)
and we reiterate the process until

T . To prove (49) we proceed by induction. It is clear at t = 0. Fix some t ≥ 0 and assume that (49)
holds true at t. Let ωt+1 ∈ Ωt+1

EQ , using (49) at t and (50) we get that

|V x,φ
t+1(ωt+1)| =

∣∣∣V x,φ
t (ωt) + φt+1(ωt)∆St+1(ωt+1)

∣∣∣ =
∣∣∣V x,φ
t (ωt) + φ⊥t+1(ωt)∆St+1(ωt+1)

∣∣∣
≤
∣∣∣V x,φ
t (ωt)

∣∣∣ (1 +
|∆St+1(ωt+1)|

αt(ωt)

)
≤ x

t+1∏
s=1

(
1 +

|∆Ss(ωs)|
αs−1(ωs−1)

)

and (49) is proven for t + 1. It follows since for all 0 ≤ s ≤ t, |∆Ss| ∈ Ws and 1
αs
∈ Ws that V x,φ

t ∈ Wt.
We will prove that for all Φ ∈ Φ(x) and ωT in a full measure set

U+(ωT , V x,φ
T (ωT )) ≤ 2γK max(x, 1)γ

(
T∏
s=1

(
1 +

|∆Ss(ωs)|
αs−1(ωs−1)

))γ (
U+(ωT , 1) + CT (ωT )

)
. (51)

Since by assumptions EU+(·, 1) < ∞, ECT < ∞ and since for all 0 ≤ t ≤ T , |∆St| ∈ Wt and 1
αt
∈ Wt,

we get that EU+(·, V x,φ
T (·)) < ∞ for all Φ ∈ Φ(x) and both Assumptions 4.7 and 4.8 hold true. We

prove now (51). We fix some x ≥ 0 and φ ∈ Φ(x). Then from the monotonicity of U+, (49), Assumption
4.10, the fact that

∏T
s=1

(
1 + |∆Ss(ωs)|

αs−1(ωs−1)

)
≥ 1, we have for all ωT ∈ ΩT

EQ

⋂
Ω̃T that

U+
(
ωT , V x,φ

T (ωT )
)
≤ U+

(
ωT ,max(x, 1)

T∏
s=1

(
1 +

|∆Ss(ωs)|
αs−1(ωs−1)

))

≤ K

(
2 max(x, 1)

T∏
s=1

(
1 +

|∆Ss(ωs)|
αs−1(ωs−1)

))γ (
U+(ωT , 1) + CT (ωT )

)
.

2

7 Appendix

7.1 Generalised integral and Fubini’s Theorem

For ease of the reader we provide some well-known results on measure theory, stochastic kernels and
integrals. The first lemma provides a version of the Fubini Theorem for non-negative functions (see
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for instance to Theorem 10.7.2 in Bogachev [2007]). We then present our definition of generalised
integral and provide another version of the Fubini Theorem for generalised integral (see Proposition
7.3), which is essential throughout the paper.

Let (H,H) and (K,K) be two measurable spaces, p be a probabilty measure on (H,H) and q a
stochastic kernel on (K,K) given (H,H) , i.e such that for any h ∈ H, C ∈ K → q(C|h) is a probability
measure on (K,K) and for any C ∈ K, h ∈ H → q(C|h) is H-measurable. Furthermore, for any
A ∈ H ⊗K and any h ∈ H, the section of A along h is defined by

(A)h := {k ∈ K, (h, k) ∈ A} . (52)

Lemma 7.1 Let A ∈ H ⊗K be fixed. For any h ∈ H we have (A)h ∈ K and we define P by

P (A) :=

∫
H

∫
K

1A(h, k)q(dk|h)p(dh) =

∫
H
q((A)h |h)p(dh). (53)

Then P is a probability measure on (H ×K,H⊗H).
Furthermore, if f : H × K → R+ ∪ {+∞} is non-negative and H ⊗ K-measurable then h ∈ H →∫
K f(h, k)q(dk|h) is H-measurable with value in R+ ∪ {∞} and we have∫

H×K
fdP :=

∫
H×K

f(h, k)P (dh, dk) =

∫
H

∫
K
f(h, k)q(dk|h)p(dh). (54)

Proof. Let h ∈ H be fixed. Let T = {A ∈ H ⊗K | (A)h ∈ K}. It is easy to see that T is a sigma algebra
on H ×K and is included in H ⊗ K. Let A = B × C ∈ H × K then (A)h = ∅ if h /∈ B and (A)h = C if
h ∈ B. Thus (A)h ∈ K and H×K ⊂ T . As T is a sigma-algebra, H⊗K ⊂ T and T = H⊗K follows.
We show now that

h→
∫
K

1A(h, k)q(dk|h) =

∫
K

1(A)h
(k)q(dk|h) = q ((A)h |h)

is H-measurable for any A ∈ H ⊗K.
Let E = {A ∈ H ⊗K |h ∈ H → q ((A)h |h) is H-measurable}. It is easy to see that E is a sigma algebra
on H ×K and is included in H⊗K. Let A = B ×C ∈ H×K then q ((A)h)|h) equals to 0 if h /∈ B and to
q(C|h) if h ∈ B. So by definition of q(·|·), H×K ⊂ E . As E is a sigma-algebra, H⊗K ⊂ E and E = H⊗K
follows. Thus the last integral in (53) is well-defined. We verify that P defines a probability measure
on (H ×K,H⊗H). It is clear that P (∅) = 0 and P (H ×K) = 1. The sigma-additivity property follows
from the monotone convergence theorem.
(54) is clear when f = 1A with A ∈ H⊗K and then it for linear combinations and finally for arbitrary
non-negative measurable f in a standard way. 2

Definition 7.2 Let f : H ×K → R ∪ {±∞} be a H ⊗ K-measurable function. If
∫
H×K f

+dP < ∞ or∫
H×K f

−dP <∞, we define the generalised integral of f by∫
H×K

fdP :=

∫
H×K

f+dP −
∫
H×K

f−dP.

Proposition 7.3 Let f : H ×K → R∪{±∞} be a H⊗K-measurable function such that
∫
H×K f

+dP <
∞. Then, we have ∫

H×K
fdP =

∫
H

∫
K
f(h, k)q(dk|h)p(dh). (55)

Proof. Using Definition 7.2 and applying Lemma 7.1 to f+ and f− we obtain that∫
H×K

fdP =

∫
H×K

f+dP −
∫
H×K

f−dP

=

∫
H

∫
K
f+q(dk|h)p(dh) +

∫
H

∫
K
f−q(dk|h)p(dh).
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To establish (55), assume for a moment that the followng linearity result have been proved: let gi :
H ×K → R∪ {±∞} be some H⊗K-measurable functions such that

∫
H×K g

+
i dP <∞ for i = 1, 2. Then∫

H
(g1 + g2) dp =

∫
H
g1dp+

∫
H
g2dp. (56)

We apply (56) with g1(h) =
∫
K f

+(h, k)q(dh|k) and g2 = −
∫
K f
−(h, k)q(dh|k) since by Lemma 7.1,∫

H
g+

1 dp =

∫
H

(∫
K
f+(h, k)q(dh|k)

)
p(dh)

=

∫
H×K

f+(h, k)q(dh|k)p(dh) =

∫
H×K

f+dP <∞

and clearly
∫
H g

+
2 dp = 0 <∞. So we obtain that∫

H

∫
K
f+(h, k)q(dk|h)p(dh)−

∫
H

∫
K
f−(h, k)q(dk|h)p(dh)

=

∫
H

(∫
K
f+(h, k)q(dk|h)−

∫
K
f−(h, k)q(dk|h)

)
p(dh)

=

∫
H

∫
K
f(h, k)q(dk|h)p(dh),

where the second equality comes from the definition of the generalised integral of f(h, ·) with respect
to q(·|h) and (55) is proven.
We prove now (56). If

∫
H g
−
i dp <∞ for i = 1, 2 this is trivial. ¿From

∫
H g

+
i dp <∞ we get that g+

i <∞
p-almost surely for i = 1, 2, so the sum g1 + g2 is p-almost surely well-defined, taking its value in
[−∞,∞). As (g1 + g2)+ ≤ g+

1 + g+
2 , using the linearity of the integral for non-negative functions we get

that ∫
H

(g1 + g2)+ (h)p(dh) ≤
∫
H
g+

1 dp+

∫
H
g+

2 dp <∞.

Now from
g+

1 + g+
2 − g

−
1 − g

−
2 = g1 + g2 = (g1 + g2)+ − (g1 + g2)− ,

using again the linearity of the integral for non-negative functions we get that∫
H

(g1 + g2)+ dp+

∫
H
g−1 dp+

∫
H
g−2 dp =

∫
H

(g1 + g2)− dp+

∫
H
g+

1 dp+

∫
H
g+

2 dp.

Checking the different cases, i.e
∫
H g
−
1 dp = ∞ and

∫
H g
−
2 dp < ∞ (and the opposite case) as well as∫

H g
−
i dp =∞ for i = 1, 2 we get that (56) is true. 2

7.2 Further measure theory issues

We present now specific applications or results that are used throughout the paper. We start with
four extensions of the Fubini results presented previously. As noted in Remark 6.10, the introduction
of the trace sigma-algebra is the price to pay in order to avoid using the convention∞−∞ = −∞.

Proposition 7.4 Fix some t ∈ {1, . . . , T}.

i) Let f : Ωt → R+ ∪ {+∞} be a non-negative Ft-measurable function. Then ωt−1 ∈ Ωt−1 →∫
Ωt
f(ωt−1, ωt)qt(dωt|ωt−1) is Ft−1-measurable with values in R+ ∪ {+∞}.

ii) Let f : Ωt×Rd → R+∪{+∞} be a non-negative Ft⊗B(Rd)-measurable function. Then (ωt−1, h) ∈
Ωt−1 × Rd →

∫
Ωt
f(ωt−1, ωt, h)qt(dωt|ωt−1) is Ft−1 ⊗ B(Rd)-measurable with values in R+ ∪ {+∞}
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iii) Let f : Ωt → R+ ∪ {+∞} be a non-negative F t−1 ⊗ Gt-measurable function. Then ωt−1 ∈ Ωt−1 →∫
Ωt
f(ωt−1, ωt)qt(dωt|ωt−1) is F t−1-measurable with values in R+ ∪ {+∞}.

iv) Let S ∈ Ft−1 ⊗ B(Rd). Introduce
[
Ft−1 ⊗ B(Rd)

]
S :=

{
A ∩ S, A ∈ Ft−1 ⊗ B(Rd)

}
the trace sigma-

algebra of Ft−1⊗B(Rd) on S. Let f : Ωt−1×Rd×Ωt → R+∪{+∞} be a non-negative Ft−1⊗B(Rd)⊗
Gt-measurable function. Then (ωt−1, h) ∈ S →

∫
Ωt
f(ωt−1, h, ωt)qt(dωt|ωt−1) is

[
Ft−1 ⊗ B(Rd)

]
S-

measurable with values in R+ ∪ {+∞}.

Proof. Statement i) is a direct application of Lemma 7.1 for H = Ωt−1, H = Ft−1, K = Ωt, K = Gt and
q(·|·) = qt(·|·). To prove statement ii), let q̄t be defined by

q̄t : (G,ωt−1, h) ∈ Gt × Ωt−1 × Rd → q̄t(G|ωt−1, h) := qt(G|ωt−1). (57)

It is easy to see that q̄t is a stochastic kernel on Gt given Ωt−1 × Rd where measurability is with
respect to Ft−1 ⊗ B(Rd). Statement ii) follows by an application of Lemma 7.1 for H = Ωt−1 × Rd,
H = Ft−1 ⊗ B(Rd), K = Ωt, K = Gt and q(·|·) = q̄t(·|·). To prove statement iii) note that since
Ft−1 ⊂ F t−1 it is clear that qt is a stochastic kernel on (Ωt,Gt) given (Ωt−1,F t−1) (i.e measurability is
with respect to F t−1). And statement iii) follows immediately from an application of Lemma 7.1 for
H = Ωt−1, H = F t−1, K = Ωt, K = Gt and q(·|·) = qt(·|·). We prove now the last statement. Let q̃t be
defined by

q̃t : (G,ωt−1, h) ∈ Gt × S → q̃t(G|ωt−1, h) := qt(G|ωt−1). (58)

q̃t is clearly a stochastic kernel on (Ωt,Gt) given
(
S,
[
Ft−1 ⊗ B(Rd)

]
S
)
. Now let fS be the restriction of

f to S × Ωt. Using similar arguments and the fact that[
Ft−1 ⊗ B(Rd)⊗ Gt

]
S×Ωt

=
[
Ft−1 ⊗ B(Rd)

]
S
⊗ Gt, (59)

we obtain that fS is
[
Ft−1 ⊗ B(Rd)

]
S ⊗ Gt-measurable. Finally, statement iv) follows from another

application of Lemma 7.1 for H = S, H =
[
Ft−1 ⊗ B(Rd)

]
S , K = Ωt, K = Gt and q(·|·) = q̃t(·|·). 2

Lemma 7.5 Let f : Ωt+1 → R+ ∪ {∞} be Ft+1-measurable, non-negative and such that∫
Ωt+1 f(ωt+1)Pt+1(dωt+1) < ∞. Then ωt ∈ Ωt →

∫
Ωt+1

f(ωt, ωt+1)qt+1(dωt+1|ωt) is Ft-measurable. Fur-
thermore, let N t := {ωt ∈ Ωt,

∫
Ωt+1

f(ωt, ωt+1)qt+1(dωt+1|ωt) =∞}. Then Nt ∈ Ft and Pt(N t) = 0

Proof. The first assertion of the lemma is a direct application of i) of Proposition 7.4. So it is clear that
N t ∈ Ft. Furthermore, applying the Fubini Theorem (see Lemma 7.1) we get that∫

Ωt

∫
Ωt+1

f(ωt, ωt+1)qt+1(dωt+1|ωt)Pt(dωt) =

∫
Ωt+1

f(ωt+1)Pt+1(dωt+1) <∞

so necessarily P (N t) = 0. 2

The next lemma, loosely speaking, allows to obtain “nice” sections (i.e set of full measure for a
certain probability measure). We use it in the proofs of Theorem 4.17 and Lemma 7.7.

Lemma 7.6 Fix some t ∈ {1, . . . , T}. Let Ω̃t ∈ Ft such that Pt(Ω̃t) = 1 and Ω̃t−1 ∈ Ft−1 such that
Pt−1(Ω̃t−1) = 1 and set

Ω
t−1

:=
{
ωt−1 ∈ Ω̃t−1, qt

((
Ω̃t
)
ωt−1
|ωt−1

)
= 1
}

see Lemma 7.1 for the definition of
(

Ω̃t
)
ωt−1

. Then Ω
t−1 ∈ Ft−1 and Pt(Ω

t−1
) = 1.
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Proof. From Lemma 7.1 we know ωt−1 → qt

((
Ω̃t
)
ωt−1
|ωt−1

)
is Ft−1-measurable and the fact that

Ω
t−1 ∈ Ft−1 follows immediately.

Furthermore, using the Fubini Theorem (see Lemma 7.1) we have that

1 = Pt(Ω̃
t) =

∫
Ωt−1

∫
Ωt

1
Ω̃t

(ωt−1, ωt)qt(dωt|ωt−1)Pt−1(dωt−1)

=

∫
Ω̃t−1

∫
Ωt

1(Ω̃t)
ωt−1

(ωt)qt(dωt|ωt−1)Pt−1(dωt−1)

=

∫
Ω
t−1

1× Pt−1(dωt−1) +

∫
Ω̃t−1\Ωt−1

qt

((
Ω̃t
)
ωt−1
|ωt−1

)
Pt−1(dωt−1),

where we have used for the second line the fact that P (Ω̃t−1) = 1.
But if P (Ω̃t−1\Ωt−1

) > 0 then we have that, by definition of Ω
t−1, that∫

Ω̃t−1\Ωt−1
qt

((
Ω̃t
)
ωt−1
|ωt−1

)
Pt−1(dωt−1) < Pt−1(Ω̃t−1\Ωt−1

),

and thus 1 < Pt−1(Ω
t−1

) + Pt−1(Ω̃t−1\Ωt−1
) = 1, which is absurd and thus Pt−1(Ω̃t−1\Ωt−1

) = 0. We
conclude using again that Pt−1(Ω̃t−1) = 1. 2

The following lemma is used throughout the paper. In particular, the last statement is used in the
proof of the main theorem.

Lemma 7.7 Let 0 ≤ t ≤ T − 1, B ∈ B(R), H : Ωt → R and ht : Ωt → Rd be Ft-measurable. Then

(ωt, h) ∈ Ωt × Rd → qt+1(H(ωt) + h∆St+1(ωt, ·) ∈ B|ωt), (60)
ωt ∈ Ωt → qt+1(H(ωt) + ht(ω

t)∆St+1(ωt, ·) ∈ B|ωt), (61)

are respectively Ft ⊗ B(Rd)-measurable and Ft-measurable. Furthermore, assume that
Pt+1 (H(·) + ht(·)∆St+1(·) ∈ B) = 1, then there exists some Pt-full measure set Ω

t such that for all
ωt ∈ Ω

t, qt+1(H(ωt) + ht(ω
t)∆St+1(ωt, ·) ∈ B|ωt) = 1.

Proof. As h ∈ Rd → h∆St+1(ωt, ωt+1) is continuous for all (ωt, ωt+1) ∈ Ωt × Ωt+1 and (ωt, ωt+1) ∈
Ωt×Ωt+1 → h∆St+1(ωt, ωt+1) is Ft+1 = Ft⊗Gt+1-measurable for all h ∈ Rd (recall that St and St+1 are
respectively Ft and Ft+1 measurable by assumption), (ωt, ωt+1, h) ∈ Ωt×Ωt+1×Rd → h∆St+1(ωt, ωt+1)
is Ft ⊗ Gt+1 ⊗ B(Rd)-measurable as a Carathéodory function. As H is Ft-measurable we obtain that
ψ : (ωt, ωt+1, h) ∈ Ωt × Ωt+1 × Rd → H(ωt) + h∆St+1(ωt, ωt+1) is also Ft ⊗ Gt+1 ⊗ B(Rd)-measurable.
Therefore, for anyB ∈ B(R), fB : (ωt, ωt+1, h) ∈ Ωt×Ωt+1×Rd → 1ψ(·,·,·)∈B(ωt, ωt+1, h) isFt⊗Gt+1⊗B(Rd).
We conclude using statement i) of Proposition 7.4 applied to fB and (60) is proved. We prove (61)
using similar arguments. Since ht is Ft-measurable, it is clear that ψht : (ωt, ωt+1) ∈ Ωt × Ωt+1 →
H(ωt) + ht(ω

t)∆St+1(ωt, ωt+1) is Ft ⊗Gt+1-measurable. Therefore, for any B ∈ B(R), fB,ht : (ωt, ωt+1) ∈
Ωt × Ωt+1 → 1ψht (·,·)∈B(ωt, ωt+1) is Ft ⊗ Gt+1-measurable. We conclude applying i) of Proposition 7.4 to
fB,ht .
For the last statement, we set

Ω̃t+1 :=
{
ωt+1 = (ωt, ωt+1) ∈ Ωt × Ωt+1, H(ωt) + ht(ω

t)∆St+1(ωt, ωt+1) ∈ B
}
.

It is clear that Ω̃t+1 ∈ Ft+1 and that Pt+1(Ω̃t+1) = 1. We can then apply Lemma 7.6 and we obtain
some Pt-full measure set Ω

t such that for all ωt ∈ Ω
t, qt+1(H(ωt) + ht(ω

t)∆St+1(ωt, ·) ∈ B|ωt) = 1. 2

Lemma 7.8 is often used in conjunction with the Aumann Theorem.
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Lemma 7.8 Let f : Ωt → R be F t-measurable. Then there exists g : Ωt → R that is Ft-measurable
and such that f = g Pt-almost surely, i.e there exists Ωt

fg ∈ Ft with Pt

(
Ωt
fg

)
= 1 and Ωt

fg ⊂ {f = g}.

Proof. Let f = 1B with B ∈ F t then B = A ∪N , with A ∈ Ft and N ∈ NPt . Let g = 1A. Then g is Ft-
measurable. Clearly, {f 6= g} = N ∈ NPt , thus f = g Pt a.s. By taking linear combinations, the lemma
is proven for step functions using the same argument for each indicator function. Then it is always
possible to approximate some F t-measurable function f by a sequence of step function (fn)n≥1. From
the preceding step for all n ≥ 1, we get some Ft-measurable step functions gn such that fn = gn Pt-
almost surely. Let g = lim sup gn, g is Ft-measurable and we conclude since {f 6= g} ⊂ ∪n≥1{fn 6= gn}
which is again in NPt . 2

Next we provide some simple but useful results on usc functions.

Lemma 7.9 Let C be a closed subset of Rm for some m ≥ 1. Let g : Rm → R ∪ {±∞} be such that
g = −∞ on Rm\C. Then g is usc on Rm if and only if g is usc on C.

Proof. We prove that if g is usc on C then it is usc on Rm as the reverse implication is trivial. Let
α ∈ R be fixed. We prove that Sα := {x ∈ Rm, g(x) ≥ α} is closed in Rm. Let (xn)n≥1 ⊂ Sα converge
to x ∈ Rm. Then xn ∈ C for all n ≥ 1 and as C is a closed set, x ∈ C. As g is usc on C, (i.e the set
{x ∈ C, g(x) ≥ α} is closed for the induced topology of Rm on C) we get that g(x) ≥ α, i.e x ∈ Sα and g
is usc on Rm. 2

Lemma 7.10 Let S ⊂ R be a closed subset of R. Let f : R → R ∪ {±∞} be such that f is usc and
non-decreasing on S. Then f is right-continuous on S.

Proof. Let (xn)n≥1 ⊂ S be a sequence converging to some x∗ from above. Then x∗ ∈ S since S is
closed. As x ∈ S → f(x) is non-decreasing, for all n ≥ 1 we have that f(xn) ≥ f(x∗) and thus
lim infn f(xn) ≥ f(x∗). Now as f is usc on S, we get that lim supn f(xn) ≤ f(x∗). The right continuity of
f on S follows immediately. 2

We now establish a useful extension of Lemma 7.8.

Lemma 7.11 Let f : Ωt×R→ R∪{±∞} be an F t⊗B(R)-measurable function such that for all ωt ∈ Ωt,
x ∈ R → f(ωt, x) is usc and non-decreasing. Then, there exists some Ft ⊗ B(R)-measurable function
g from Ωt × R to R ∪ {±∞} and some Ωt

mes ∈ Ft such that Pt(Ωt
mes) = 1 and f(ωt, x) = g(ωt, x) for all

(ωt, x) ∈ Ωt
mes × R.

Remark 7.12 In particular, for all ωt ∈ Ωt
mes, x ∈ R→ g(ωt, x) is usc and non-decreasing.

Proof. Let n ≥ 1 and k ∈ Z be fixed. We apply Lemma 7.8 to f(·) = f(·, k2n ) that is F t-measurable
by assumption and we get some Ft-measurable gn,k : Ωt → R ∪ {±∞} and some Ωt

n,k ∈ Ft such that
Pt(Ω

t
n,k) = 1 and Ωt

n,k ⊂
{
ωt ∈ Ωt, f(ωt, k2n ) = gn,k(ω

t)
}

. We set Ωt
mes :=

⋂
n≥1,k∈Z Ωt

n,k. It is clear that
Ωt
mes ∈ Ft and that Pt(Ωt

mes) = 1. Now, we define for all n ≥ 1, gn : Ωt × R→ R ∪ {±∞} by

gn(ωt, x) :=
∑
k∈Z

1( k−1
2n

, k
2n

](x)gn,k(ω
t).

It is clear that gn is Ft ⊗ B(R)-measurable for all n ≥ 1. Finally, we define g : Ωt × R → R ∪ {±∞}
by g(ωt, x) := limn gn(ωt, x). Then g is again Ft ⊗ B(R)-measurable and it remains to prove that
f(ωt, x) = g(ωt, x) for all (ωt, x) ∈ Ωt

mes × R. Let (ωt, x) ∈ Ωt
mes × R be fixed. For all n ≥ 1, there

exists kn ∈ Z such that kn−1
2n < x ≤ kn

2n and such that gn(ωt, x) = gn,kn(ωt) = f(ωt, kn2n ). Applying Lemma
7.10 to f(·) = f(ωt, ·) (and S = R), we get that x ∈ R → f(ωt, x) is right-continuous on R. As

(
kn
2n

)
n≥1

converges to x from above, it follows that g(ωt, x) = limn f(ωt, kn2n ) = f(ωt, x) and this concludes the
proof. 2

Finally, we introduce the following definition.
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Definition 7.13 Let S be a closed interval of R. A function f : Ωt×S → R is an extended Carathéodory
function if

i) for all ωt ∈ Ωt, x ∈ S → f(ωt, x) is right-continuous,

ii) for all x ∈ S, ωt ∈ Ωt → f(ωt, x) is Ft-measurable.

And we prove the following lemma that is an extension of a well-known result on Carathéodory func-
tions (see for example 4.10 in Aliprantis and Border [2006])

Lemma 7.14 Let S ⊂ R be a closed interval of R and f : Ωt × S → R be an extended Carathéodory
function. Then f is Ft ⊗ B(R)-measurable.

Proof. We define for all n ≥ 1, fn : Ωt × R→ R by

fn(ωt, x) :=
∑
k∈Z

1( k−1
2n

, k
2n

](x)1S(
k

2n
)f(ωt,

k

2n
).

It is clear that fn is Ft⊗B(R)-measurable. From the right continuity of f , we can show as in the proof
of Lemma 7.11 that f(ωt, x) = limn fn(ωt, x) for all (ωt, x) ∈ Ωt × S and the proof is complete (recall
that Ω× S ∈ Ft ⊗ B(R) as S is a closed subset of R). 2

Remark 7.15 Note that we have the same result if we replace Ft with Ft.

7.3 Proof of technical results

Finally, we provide the missing results and proofs of the paper. We start with the following results
from Section 2.

Proof of Lemma 2.2. We refer to Section 6.1 of Carassus and Rásonyi [2016] for the definition and
various properties of generalized conditional expectations. In particular since E(h+) =

∫
Ωt h

+dPt <∞,
E(h|Fs) is well-defined (in the generalised sense) for all 0 ≤ s ≤ t (see Lemma 6.2 of Carassus and
Rásonyi [2016] ). Similarly, from Proposition 7.3 we have that ϕ : Ωs → R ∪ {±∞} is well-defined (in
the generalised sense) and Fs-measurable.
As ϕ(X1, . . . , Xs) is Fs-measurable, it remains to prove that E(gh) = E(gϕ(X1, . . . , Xs)) for all g : Ωs →
R+ non-negative, Fs-measurable and such that E(gh) is well-defined in the generalised sense, i.e such
that E (gh)+ <∞ or E (gh)− <∞. Recalling the notations of the beginning of Section 2 and using the
Fubini Theorem for the third and fourth equality (see Proposition 7.3) we get that

E(gh) = E(g(X1, . . . , Xs)h(X1, . . . , Xt)) =

∫
ΩT

g(ω1, . . . , ωs)h(ω1, . . . , ωt)P (dωT )

=

∫
Ωt

g(ω1, . . . , ωs)h(ω1, . . . , ωt)qt(ωt|ωt−1) . . . qs+1(ωs+1|ωs)Ps(dωs)

=

∫
Ωs

g(ω1, . . . , ωs)

(∫
Ωs+1×...×Ωt

h(ω1, . . . , ωs, ωs+1, . . . , ωt)qt(ωt|ωt−1) . . . qs+1(ωs+1|ωs)

)
Ps(dω

s)

=

∫
Ωs

g(ω1, . . . , ωs)ϕ(ω1, . . . , ωs)Ps(dω
s)

= E(g(X1, . . . , Xs)ϕ(X1, . . . , Xt)),

which concludes the proof. 2

We give now the proof of results of Section 3.
Proof of Lemma 3.3. Clearly, for all ωt ∈ Ωt, D̃t+1(ωt) is a non-empty and closed subset of Rd. We now
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show that D̃t+1 is measurable. Let O be a fixed open set in Rd and introduce

µO : ωt ∈ Ωt → µO(ωt) := qt+1

(
∆St+1(ωt, .) ∈ O|ωt

)
=

∫
Ωt+1

1∆St+1(·,·)∈O(ωt, ωt+1)qt+1(dωt+1|ωt).

We prove that µO is Ft-measurable. As (ωt, ωt+1) ∈ Ωt×Ωt+1 → ∆St+1(ωt, ωt+1) is Ft⊗Gt+1-measurable
and O ∈ B(Rd), (ωt, ωt+1) → 1∆St+1(·,·)∈O(ωt, ωt+1) is Ft ⊗ Gt+1-measurable and the result follows from
Proposition 7.7.
By definition of D̃t+1(ωt) we get that

{ωt ∈ Ωt, D̃t+1(ωt) ∩O 6= ∅} = {ωt ∈ Ωt, µO(ωt) > 0} ∈ Ft.

Clearly, Dt+1 is a non-empty and closed-valued random set. We prove that Dt+1 is Ft-measurable. As
D̃t+1 is Ft-measurable, applying the Castaing representation (see Theorem 14.5 of Rockafellar and
Wets [1998]), we obtain a countable family of Ft-measurable functions (fn)n≥1 : Ωt → Rd such that for
all ωt ∈ Ωt, D̃t+1(ωt) = {fn(ωt), n ≥ 1} Let ωt ∈ Ωt be fixed. It can be easily shown that

Dt+1(ωt) = Aff(D̃t+1(ωt)) =

{
f1(ωt) +

p∑
i=2

λi(fi(ωt)− f1(ωt)), (λ2, . . . , λp) ∈ Qp−1, p ≥ 2

}
. (62)

So, using again the Castaing representation we obtain that Dt+1(ωt) is Ft-measurable. ¿From Theo-
rem 14.8 of Rockafellar and Wets [1998], Graph(Dt+1) ∈ Ft⊗B(Rd) (recall that Dt+1 is closed-valued).
2

Proof of Lemma 3.4. Introduce Ct+1(ωt) := Conv(D̃t+1(ωt)) the closed convex hull generated by
D̃t+1(ωt). We will prove that 0 ∈ Ct+1(ωt). Since Ct+1(ωt) ⊂ Dt+1(ωt) by assumption, for all h ∈
Ct+1(ωt)\{0}

qt+1(h∆St+1(ωt, ·) ≥ 0|ωt) < 1. (63)

Thus if we find some h0 ∈ Ct+1(ωt) such that qt+1(h0∆St+1(ωt, ·) ≥ 0|ωt) = 1 then h0 = 0. We distin-
guish two cases. First assume that for all h ∈ Rd, h 6= 0, qt+1(h∆St+1(ωt, .) ≥ 0|ωt) < 1. Then the polar
cone of Ct+1(ωt), i.e the set (

Ct+1(ωt)
)◦

:= {y ∈ Rd, yx ≤ 0, ∀x ∈ Ct+1(ωt)}

is reduced to {0}. Indeed if this is not the case there exists y0 ∈ Rd such that −y0x ≥ 0 for all x ∈
Ct+1(ωt). As A := {ωt+1 ∈ Ωt+1, ∆St+1(ωt, ωt+1) ∈ D̃t+1(ωt)} ⊂ {ωt+1 ∈ Ωt+1, −y0∆St+1(ωt, ωt+1) ≥ 0}
and qt+1(A|ωt) = 1 we obtain that qt+1(−y0∆St+1(ωt, ·) ≥ 0|ωt) = 1 a contradiction. As

((
Ct+1(ωt)

)◦)◦
=

cone
(
Ct+1(ωt)

)
where cone

(
Ct+1(ωt)

)
denote the cone generated byCt+1(ωt) we get that cone

(
Ct+1(ωt)

)
=

Rd. Let u 6= 0 ∈ cone
(
Ct+1(ωt)

)
then −u ∈ cone

(
Ct+1(ωt)

)
and there exist λ1 > 0, λ2 > 0 and

v1, v2 ∈ Ct+1(ωt) such that u = λ1v1 and −u = λ2v2. Thus 0 = λ1
λ1+λ2

v1 + λ2
λ1+λ2

v2 ∈ Ct+1(ωt) by convex-
ity of Ct+1(ωt).
Now we assume that there exists some h0 ∈ Rd, h0 6= 0 such that qt+1(h0∆St+1(ωt, .) ≥ 0|ωt) = 1. Note
that since h0 ∈ Rd we cannot use (63). Introduce the orthogonal projection on Ct+1(ωt) (recall that
Ct+1(ωt) is a closed convex subset of Rd)

p : h ∈ Rd → p(h) ∈ Ct+1(ωt).

Then p is continuous and we have (h− p(h)) (x− p(h)) ≤ 0 for all x ∈ Ct+1(ωt). Fix ωt+1 ∈ {ωt+1 ∈
Ωt+1, ∆St+1(ωt, ωt+1) ∈ D̃t+1(ωt)} ∩ {ωt+1 ∈ Ωt+1, h0∆St+1(ωt, ωt+1) ≥ 0} and λ ≥ 0. Let h = λh0 and
x = ∆St+1(ωt, ωt+1) ∈ Ct+1(ωt) in the previous equation, we obtain (recall that D̃t+1(ωt) ⊂ Ct+1(ωt))

0 ≤ λh0∆St+1(ωt, ωt+1) = (λh0 − p(λh0)) ∆St+1(ωt, ωt+1) + p(λh0)∆St+1(ωt, ωt+1)

≤ (λh0 − p(λh0)) p(λh0) + p(λh0)∆St+1(ωt, ωt+1).
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As this is true for all λ ≥ 0 we may take the limit when λ goes to zero and use the continuity of p

p(0)∆St+1(ωt, ωt+1) ≥ |p(0)|2 ≥ 0

As qt+1

({
ωt+1 ∈ Ωt+1, ∆St+1(ωt, ωt+1) ∈ D̃t+1(ωt)

}
|ωt
)

= 1 by definition of D̃t+1(ωt) and as
qt+1(h0∆St+1(ωt, .) ≥ 0|ωt) = 1 as well we have obtained that

qt+1(p(0)∆St+1(ωt, ·) ≥ 0|ωt) = 1.

The fact that p(0) ∈ Ct+1(ωt) together with (63) implies that p(0) = 0 and 0 ∈ Ct+1(ωt) follows.
2

The following lemma has been used in the proof of Lemma 3.5. It corresponds to Lemma 2.5 of
Nutz [2016]

Lemma 7.16 Let ωt ∈ Ωt be fixed. Recall that Lt+1(ωt) :=
(
Dt+1(ωt)

)⊥ is the orthogonal space of
Dt+1(ωt). Then for h ∈ Rd we have that

qt+1(h∆St+1(ωt, ·) = 0|ωt) = 1 ⇐⇒ h ∈ Lt+1(ωt).

Proof. Assume that h ∈ Lt+1(ωt). Then {ω ∈ Ωt, ∆St+1(ωt, ω) ∈ Dt+1(ωt)} ⊂ {ω ∈ Ωt, h∆St+1(ωt, ω) =
0}. As qt+1(∆St+1(ωt, .) ∈ Dt+1(ωt)|ωt) = 1, we conclude that qt+1(h∆St+1(ωt, .) = 0|ωt) = 1. Con-
versely, assume that h /∈ Lt+1(ωt). We first show that there exists v ∈ D̃t+1(ωt) such that hv 6= 0.
If not, for all v ∈ D̃t+1(ωt), hv = 0 and for any w ∈ Dt+1(ωt) with w =

∑m
i=1 λivi where λi ∈ R,∑m

i=1 λi = 1 and vi ∈ D̃t+1(ωt), we get that hw = 0, a contradiction. Furthermore there exists an
open ball centered in v with radius ε > 0, B(v, ε), such that hv′ 6= 0 for all v′ ∈ B(v, ε). Assume
that qt+1(∆St+1(ωt, .) ∈ B(v, ε)|ωt) = 0 or equivalently that qt+1(∆St+1(ωt, .) ∈ Rd \ B(v, ε)|ωt) = 1.
By definition of the support, D̃t+1(ωt) ⊂ Rd \ B(v, ε): this contradicts v ∈ D̃t+1(ωt). Therefore
qt+1(∆St+1(ωt, .) ∈ B(v, ε)|ωt) > 0. Let ω ∈ {∆St+1(ωt, .) ∈ B(v, ε)}, then h∆St+1(ωt, ω) 6= 0 i.e
qt+1(h∆St+1(ωt, .) = 0|ωt)) < 1. 2

We prove now the following result of Section 5.
Proof of Proposition 5.9. We start with the proof of (23) when h ∈ Dx. Since D is a vectorial subspace
of Rd and 0 ∈ Hx, the affine hull of Dx is also a vector space that we denote by Aff(Dx). If x ≤ 1 we
have by Assumption 5.3 that for all ω ∈ Ω, h ∈ Dx,

V +(ω, x+ hY (ω)) ≤ V + (ω, 1 + hY (ω)) . (64)

If x > 1 using Assumption 5.5 (see (21) in Remark 5.6) we get that for all ω ∈ Ω, h ∈ Dx

V +(ω, x+ hY (ω)) = V +

(
2x

(
1

2
+

h

2x
Y (ω)

))
≤ (2x)γK

(
V +

(
ω, 1 +

h

2x
Y (ω)

)
+ C(ω)

)
. (65)

When Dim(Aff(Dx)) = 0, using (64) and (65), we obtain

V +(ω, x+ hY (ω)) ≤ V +(ω, 1) + (2x)γK
(
V + (ω, 1) + C(ω)

)
≤ ((2x)γK + 1)(V +(ω, 1) + C(ω)). (66)

We assume now that Dim(Aff(Dx)) > 0. If x = 0 then Y = 0 Q-a.s. as easily seen, and by Assumption
5.3 we get that for all ω ∈ Ω, h ∈ D0,

V +(ω, 0 + hY (ω)) ≤ V +(ω, 1).

¿From now we assume that x > 0. Then as g ∈ Dx if and only if g
x ∈ D1, we have that Aff(Dx) =

Aff(D1). We set d′ := Dim(Aff(D1)). Let (e1, . . . , ed′) be an orthonormal basis of Aff(D1) (which is a
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sub-vector space of Rd) and ϕ : (λ1, . . . , λd′) ∈ Rd′ → Σd′
i=1λiei ∈ Aff(D1). Then ϕ is an isomorphism and

it is also an homeomorphism between Rd′ and Aff(D1). Since D1 is compact by Lemma 5.8, ϕ−1(D1)
is a compact subset of Rd′ . So there exists some c ≥ 0 such that for all h = Σd′

i=1λiei ∈ D1, |λi| ≤ c for
all i = 1, . . . , d′. We complete the family of vector (e1, . . . , ed′) in order to obtain an orthonormal basis
of Rd, denoted by (e1, . . . , ed′ , ed′+1, . . . ed). For all ω ∈ Ω, let (yi(ω))i=1,...,d be the coordinate of Y (ω) in
this basis.
Now let h ∈ Dx be fixed. Then h

2x ∈ D 1
2
⊂ D1 and h

2x = Σd′
i=1λiei for some (λ1, . . . λd′) ∈ Rd′ with |λi| ≤ c

for all i = 1, . . . , d′. Note that as h
2x ∈ D1, λi = 0 for i ≥ d′ + 1. Then as (e1, . . . , ed) is an orthonormal

basis of Rd, we obtain for all ω ∈ Ω

1 +
h

2x
Y (ω) = 1 + Σd′

i=1λiyi(ω) ≤ 1 + Σd′
i=1|λi||yi(ω)| ≤ 1 + cΣd′

i=1|yi(ω)|.

Thus from Assumption 5.3 for all ω ∈ Ω we get that

V +

(
ω, 1 +

h

2x
Y (ω)

)
≤ V +

(
ω, 1 + cΣd′

i=1|yi(ω)|
)
.

We set
L(·) := V +

(
ω, 1 + cΣd′

i=1|yi(ω)|
)

1d′>0 + V +(·, 1) + C(·).

As d′ = Dim(Aff(D1)) it is clear that L does not depend on x. It is also clear that L is H-measurable.
Then using (64), (65) and (66) we obtain that for all ω ∈ Ω

V +(ω, x+ hY (ω)) ≤ ((2x)γK + 1)L(ω).

Note that the first term in L is used in the above inequality if x 6= 0 and Dim(Aff(Dx)) > 0. The
second and the third one are there for both the case of Dim(Aff(Dx)) = 0 and the case of x = 0 and
Dim(Aff(Dx)) > 0. As by Assumptions 5.5 and 5.7, E(V +(·, 1) + C(·)) < ∞, it remains to prove that
d′ > 0 implies E

(
V +

(
·, 1 + cΣd′

i=1|yi(·)|
))

<∞.

Introduce W , the finite set of Rd whose coordinates on (e1, . . . , ed′) are 1 or −1 and 0 on (ed′+1, . . . ed).
Then W ⊂ Aff(D1) and the vectors of W will be denoted by θj for j ∈ {1, . . . , 2d′}. Let θω be the vector
whose coordinates on (e1, . . . , ed′) are (sign(yi(ω)))i=1...d′ and 0 on (ed′+1, . . . ed). Then θω ∈ W and we
get that

V +
(
ω, 1 + cΣd′

i=1|yi(ω)|
)

= V +(ω, 1 + cθωY (ω)) ≤
2d
′∑

j=1

V +(ω, 1 + cθjY (ω)).

So to prove thatEL <∞ it is sufficient to prove that if d′ > 0 for all 1 ≤ j ≤ 2d
′ , EV +(·, 1+cθjY (·)) <∞.

Recall that θj ∈ Aff(D1). Let ri(D1) = {y ∈ D1, ∃α > 0 s.t Aff(D1)∩B(y, α) ⊂ D1} 4 denote the relative
interior of D1. As D1 is convex and non-empty (recall d′ > 0), ri(D1) is also non-empty and convex and
we fix some e∗ ∈ ri(D1). We prove that e∗

2 ∈ ri(D1). Let α > 0 be such that Aff(D1) ∩ B(e∗, α) ⊂ D1

and g ∈ Aff(D1) ∩ B( e
∗

2 ,
α
2 ). Then 2g ∈ Aff(D1) ∩ B(e∗, α) and thus 2g ∈ D1. As D1 is convex and

0 ∈ D1, we get that g ∈ D1 and Aff(D1) ∩ B( e
∗

2 ,
α
2 ) ⊂ D1 which proves that e∗

2 ∈ ri(D1). Now let
εj be such that εj( c2θ

j − e∗

2 ) ∈ B(0, α2 ). It is easy to see that one can chose εj ∈ (0, 1). Then as
ēj := e∗

2 +
εj
2 (cθj − e∗) ∈ Aff(D1) ∩ B( e

∗

2 ,
α
2 ) we deduce that ēj ∈ D1. Using (21) we obtain that for

4Here B(y, α) is the ball of Rd centered at y and with radius α.
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Q-almost all ω

V +(ω, 1 + cθjY (ω)) = V +(ω, 1 + e∗Y (ω) + (cθj − e∗)Y (ω))

≤
(

2

εj

)γ
K

[
V +

(
ω,
εj
2

(1 + e∗Y (ω)) +
εj
2

(cθj − e∗)Y (ω) +
1

2

)
+ C(ω)

]
≤
(

2

εj

)γ
K

[
V +

(
ω,

1

2
+
e∗

2
Y (ω) +

εj
2

(cθj − e∗)Y (ω) +
1

2

)
+ C(ω)

]
≤
(

2

εj

)γ
K
[
V +(ω, 1 + ējY (ω)) + C(ω))

]
,

where the second inequality follows from the fact that 1 + e∗Y (·) ≥ 0 Q-a.s and the monotonicity
property of V Note that the above inequalities are true even if 1 + cθjY (ω) < 0 since (21) and the
monotonicity property of V hold true for all x ∈ R.
¿From Assumption 5.7 we get that EV +(·, 1 + ējY (·)) < ∞ and Assumption 5.5 implies EC < ∞,
therefore EV +(·, 1 + cθjY (·)) < ∞ and (23) is proven for h ∈ Dx. Now let h ∈ Hx and h′ its or-
thogonal projection on D, then hY (·) = h′Y (·) Q-a.s (see Remark 5.2). It is clear that h′ ∈ Dx thus
V +(·, x+ hY (·)) = V +(·, x+ h′Y (·)) Q-a.s and (23) is true also for h ∈ Hx. 2

To conclude, the following lemma was used in the proof of Theorem 4.16.

Lemma 7.17 Assume that (NA) holds true. Let φ ∈ Φ such that V x,φ
T ≥ 0 P -a.s, then V x,φ

t ≥ 0 Pt-a.s.

Proof. Assume that there is some t such that Pt(V x,φ
t ≥ 0) < 1 or equivalently Pt(V x,φ

t < 0) > 0 and
let n = sup{t|Pt(V x,φ

t < 0) > 0}. Then Pn(V x,φ
n < 0) > 0 and for all s ≥ n + 1, Ps(V x,φ

s ≥ 0) = 1. Let
Ψs(ω) = 0 if s ≤ n and Ψs(ω) = 1Aφs(ω) if s ≥ n+ 1 with A = {V Φ

n < 0}. Then

V 0,Ψ
s =

s∑
k=1

Ψs∆Ss =
s∑

k=n+1

Ψs∆Ss = 1A

(
V x,φ
s − V x,φ

n

)
If s ≥ n + 1 Ps(V

x,φ
s ≥ 0) = 1 and on A, −V Φ

n > 0 thus PT (V 0,Ψ
T ≥ 0) = 1 and V 0,Ψ

T > 0 on A. As by the
(usual) Fubini Theorem PT (A) = Pn(V x,φ

n < 0) > 0, we get an arbitrage opportunity, a contradiction. 2
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