
HAL Id: hal-01883380
https://hal.science/hal-01883380v1

Submitted on 8 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two Decades of Smalltalk VM Development: Live VM
development through Simulation Tools

Eliot Miranda, Clément Bera, Elisa Gonzalez Boix, Dan Ingalls

To cite this version:
Eliot Miranda, Clément Bera, Elisa Gonzalez Boix, Dan Ingalls. Two Decades of Smalltalk VM
Development: Live VM development through Simulation Tools. Virtual Machines and Language
Implementations VMIL 2018, 2018, Boston, United States. �10.1145/3281287.3281295�. �hal-01883380�

https://hal.science/hal-01883380v1
https://hal.archives-ouvertes.fr

Two Decades of Smalltalk VM Development
Live VM development through Simulation Tools

Eliot Miranda
Feenk

San Francisco, California
eliot.miranda@gmail.com

Clément Béra
Software Languages Lab
Vrije Universiteit Brussel

Brussel, Belgium
clement.bera@vub.be

Elisa Gonzalez Boix
Software Languages Lab
Vrije Universiteit Brussel

Brussel, Belgium
egonzale@vub.be

Dan Ingalls
ARCOS

Aptos, California
danhhingalls@gmail.com

Abstract
OpenSmalltalk-VM is a virtual machine (VM) for languages
in the Smalltalk family (e.g. Squeak, Pharo) which is itself
written in a subset of Smalltalk that can easily be translated
to C. Development is done in Smalltalk, an activity we call
“Simulation”. The production VM is derived by translating
the core VM code to C. As a result, two execution models
coexist: simulation, where the Smalltalk code is executed on
top of a Smalltalk VM, and production, where the same code
is compiled to an executable through a C compiler.
In this paper, we detail the VM simulation infrastructure

and we report our experience developing and debugging the
garbage collector and the just-in-time compiler (JIT) within
it. Then, we discuss howwe use the simulation infrastructure
to perform analysis on the runtime, directing some design
decisions we have made to tune VM performance.

CCS Concepts • Software and its engineering→ Run-
time environments; Just-in-time compilers; Interpreters;

Keywords Just-in-Time compiler, garbage collector, virtual
machine, managed runtime, tools, live development
ACM Reference Format:
Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls.
2018. Two Decades of Smalltalk VM Development: Live VM de-
velopment through Simulation Tools. In Proceedings of the 10th
ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages (VMIL ’18), November 4, 2018, Boston, MA,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3281287.3281295

1 Introduction
To specify their virtual machine (VM), the Smalltalk-80 team
at Xerox PARC wrote a Smalltalk VM entirely in Smalltalk
[GR83]. In 1995, members of the same team built Squeak

VMIL ’18, November 4, 2018, Boston, MA, USA
2018. ACM ISBN 978-1-4503-6071-5/18/11. . . $15.00
https://doi.org/10.1145/3281287.3281295

[BDN+07], an open-source Smalltalk dialect, and its VM
[IKM+97], written in Smalltalk using the code from Smalltalk-
80 [GR83] as a starting point. Part of the code base was, how-
ever, narrowed down to a subset of Smalltalk, called Slang, to
allow Smalltalk to C compilation. Development was done in
Smalltalk, an activity we call "Simulation", and the support
code for which is "The Simulator". The production VM is
derived by translating the core VM code to C, combining
this generated C code with a set of platform-specific support
files, and compiling with the platform’s C compiler.
Two execution models were effectively available, simu-

lation, where the Smalltalk code is executed on top of a
Smalltalk VM, and production, where the same code is com-
piled to executable code through the C compiler. Simulation
is used to develop and debug the VM. Production is used
to release the VM. Dummy Smalltalk message sends1 were
used to embed meta information in the code, such as self var:
’foo’ type: ’char *’ which have no effect during simulation but
guide the translation process of the executable Smalltalk.

When the Squeak VM was released it consisted mainly in:

• an interpreter with a spaghetti stack,
• a memory manager with a compact but complex object
representation: a pointer-reversing tracing garbage
collector and a heap divided into two generations,
• WarpBlt, a rotation and scaling extension for the bit-
based BitBlt graphics engine,
• external C code and makefiles to support running the
VM on popular platforms.

The first three components of the VM were written en-
tirely in Slang. A few extra features, such as file management,
were written both in Smalltalk for simulation purposes and
in C for the production VM.

1We use the Smalltalk terminology, send, to discuss virtual calls since we
are talking about Smalltalk.

https://doi.org/10.1145/3281287.3281295
https://doi.org/10.1145/3281287.3281295
https://doi.org/10.1145/3281287.3281295

VMIL ’18, November 4, 2018, Boston, MA, USA Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls

Over the years, the Squeak VM evolved to give birth
recently to OpenSmalltalk-VM2, the default VM for vari-
ous Smalltalk-like systems such as Pharo [BDN+09], Squeak
[BDN+07], Cuis, Croquet and Newspeak [BvdAB+10]. As the
VM evolved, the original simulator co-evolved as a tool to
develop and debug the VM. The metadata used to guide the
translation process was replaced by pragmas [DMP16]. But
the most significant evolution of the simulator came with the
introduction of the Just-In-Time compiler (JIT) [Mir11]. The
spaghetti stack was mapped to a more conventional stack
frame organisation in a stack zone of a few hundred kilobytes
organised into small pages, a scheme called context-to-stack
mapping [DS84, Mir99]. A JIT was written. Machine code
generated by the JIT was executed by binding multiple pro-
cessor simulators (Bochs [Law96] for x86 and x64, SkyEye
for ARMv6, Smalltalk code for 32-bit MIPS). Support for mul-
tiple bytecode sets was added, initially to support Newspeak,
and more recently to support adaptive optimization. Finally,
a new object representation and garbage collector was added
to improve performance and also to support 64 bits [MB15].
This required refactoring the interpreter to allow the object
representation to be chosen at start-up3. Slang was also ex-
tended with type inference to allow Smalltalk code that is
independent of word size by virtue of Smalltalk’s infinite
precision arithmetic to be used in both 32 and 64 bit contexts.

One of the key design decisions in OpenSmalltalk-VMwas
to keep the core components (i.e. the interpreter, the JIT and
the memory manager) written in Slang and not in C/C++.
By interpreting the Slang code as Smalltalk code, emulating
native code using an external processor simulator and simu-
lating the memory using a large byte array, it is possible to
simulate the whole VM execution. This allows development
and debugging of the VM with the Smalltalk development
tools resulting in a live programming experience for VM
development4.
In this paper, we present key details of the Simulation

infrastructure, give examples that demonstrate its produc-
tivity advantages, and discuss some of its limitations. The
paper is structured as follows. Section 2 introduces the sim-
ulation infrastructure used to develop and debug the VM.
Section 3 reports our experience developing the VMwith the
simulation infrastructure. Section 4 discusses some of the
simulation infrastructure limitations, how we work around
them and related works.
2https://github.com/OpenSmalltalk/opensmalltalk-vm/
3The JIT was written with this eventuality in mind.
4Arriving at the startup that first funded the OpenSmalltalk-VM, the first
author had considerable experiencemaintaining the 2nd generation Deutsch
Schiffmann VM written in C, and was sceptical that the Squeak Simulator
would be viable for implementing a JIT. The startup wanted incremental
development so as to reap value early and reduce risk, so it asked first for an
interpreter using context-to-stack mapping. Writing this initial deliverable
within the simulator was so much more productive and pleasurable than
his previous work in C that he happily decided to stay with the simulator
and invest in the necessary machine code simulation infrastructure.

2 Virtual Machine Simulation
The key idea of the Simulation is to allow developers to reuse
the whole Smalltalk IDE including the browser, inspectors
and debugger to develop the VM. Most new features can be
developed interactively, adding code to the VM at runtime,
in the simulation environment, like Smalltalk programming.
In this section we first briefly introduce the compilation

pipeline to generate the production VM and Smalltalk snap-
shots, key elements to understand the design of the simu-
lation infrastructure. Then we describe the memory layout
of both the production and simulation runtimes. Next we
detail how VM execution is simulated and the interactions
with the simulated memory. In the following subsection,
we explain specific aspects of the simulation infrastructure
such as the simulation of the machine code generated by
the JIT through the processor simulator. The last subsection
discusses simulation features related to the development of
the JIT.

2.1 Context
VM compilation. The VM executable is generated in a two
step process. Firstly, the Slang-to-C compiler translates the
Slang code (interpreter, JIT and GC code) to C code, generat-
ing a few C files. This first step usually takes several seconds.
Secondly, the C compiler (depending on the platform LLVM,
GCC or MSVC) translates all the C files (generated C files
and platform-specific C files) into an executable. This second
step can take up to a few minutes the first time. Subsequent
compilations usually only take a few seconds, since object
files for unchanged C files do not need to be recreated.

The VM can be configured in twomain flavours, interpreter-
only or interpreter+JIT 5. Although the version with the JIT
is the most widely used in production, the interpreter version
is convenient for development purposes and essential on de-
vices that outlaw JITs. For example, debugging the garbage
collector or evaluating new language features can be done
in the interpreter-only VM, avoiding JIT complexity.

Snapshots. Smalltalk is an object system, rather than a lan-
guage. The entire system, including its development tools
and application code is stored in a snapshot file, which is
essentially a memory dump of the entire heap. When pro-
gramming with Smalltalk, the programmer usually starts
from a snapshot which contains the core libraries, the devel-
opment environment and the application under development.
More precisely, the snapshot includes objects (such as the
classes), the compiled methods in the form of bytecodes and
the running processes. Developing applications consists es-
sentially in writing and editing code, which installs, modifies
and removes classes and compiled methods to and from the

5Combining an interpreter and a JIT has performance and complexity ad-
vantages, as well as complexity disadvantages. But discussion is beyond the
scope of this paper.

Two Decades of Smalltalk VM Development VMIL ’18, November 4, 2018, Boston, MA, USA

class hierarchy. Programming may be done live, as the appli-
cation under development is running. For example, objects
may have their shape changed on the fly as instance vari-
ables are added and removed. A new snapshot can be made
during or at the end of the development session.
Snapshots can also be used to avoid long start-up times

when fixing specific bugs. The VM can be run to a point
where the bug is about to manifest and a snapshot taken.
Then multiple analyses of the bug can be undertaken by
loading the snapshot and resuming execution, either in the
normal VM or in the simulator, short cutting the time to
reach the bug.

2.2 Memory architectures
Production memory layout. Figure 1 describes, from a
high-level perspective, the memory used by OpenSmalltalk-
VM in the production VM and its simulated counter-part.
Let us detail briefly the memory used by the production VM,
on the top of the figure. On the left, low address, side, we
can first find Text, the section holding the native code of
the VM (the compiled code of the interpreter, the memory
manager and the JIT itself, but not the code compiled by
the JIT). Then, Data holds initialized and uninitialized data,
including the VM’s global variables.

At higher addresses we find the beginning of the memory
managed by the VM. At start-up the VM mmaps a memory
region used for the executable code generated by the JIT
(this optional section exists only if the JIT is enabled), for
new space (initially empty) and for the old objects present in
the snapshot plus a little more space for the first tenures6 to
be performed without triggering the full garbage collector.
Later during execution, as old space grows, new memory
regions are mmap’ed at higher addresses to store other old
objects.

Usually at a very high address we find the C stack. Room in
the C stack is allocated at VM start-up to hold the Smalltalk
stack zone. Both stacks are disjoint and managed differ-
ently, the stack zone being broken up into small stack pages
[Mir99].

Simulation memory layout. In the simulator, the heap is
stored as a large contiguous byte array. References between
objects are indices into the byte array instead of pointers.
All the Slang variables, normally translated to C variables,
are instance variables of Smalltalk objects. When required,
they use specific wrapper classes, such as CArrayAccessor,
over normal Smalltalk classes, to emulate the C behavior
(only array accesses are available in C, not high level iterator
APIs, etc.). The Slang code is executed as Smalltalk code. The
Smalltalk stack zone is represented in OpenSmalltalk-VM as
a doubly linked cycle of stack pages which are maintained
by the VM. In the interpreter-only simulator, the stack zone
6A tenure is the process of promoting young objects to old objects in a
generational GC.

is a Smalltalk Array object. In the full simulator, the stack
zone is in the byte array, to allow access to the stack from
generated machine code7.

2.3 Runtime simulation
Modularity. The Slang code is implemented in multiple
Smalltalk classes, to organise the code, to add modularity
through polymorphism, and reuse through inheritance. For
example, the AbstractCompactor class has two subclasses,
one implementing a sweep algorithm and the other a com-
paction one. For production, during Slang-to-C compilation
time, all the code is compiled into a single C file8. All the
modularity is removed, using the same example, the VM
developer chooses at this moment if he wants to compile a
VM with a sweep or compact algorithm. No polymorphism
is available at runtime. However, since polymorphism is
available in the simulator, it can be reused for debugging
purposes. Still in our example, the AbstractCompactor class
has also simulation specific subclasses. Such versions typi-
cally express additional constraints in the form of assertions
which can be written in plain Smalltalk without restrictions
to easily express complex constraints. They also keep specific
values live so they can be accessed at debugging time.

Deterministic simulation. To be able to reproduce the
same bug exactly multiple times in a row, we designed the
simulator to be as deterministic as possible. The most impor-
tant features are:
• Simulated memory is not subject to Address Space
Layout Randomisation,
• A synthetic clock is used so that time advances in lock
step with code execution.

JIT simulation. In addition to the interpreter simulator,
simulating the JIT requires simulating execution of the ma-
chine code it generates. The JIT itself is written in Slang and
simulated with the Smalltalk execution model. When the
JIT is enabled, the start of the byte array representing the
memory is used to hold the machine code it generates at
runtime.
Bindings to processor simulator libraries (Bochs for x86

and x64, Skyeye for ARMv6, Smalltalk code for 32-bit MIP-
SLE) were implemented so that machine code can be exe-
cuted safely. All but the MIPSLE simulators are accessed
through FFI calls and surrounding glue code. Each processor
simulator is invoked via calls that supply the byte array as
a parameter, and effectively the byte array is the processor
simulator’s memory, while the processor simulator contains
its register state which is accessed via Smalltalk’s support

7This difference is historical, the interpreter-only version was implemented
first in the easiest way possible, but with the JIT the Smalltalk stack must
be accessible to the processor simulator.
8One C file contains the interpreter and memory manager, with one JIT file
per back end

VMIL ’18, November 4, 2018, Boston, MA, USA Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls

.........Text Data C Stack . Machine code
zone

Young
Space

Old Space
(Segment 1)

Old Space
(Segment 2)

Single very large ByteArray, shared between Smalltalk and Processor Simulator

Smalltalk
Stack

Machine code
zone

Smalltalk
Stack

Rump
C Stack

Young
Space

Old Space
(Segment 1)

Old Space
(Segment 2)

Production VM: Representative 32 bit address space

Simulation Architecture

Interp., JIT, GC
proc. sim. interface

Interp., JIT, GC code

Smalltalk objects

Processor simulator
Register state

Figure 1. Runtime Memory and Simulated Counter-Part
for external memory access. 9 The next paragraphs describe
in detail how this scheme is used to ensure that simulation
and production machine code are as similar as possible and
how machine code is interfaced to the rest of the simulation.

Interfacingmachine codewith simulation objects. Akey
requirement to enable effective development of the JIT is that
the code generated during simulation be as close as possible
to the code generated by the production JIT. The code is of
course not bit-identical; the address space is laid out very
differently in memory to the simulation’s byte array and
the simulator is not subject to Address Space Layout Ran-
domisation. But we benefit from the code generated under
simulation being otherwise identical to that generated in the
production VM and we go to some effort to achieve this. The
technique we use, involving illegal addresses, also allows us
to interface generated machine code with the Smalltalk ob-
jects that comprise the Simulation, the interpreter, memory
manager and JIT, and variables within them. To explain this
let’s consider how the interpreter references a stack frame.

The interpreter has framePointer, stackPointer and instruc-
tionPointer variables used to interpret code. When machine
code wants to enter the runtime, for example to have the
runtime look up a send on a cache miss, or to invoke the
scavenger when young space is full, it needs to record the
current stack frame, writing the native stack and frame point-
ers into the stackPointer and framePointer variables, and then
to call the relevant routine. The runtime can then access the
current machine code stack frame though these variables. In
the production VM, the stackPointer and framePointer are
C variables in Data, and routines in the runtime have been
compiled from C and exist in Text; all have fixed addresses.
Referencing these variables and invoking these runtime rou-
tines from machine code is therefore straight-forward. But
in the simulation they are inaccessible. First of all they are
instance variables inside Smalltalk objects, objects that have
9http://www.squeaksource.com/Alien

strong encapsulation, accessible only through messages, and
second of all they are alongside the simulation’s byte array,
not within it, therefore the processor simulator has no access
to these variables.
The JIT maintains a set of Dictionaries (hash maps) that

map integers representing addresses to closures that get or
set variables in the simulation objects, or invoke runtime
routines, in both cases by sending messages to the simulation
objects. As code is JITted and specific variables and runtime
routines are referenced, the JIT manufactures a unique ille-
gal address to reference each variable or routine, and uses
this as the key in the relevant map, creating and storing a
suitable closure accessor as the value. When the processor
simulator attempts to execute an instruction containing one
of these illegal addresses, which will be some variety of read,
write, call, jump or return instruction10, it will return an
error from the FFI call. Support code analyses the failure and
raises a ProcessorException which contains all necessary de-
tails, the type, pc, next pc and so on. The processor simulator
is always invoked in the context of an exception handler for
such exceptions which invokes the relevant closure. Once
the closure has completed, the processor simulator is ad-
vanced to the next pc and simulation resumes. In this way,
machine code generated in simulation can access arbitrary
simulation objects while remaining essentially identical to
the generated machine code in the production VM. Further,
ProcessorException, and a handful of other methods imple-
mented by a processor simulator makes the interfacing of
machine code to the Smalltalk part of the simulation proces-
sor independent.

10Activations of JITted machine code methods return to calling interpreter
frames by returning to a trampoline that transfers control to the interpreter;
hence the return address of a machine code activation above an interpreter
frame has this trampoline as its return address.

Two Decades of Smalltalk VM Development VMIL ’18, November 4, 2018, Boston, MA, USA

2.4 Machine code debugging
Instruction recording. The JITmaintains a simulation-only
variable that determines whether the processor simulator
is invoked in single-stepping mode, or run-until-exception-
or-interrupt mode. When in single stepping mode a circular
buffer remembers N previous instructions and associated
register state, allowing one to examine an arbitrary number
of instructions (by default 160) preceding some error. The
breakpoint facility is intelligent enough to only enable single
stepping once code has been JITted at that address, using
run mode until that point.

Conditional breakpoints. There is a small polymorphic
scheme for breakpoints. Booleans, integers, and arrays un-
derstand isBreakpointFor: pc. So if the breakPC variable is
false there is no breakpoint. If breakPC is true then any pc
is a potential breakpoint. If it is an integer then that pc is
a potential breakpoint. If the pc is an Array then the pc is
a breakpoint if any value in the array answers true to is-
BreakpointFor:. The scheme could trivially be extended to
include intervals. If breakPC isBreakpointFor: pc is true then
the breakBlock is sent shouldStopIfAtPC: pc. booleans and
closures understand shouldStopIfAtPC:. true and false make
the breakpoint unconditional or disabled respectively, and a
closure evaluates itself, allowing one to specify arbitrarily
complex breakpoints. For example, one can specify that exe-
cution should stop at a particular pc if the top two elements
on the stack satisfy some criterion. It is much more powerful
and much simpler to use than typical machine-level debug-
gers, closures can be created at any point in any tool with a
text interface, such as the debugger, and the scheme can be
extended as one is debugging (for example, adding interval
support during the middle of a debugging session).

In-image compilation. Simulating the whole VM requires
going through the entire Smalltalk system start-up sequence:
loading the snapshot, running code registered in the start-up
sequence and resuming the user interface. In the simulator,
start-up takes around 15 seconds on a recent MacBook Pro.
While developing the JIT, this start-up time may still be
too long and degrade the live programming experience to an
edit-compile-run cycle, which we prefer to avoid. In addition,
when developing a specific part of the JIT, it is convenient to
compile a well-chosen simple method exercising that specific
new part. This is difficult to do with the full simulator since
that new part of the JIT might be called by the start-up logic,
leading to erratic behavior earlier than expected.
To work around these problems, we implemented a tool

called In-image compilation. In-image compilation allows the
JIT to be invoked as a Smalltalk library on any bytecode
compiled method in the host Smalltalk system (i.e. not in
the simulated heap) to generate the corresponding machine
code. In-image compilation invokes the JIT on the method,
calls the bound processor simulator to disassemble the code,

decorates the disassembly and then dumps the output in a
text window.

To generate themachine code, the JIT has to access specific
objects (the compiled method, the literals, known objects
such as true, false or nil) as if they were in the simulatedmem-
ory. To implement this we built a facade, which masquerades
as the simulation’s memory manager, and translates the state
of the bytecode compiled method in the current simulation
into state that makes it appear as if it were resident in a sim-
ulation byte array. This includes mock addresses for all the
objects the JIT may require to generate the machine code of
a given method. Figure 2 summarizes the in-image compila-
tion process. Note that this technique applies for the baseline
JIT, which translate a single bytecode method into machine
code; adaptive optimizations and speculative optimizations
are debugged differently.

Smalltalk
Bytecode
Method

Machine
Code

(Binary)

Disassembled
Machine code

(String)

JIT used as a
Smalltalk library

Processor
Simulator

called through
FFI

Disassembled
& Decorated

Machine code
Development tools

Representation of the method

Representation of the method, surrounded by a facade to
pretend it is a sequence of bytes in a simulation byte array

Program converting the representation of the method

Figure 2. In-image compilation
We also go in the opposite direction to the facade. Smalltalk

provides a pretty printer for bytecoded methods. The class
VMCompiledMethodProxy is polymorphic with Compiled-
Method and makes methods in the simulation’s heap appear
to be ordinary CompiledMethods in the Smalltalk system,
allowing the pretty printer, and other tools, to be applied
to methods in the simulation. This scheme can be extended
as required; potentially any object in the simulation can be
reified to be inspected using the Smalltalk tool suite.

Decorated Disassembly. Each processor simulator is ex-
pected to be able to disassemble itsmachine code. The Smalltalk
code for each processor simulator implements a simple parser
that identifies constants and field offsets embedded in that
disassembly and passes these to routines in the JIT and the
interpreter that lookup addresses, matching them to objects,
in particular message selectors and classes, and to method
local variable names, rendering the disassembly much more
readable than that displayed in a typical machine oriented

VMIL ’18, November 4, 2018, Boston, MA, USA Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls

00002063: movq 0x800(%rbx), %rax = 'stackLimit' : 48 8B 83 00 08 00 00
0000206a: cmpq %rax, %rsp : 48 39 C4
0000206d: jb .−0x47 (0x2028=indexOf:startingAt:ifAbsent:@28) : 72 B9

HasBytecodePC bc 40/41:
0000206f: movq start@20(%rbp), %rsi : 48 8B 75 14
00002073: movq anElement@28(%rbp), %rdi : 48 8B 7D 1C
00002077: movq self@−12(%rbp), %rdx : 48 8B 55 F4
0000207b: movq $0x0, %rcx : 48 C7 C1 00 00 00 00
00002082: call .−0x1B2F (0x558=ceSend2Args) : E8 D1 E4 FF FF

IsSendCall indexOf:startingAt: bc 44/45:
00002087: movq %rdx, index@−20(%rbp) : 48 89 55 EC

Figure 3. Decorated disassembled code

debugger. For example, Figure 3 is a snippet of decorated dis-
assembly for x64, in this case from an in-image compilation.
This code is the end of the entry sequence that checks

the stack pointer against the stack limit for the end of the
current stack page, a check which is also used to break out
of machine code to service interrupts or events such as in-
voking the scavenger, etc. %rbx is used as a base register
pointing at the variables in interpreter. Following that is the
code for index := self indexOf: anElement startingAt: start
where anElement and start are method parameters and index
is a local variable. HasBytecodePC and IsSendCall are dec-
orations that identify important locations in machine code,
including object references, runtime calls, etc. These points
are specified using metadata implemented as a simple byte-
coded language, a stream of such bytes being added to the
end of each machine code method. This metadata is parsed
when the garbage collector needs to locate object references
in machine code, when linked sends must be relocated as
the machine code zone is compacted to make space for new
code by throwing away some number of least recently used
methods, and when machine code pcs must be mapped to
their corresponding bytecode pcs since at the Smalltalk level
only bytecode pcs are seen.

Templates. The JIT generates a sequence of machine in-
structions for a given pattern of bytecodes. We use the term
template to describe the sequence of machine instructions
generated for a pattern of bytecodes, even though we do
not like to reduce the JIT to a simple template-based JIT
since each bytecode generates slightly different machine in-
structions based on register pressure, a simulated stack and
a few heuristics. Since the JIT is template-based, in-image
compilation is very convenient to develop and optimize each
of the JIT templates.

Since we also have a bytecode assembler that allows us to
manufacture bytecoded methods we can in practice exercise
any part of the JIT by creating a suitable bytecode method.
This is hardly pleasurable for methods of the complexity
produced by the adaptive optimiser though.

3 Experience reports
In this section we describe some memorable and representa-
tive personal experiences using the simulation infrastructure
to develop the VM. The different subsections describe vari-
ous tasks we undertook and in each case we emphasise how
we used the simulator and how it helped us perform each
given task.

3.1 Initial JIT development and new back ends
When the JIT was first being developed and was at a state
where bytecoded methods could actually be translated to
machine code, development fell into a very productive and
enjoyable rhythm. As a bytecode was encountered for which
the template had yet to be written execution would stop in
the debugger, which would create a skeleton implementation
for the template method from the MessageNotUnderstood ex-
ception. The programmer would implement the body of the
method and execution would continue. Were the new tem-
plate definition to be incorrect and cause a bug during JIT
generation, rather than when the generated machine code
was run, then the debugger could be used to wind execution
back to the beginning of the JITting of the current method
and resume execution, repeating the cycle until disassembly
looked good (somewhat like lemming debugging below). As a
new method was encountered and JITted yet more templates
would be encountered. Similarly as the abstract machine
instruction to concrete machine instruction mappings were
added these could be implemented in the debugger, an expe-
rience repeated when new back ends were added. Much of
the JIT was written in this interactive live style. This style
encourages tool creation because one can create, extend and
polish tools in the middle of debugging sessions, enhancing
them to make sense of ones current predicament. Immediate
feedback makes tool investment cheap and cheerful.

3.2 Debugging new GC algorithms and Lemming
Debugging

Debugging graph rewriting garbage collectors can be hard;
bugs leave the heap in a scrambled state, and figuring out
what happened when one is left with a corrupted graph,
often too broken to traverse and make sense of, or apply
tools to, is often effectively impossible. Therefore one is
often stuck trying to create a reproducible case in a system
that is essentially chaotic: the slightest change in the heap
might change the bug; any variability in timing or user input
can result in a different heap and hence in the bug morphing
or going into hiding.
Here, simulation comes to the rescue. Because the simu-

lation is simply an object graph it is easy to copy the entire
simulation. Therefore the simulator has been extended to
by default take a copy of itself on every scavenge or old
space reclamation, and to first run the collection in the copy,
performing a leak check afterwards (if enabled). Hence if a

Two Decades of Smalltalk VM Development VMIL ’18, November 4, 2018, Boston, MA, USA

bug occurs or validation fails it will fail in the copy while the
original remains as is, yet to be corrupted. We then take a
fresh copy and use it to debug, repeating the process as many
times as we like, an approach we call Lemming Debugging.
One throws the copy off the cliff and if it gets to the bottom
without incident it is descarded and the simulation continues
in the original. There is no need to create a reproducible case
for bugs encountered during simulation11; the reproducible
case is at hand. This approach was key in rapid development
of the new memory manager that supports both 32 and 64
bits [MB15].
Recently, to evaluate some new old space garbage col-

lection algorithms, we decided to implement standard al-
gorithms to get reference benchmark results. Since we had
already a Mark-Compact collector, we mainly introduced a
Mark-Sweep non moving GC as an alternative. The whole
implementation was done in the simulator, and only when it
was working there was it compiled to C. Using this process,
the compiled C code worked first time.

We started by sketching the new Sweep algorithm in the
code base. Once it was partially written, we started the sim-
ulator. Since the algorithm was not complete, we added the
missing pieces inside the debugger, installing the new code
at runtime and checking against the current values of the
function parameters if the function behaved as expected, as
one can do in any Smalltalk application.

3.3 Debugging a crash in machine code with
conditional breakpoints

In recent years, we added support for a more aggressive
JIT with speculative optimizations through a bytecode to
bytecode optimizer [BMF+17], re-using the existing template
JIT as a back-end. To be able to generate efficient code in the
bytecode to bytecode optimizer, we introduced new unsafe
bytecodes allowing, for example, accessing of arrays without
type and bounds checks [BM14]. For each new bytecode, we
introduced new templates in the existing JIT to generate
efficient machine code for the optimized methods using the
new bytecodes. Once all the basic unit tests worked, we
ran the VM with the speculative optimizer, which executed
optimized code, and got a crash. We could figure out which
bytecode method was triggering the crash, but we had no
idea from which template the crash came from. In addition,
optimized methods include many inlined methods, making
them very large, so it was difficult to figure out where the
issue came from just by looking at thousands of bytecodes.

To understand the crash, we created a snapshot where the
faulty method was executed right after start-up. We started
the VM simulator, and set-up a conditional breakpoint so
that simulator would stop when the JIT generated machine
11Alas not for bugs in the production VM. But Lemming Debugging could be
implemented in C using fork to create the copy in a child process, continuing
only if the child successfully completes its GC. Our leak checker works both
in Simulation and the production VM.

code for that method. Then, when the simulator reached
the breakpoint, we changed the conditional breakpoint to
stop execution when the address corresponding to the faulty
method entry in machine code would be used, either by a
call from the interpreter or through inline cache relinking.
The simulator stopped again, about to execute the machine
code corresponding to the faulty method. We then cloned
the simulator to be able to reproduce the crash again and
again.
Executing the faulty method led to an assertion failure.

However, that assertion failed in a GC store check, telling
us that the object to store into looked suspicious (address
outside of the heap). It happens that this object was read
from a field on stack, and that this field held an incorrect
address. We could not tell anymore at this point in the ex-
ecution what instruction among the thousands of previous
ones wrote the invalid address to the stack. So we discarded
the cloned simulation, and cloned a fresh simulator again,
just before the execution of the faulty method in machine
code to reproduce again the crash. This time we enabled
single stepping (i.e., the processor simulator simulates one
instruction at a time) and we added a breakpoint stopping ex-
ecution when the specific field on stack would be written to
the incorrect value found before. In this case, the conditional
breakpoint is checked in between each machine instruction,
and execution stopped right after the machine instruction
which wrote the incorrect value on stack. From the machine
instruction address, we could figure out which bytecode pat-
tern generated the incorrect machine code (it was the new
bytecode template for inlined allocations). From there, we
built a simpler method crashing the runtime and fixed the
template using in-image compilation.
The debugging process discussed here is illustrated in a

video12.

3.4 Optimizing the store templates with in-image
compilation

A few years ago, we added support in the VM for read-only
objects [B1́6]. Read-only objects were critical performance-
wise for specific customers using the system in the con-
text of object databases. To maximize their performance, we
changed the templates in the JIT compiler for the different
memory stores. To optimize each template, we use the in-
image compilation framework. We selected a method with a
single store to make it simple. We requested the JIT to gener-
ate the machine code and changed the template to optimize
until the machine code generated was the exact instructions
we wanted. It is possible, in in-image compilation, to use
the Smalltalk debugger on the JIT code itself to inspect the
JIT state and fix the JIT code on-the-fly without any major
compilation pause. Once we went through the few store

12https://www.youtube.com/watch?v=hctMBGAXVSs

VMIL ’18, November 4, 2018, Boston, MA, USA Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls

templates (there are a few different templates for optimiza-
tion purposes, for example, storing a constant integer does
not require a garbage collector write barrier check), we’ve
just had to evaluate performance and correctness through
benchmarks and tests to validate the implementation.

3.5 Analyzing the machine code zone
The simulator can be stopped at any given point and arbitrary
Smalltalk code can be written and evaluated similarly to the
eval Javascript construct. We used this technique to analyse
the simulated memory, including the machine code zone, the
heap or any Smalltalk object representing the VM state.

One of the first analyses we ran was on the machine code
zone. We stopped the simulation when the machine code
zone reached 1Mb. We then iterated over it and investigated
what was in it. As show in Table 1, 1752 methods were com-
piled to machine code by the JIT, 6352 sends are present but
2409 of them are not linked (they have never been executed).

Number of methods 1752
Number of sends 6352
Average number of sends per method 3.63
Number of unlinked sends 2409
Percentage of unlinked sends 37.9%
Table 1. General Machine Code Zone Analysis

Further analysis, in Table 2, confirms Urs Hölzle’s state-
ment [HCU91]: around 90% of used send sites are monomor-
phic, around 9% are polymorphic (up to 6 different cases in
our implementation) and the remaining % are megamorphic.

Number of sends % of linked sends
Monomorphic 3566 90.4 %
Polymorphic 307 07.8 %
Megamorphic 70 01.8 %

Table 2. Polymorphism Inline Cache Analysis

The code used for these analyses is detailed in the Cog
blog, Section "Let Me Tell You All About It, Let Me Quantify"
of the blog post "Build me a JIT as fast as you can"13.

3.6 Directing VM optimizations through analysis
The results of specific analyses are sometimes used to direct
performance design decisions on the VM. In this section
we describe how the analysis on polymorphic inline caches
impacted a hack called "Early polymorphic inline cache pro-
motion".

We designed the polymorphic inline caches (PICs) [HCU91]
with two implementations:
• Closed PICs: Such caches can deal with up to 6 cases,
and are basically implemented as a jump table.

13http://www.mirandabanda.org/cogblog/2011/03/01/build-me-a-jit-as-
fast-as-you-can/

• Open PICs: Such caches can deal with any number of
cases, they consist of three probes searching the global
look-up cache (a hashmap shared with the interpreter),
falling back to a standard look-up routine on miss.

One idea we had was to promote a monomorphic inline
cache directly to an open PIC if available, and create the
closed PIC only if no open PIC is available for the given
selector. The benefit is avoiding lots of code space modifi-
cations and an allocation. The downside is replacing faster
closed PIC dispatch with slower open PIC dispatch. The
question was how many send sites would prematurely be
promoted to megamorphic, or how many closed PICs have
selectors for which there are open PICs?
The analysis showed that 17% of polymorphic send sites

would get prematurely promoted. So we implemented a sim-
ple sharing scheme; the JIT maintains a linked list of open
PICs, and before it creates a closed PIC for a send site it will
patch it to an open PIC if the list contains one for the send’s
selector.

Analysing the question was easy in our context. This anal-
ysis took about an hour to perform, including writing an it-
erator over send sites. Somewhat similar analyses performed
on the second generation Deutsch Schiffman VM [DS84],
which is written entirely in C, when adding the same PIC
scheme, took several days, having to be written statically
and tested with a traditional edit-compile-debug cycle. The
productivity difference is extreme.

4 Discussion and Related Work
In this section we first discuss some VM simulator limitations
and how we work around them. Then we cover the inter-
action between the simulator and bootstrapping processes.
Lastly we mention some relevant related work.

4.1 Virtual Machine simulation limitations
The simulator has several limitations. Due to the simulation
infrastructure being different from the actual hardware, code
is run differently and one could think it leads to strange bugs
happening only in simulation or in production. However,
we have been using this infrastructure since 1995, and these
kinds of bugs are rare and usually easy to fix. We have how-
ever two main limitations: simulation performance which is
quite slow and calls to external C/C++/machine code which
cannot (yet) be simulated.

Performance. The first limitation is due to simulation per-
formance. The interpreter-only simulator is between a hun-
dred and a thousand times slower to execute code than the
normal VM. With the JIT and processor simulation enabled,
without specific debugging options such as conditional break-
points in between machine instructions, simulation perfor-
mance usually drops by a factor of two, although in spe-
cific cases it is actually faster. We usually enable conditional
breakpoints in-between machine instructions only when we

Two Decades of Smalltalk VM Development VMIL ’18, November 4, 2018, Boston, MA, USA

reach a point in the simulator where the bug is about to
happen since single stepping is much slower, so the overall
performance in this context is not really relevant.

In practice, if a GC bug happens in an application 15 min-
utes after start-up, it takes around 50 hours to reproduce in
the simulator!! Fortunately, we work around this problem
by using snapshots. Once we are able to reproduce a bug
in the production VM, we try to snapshot the runtime just
before it crashes. The VM simulator can then be started just
before the crash and the debugging tools can be used in far
less than a minute. In addition, since the interpreter-only
simulator is usually quicker at executing code, and garbage
collection simpler because machine code is not scanned for
object references, if the bug is unrelated to the JIT (typically,
a GC bug), the interpreter-only simulator can be used.

Calls to external code. Although most of the GC and JIT
development and debugging can be done in the simulator,
some specific tasks cannot be done this way. Basically, any
calls outside of the machine code generated by the JIT and
the Slang code cannot be simulated. For specific small parts
of the VM, such as file management and socket support 14,
we extended the simulator, effectively duplicating the code
base with the C code, to support those features in simulation.
However, there is no solution in the general case: we cannot
afford to simulate both the compiled C code and the jitted
code on the processor simulator; that would be horribly slow,
and specific behaviors in the machine code not present in the
code generated by the JIT can hardly be simulated (Access
to C variables, OS variables, etc.).

We have a significant amount of bugs in Foreign Function
Interfaces (FFI), often due to specific interaction between call-
backs, low-level assembly FFI specific glue code and moving
objects. Such bugs cannot be debugged with our simulation
infrastructure so far and we have to rely on gdb/lldb.

4.2 VM Simulator and Bootstrapping facilities
In general, the simulator provides a toolkit for manipulating
and inspecting snapshot files. Snapshots can be used to avoid
long start-up times for specific bugs. A simulation can be run
to a point where the bug is about to be injected, the system
snapshotted, and then multiple analyses of the bug under-
taken by loading the snapshot and resuming the simulation,
short cutting the set up time for the simulator.

Besides being a key tool in VM development, the simulator
can be used to indirectly allow the VM to be started from

14Adding socket simulation support was as meta as it gets. The Socket
primitive support in the Simulator was written above the socket primitives
in the production VM. An application that used the socket support, the
Smalltalk system updating itself from a remote repository, was used to stress
the socket primitives. Errors in the simulated primitives under development
caused primitive failures in the simulation, causing a debugger to open up
in the simulation. We interacted with this debugger to debug the socket
primitives we were writing for the simulator!

source files [PDF+14]. The simulator is also used to create 64-
bit images from 32-bit images, a transformation that involves
replacing certain instances of classes by certain others (e.g.
in the 32-bit system all floats are 8 byte boxed objects while
64-bit systems support an immediate floating point type
that represents a subset of 64-bit IEEE 754 floating point
numbers).

4.3 Related Work
Many VM developers have implemented different tools to
help them work more efficiently on their VM, but they rarely
publish about it. For example, the teams working on the
Truffle/Graal projects [WWW+13] have very convenient de-
velopment tools for their VMs such as a tool to visualize
the intermediate representation of their JIT Graal at differ-
ent points in the compilation process. But, despite an im-
pressive number of publications on the projects, including
publications on development tools for the guest languages
[dVSH+18] or on specific parts of the VM [DWS+13], no
publication seems to be directly related to their VM devel-
opment tools. This section discusses some related work: the
Maxine inspector and the RPython toolchain infrastructure.

Maxine Inspectors. The Maxine inspectors [Mat08] were
demonstrated at OOPSLA’08. They allow one to inspect the
running state of the Maxine VM while it runs for debugging
purposes. One of the main differences with our design is
that the Maxine VM is metacircular, hence it does not have a
simulation and a production mode as we do but a single pro-
duction debuggable mode. We believe having two different
modes allows us to easily generate a production VM while
still having nice debugging features. Having a full metacir-
cular VM would be interesting, but it is unclear whether it is
convenient to build a production VM in that way. So far, most
production VMs (Java, Javascript, etc.) are still compiling
through the C/C++ compiler and are not metacircular.

RPython toolchain. The RPython toolchain [RP06] was de-
signed and implemented quite similarly to OpenSmalltalk-
VM. Most of the VM code is written in RPython, a restricted
Python, instead of Slang, and some leftovers are written in
plain C. RPython is, however, much closer to Python than
Slang is to Smalltalk. The key advantage of such a design
choice is that the RPython code feels like Python code and is
relatively quite easy to read write, unlike Slang which feels
like C and is as easy to write as C. The main drawback is that
RPython to C compilation takes much longer than the Slang
to C compilation (up to 40 minutes in a recent Macbook pro
for the RSqueak VM [FPRH16], instead of several seconds
for Slang).

The RPython code can be executed as normal Python code.
As for Slang simulation, it is however very slow compared
to the production code. To work around poor simulation
performance, we use snapshots in OpenSmalltalk-VM to
execute the code to debug at start-up. Since snapshots do not

VMIL ’18, November 4, 2018, Boston, MA, USA Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls

seem to be available in RPython, debugging specific bugs is
in practice very difficult (days of simulation required).

Conclusion
This paper introduced and discussed the OpenSmalltalk-
VM’s simulation infrastructure, used to develop and debug
the VM. In particular, we described our experiences when
developing and debugging the garbage collector and the
JIT compiler. We have found that Simulation is a powerful
tool allowing us to reduce development time and to fix bugs
quickly.
In the near future, we plan to extend the simulator with

customizable development tools. Currently the tools built
on top of the simulation infrastructure are mainly textual.
More advanced tooling such as moldable inspectors and de-
buggers [CNSG15, CGN14] should enable a more interactive
interface, making it easier to apprehend by new developers,
and further improving productivity.

Acknowledgements
The authors would like to thank Ryan Macnak who wrote
the MIPSLE processor simulator and back end, as well as
much of the Newspeak send machinery.

References
[B1́6] Clément Béra. A low Overhead Per Object Write Barrier for

the Cog VM. In International Workshop on Smalltalk Technolo-
gies IWST’16, 2016.

[BDN+07] Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien
Pollet, Damien Cassou, and Marcus Denker. Squeak by Exam-
ple. Square Bracket Associates, 2007.

[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien
Pollet, Damien Cassou, and Marcus Denker. Pharo by Example.
Square Bracket Associates, Kehrsatz, Switzerland, 2009.

[BM14] Clément Béra and Eliot Miranda. A bytecode set for adap-
tive optimizations. In International Workshop on Smalltalk
Technologies 2014, IWST ’14, 2014.

[BMF+17] Clément Béra, Eliot Miranda, Tim Felgentreff, Marcus Denker,
and Stéphane Ducasse. Sista: Saving optimized code in snap-
shots for fast start-up. In Managed Languages and Runtimes,
ManLang 2017, 2017.

[BvdAB+10] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai,
William Maddox, and Eliot Miranda. Modules As Objects in
Newspeak. In European Conference on Object-oriented Pro-
gramming, ECOOP’10, 2010.

[CGN14] Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz. The moldable
debugger: A framework for developing domain-specific de-
buggers. In Benoît Combemale, David J. Pearce, Olivier Barais,
and Jurgen J. Vinju, editors, Software Language Engineering,
2014.

[CNSG15] Andrei Chiş, Oscar Nierstrasz, Aliaksei Syrel, and Tudor Gîrba.
The moldable inspector. In Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (On-
ward!), Onward! 2015, 2015.

[DMP16] Stéphane Ducasse, Eliot Miranda, and Alain Plantec. Prag-
mas: Literal Messages as Powerful Method Annotations. In

International Workshop on Smalltalk Technologies, IWST’16,
2016.

[DS84] L. Peter Deutsch and Allan M. Schiffman. Efficient Implemen-
tation of the Smalltalk-80 system. In Principles of Programming
Languages, POPL ’84, 1984.

[dVSH+18] Michael L. Van de Vanter, Chris Seaton, Michael Haupt, Chris-
tian Humer, and Thomas Würthinger. Fast, flexible, polyglot
instrumentation support for debuggers and other tools. CoRR,
abs/1803.10201, 2018.

[DWS+13] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Chris-
tian Wimmer, Doug Simon, and Hanspeter Mössenböck. An
intermediate representation for speculative optimizations in
a dynamic compiler. In Workshop on Virtual Machines and
Intermediate Languages, VMIL ’13, 2013.

[FPRH16] Tim Felgentreff, Tobias Pape, Patrick Rein, and Robert
Hirschfeld. How to build a high-performance vm for squeak/s-
malltalk in your spare time: An experience report of using
the rpython toolchain. In International Workshop on Smalltalk
Technologies, IWST’16, pages 21:1–21:10, New York, NY, USA,
2016. ACM.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Lan-
guage and Its Implementation. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1983.

[HCU91] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing
Dynamically-Typed Object-Oriented Languages With Poly-
morphic Inline Caches. In European Conference on Object-
Oriented Programming, ECOOP ’91, London, UK, UK, 1991.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and
Alan Kay. Back to the Future: The Story of Squeak, a Practical
Smalltalk Written in Itself. In Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’97, 1997.

[Law96] Kevin P. Lawton. Bochs: A portable pc emulator for unix/x.
Linux J., 1996.

[Mat08] BerndMathiske. Themaxine virtual machine and inspector. In
Companion to the Conference on Object-oriented Programming
Systems Languages and Applications, OOPSLA Companion ’08,
2008.

[MB15] Eliot Miranda and Clément Béra. A partial read barrier for
efficient support of live object-oriented programming. In
International Symposium on Memory Management, ISMM ’15,
2015.

[Mir99] Eliot Miranda. Context Management in VisualWorks 5i. In
OOPSLA’99 Workshop on Simplicity, Performance and Portabil-
ity in Virtual Machine Design, Denver, CO, 1999.

[Mir11] Eliot Miranda. The Cog Smalltalk Virtual Machine - writing a
jit in a high-level dynamic language. In VMIL ’11, VMIL 2011,
2011.

[PDF+14] G. Polito, S. Ducasse, L. Fabresse, N. Bouraqadi, and B. van
Ryseghem. Bootstrapping reflective systems. Sci. Comput.
Program., 96(P1), 2014.

[RP06] Armin Rigo and Samuele Pedroni. Pypy’s approach to vir-
tual machine construction. In Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’06, pages 944–
953, New York, NY, USA, 2006. ACM.

[WWW+13] ThomasWürthinger, ChristianWimmer, AndreasWöß, Lukas
Stadler, Gilles Duboscq, Christian Humer, Gregor Richards,
Doug Simon, and Mario Wolczko. One vm to rule them all. In
International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software, Onward2013, 2013.

	Abstract
	1 Introduction
	2 Virtual Machine Simulation
	2.1 Context
	2.2 Memory architectures
	2.3 Runtime simulation
	2.4 Machine code debugging

	3 Experience reports
	3.1 Initial JIT development and new back ends
	3.2 Debugging new GC algorithms and Lemming Debugging
	3.3 Debugging a crash in machine code with conditional breakpoints
	3.4 Optimizing the store templates with in-image compilation
	3.5 Analyzing the machine code zone
	3.6 Directing VM optimizations through analysis

	4 Discussion and Related Work
	4.1 Virtual Machine simulation limitations
	4.2 VM Simulator and Bootstrapping facilities
	4.3 Related Work

	References

