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Highly dynamic networks are characterized by frequent changes in the availability
of communication links. These networks are often partitioned into several
components, which split and merge unpredictably. We present a distributed
algorithm that maintains a forest of (as few as possible) spanning trees in such a
network, with no restriction on the rate of change. Our algorithm is inspired by
high-level graph transformations, which we adapt here in a (synchronous) message
passing model for dynamic networks. The resulting algorithm has the following
properties. First, every decision is purely local—in each round, a node only
considers its role and that of its neighbors in the tree, with no further information
propagation (in particular, no wave mechanisms). Second, whatever the rate and
scale of the changes, the algorithm guarantees that, by the end of every round,
the network is covered by a forest of spanning trees in which 1) no cycle occur,
2) every node belongs to exactly one tree, and 3) every tree contains exactly one
root. We primarily focus on the correctness of this algorithm, which is established
rigorously. While performance is not the main focus, we suggest new complexity
metrics for such problems, and report on preliminary experimentation results

validating our algorithm in a practical scenario.

1. INTRODUCTION

The current development of mobile and wireless
technologies enables direct ad hoc communication
between various kinds of mobile entities, such as
vehicles, smartphones, terrestrian robots, flying robots,
or satellites. In all these contexts, the set
of communication links between entities (network
topology) changes continuously. Not only changes are
frequent, but in general they are unpredictable and can
make the network partitioned at any time. Clearly, the
usual assumption of connectivity does not hold here.
Also, the classical view of a network whose dynamics
corresponds to failures is no longer suitable in these
scenarios, where dynamics is the norm rather than the
exception.

This shift in paradigm impacts algorithms and the
definition of problems all together. What does it mean,
for instance, to elect a leader in a partitioned network
like the one in Figure 1? Is the objective to distinguish a
unique global leader, whose leadership applies over time
and space, or is it rather to maintain a unique leader
in each connected component, deleting one when two
components merge and creating one when a component
splits? The same remark holds for spanning trees.
Should an algorithm construct a unique, global tree
whose logical edges survive network intermittence, or
should it build and maintain a forest of trees, each
of which spans an (as large as possible) part of the

network in a classical way? Both viewpoints make
sense, and have been considered e.g. in [5, 13] (former
interpretation) or [4, 12] (second interpretation).

FIGURE 1. Spanning forest in a sparse dynamic network.

In this paper, we focus on the second interpretation,
illustrated in Figure 1, which reflects scenarios where
the expected output of the algorithm should relate to
the current configuration of the network (e.g. groups of
robots or drones, each group having a spanning tree for
coordination), through maintaining and updating the
structure in order to match the underlying topology.
This type of structure can then serve for communication
within each group, and possibly be used by a higher
level application (with the classical advantages that
tree-like topologies offer regarding e.g. broadcast or
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2 1 INTRODUCTION

routing.
A specificity of this type of algorithms is that

termination never occurs. More significantly, and
perhaps differently to self-stabilization, it may happen
that the execution never stabilizes (i.e., changes are too
frequent to converge to a single tree per component),
precluding approaches whereby the computation of a
new solution requires the previous computation to have
completed.

The present work is an attempt at understanding
what can still be computed (and guaranteed) in
terms of spanning trees in such dynamic networks,
with no assumptions as to the rate of change, their
simultaneity, or global connectivity. In this seemingly
chaotic context, we present an algorithm that strives to
maintain as few trees per components as possible, while
always guaranteeing key properties.

1.1. Related work

Several works have addressed the spanning tree
problem in dynamic networks, with different goals and
assumptions. Burman and Kutten [9] and Kravchik and
Kutten [16] consider a self-stabilizing approach where
the legal state corresponds to having a (single) spanning
tree and topological changes are the fault. The
strategy consists in recomputing the entire tree when
a change occurs. This general approach, sometimes
called the “blast away” approach, is meaningful if
stable periods of time exist, which is not the case in
(unrestricted) highly dynamic networks. Note that self-
stabilizing approaches do not deal only with topological
changes; they also tolerate any initial configuration. In
contrast, while the dynamics is arbitrary in our case, the
processes are supposed to behave in correct ways and
be properly initialized. Furthermore, in these settings,
the network is generally connected, thus in absence of
faults for sufficiently long, self-stabilization algorithms
eventually build a single global spanning tree.

A number of spanning tree algorithms use random
walks for their elegance and simplicity, as well as
for their inherent locality. In particular, approaches
that involve multiple coalescing random walks allow
for uniform initialization (each node starts in the
same state) and topology independence (same strategy
whatever the graph). Pionneering studies involving
such processes include Bar-Ilan and Zernik [7] (for
the problem of election and spanning tree), Israeli
and Jalfon [15] (mutual exclusion), and Chapter 14 of
Aldous and Fill [2] (general analysis).

The principle of using coalescing random walks
to build spanning trees in mildly dynamic networks
was used by Baala et al. [6] and Abbas et al. [1],
where tokens are annexing territories gradually by
capturing each other. Regarding dynamicity, both
algorithms require the nodes to know (an upper bound
on) the cover time of the random walk, in order to
regenerate a token if they have not been visited for

some time. Besides the strength of this assumption
(akin to knowing the number of nodes n, or the
size of components in our case), the efficiency of the
timeout approach decreases dramatically with the rate
of topological changes. In particular, if they are more
frequent than the cover time (itself in O(n3)), then the
tree is constantly fragmented into “dead” root-less (i.e.
leader-less) pieces.

Another algorithm based on random walks is
proposed by Bernard et al. [8]. Here, the tree is
constantly redefined as the token moves (in a way that
reminds the snake game). Since the token moves only
over present edges, those edges that have disappeared
are naturally cleaned out of the tree as the walk
proceeds. Hence, the algorithm can tolerate failure of
the tree edges. However it still suffers from detecting
the disappearance of tokens using timeouts based on
the cover time, which as we have seen, suits only slow
dynamics.

A recent work by Awerbuch et al. [4] addresses the
maintenance of minimum spanning trees in dynamic
networks. The paper shows that a solution to the
problem can be updated after a topological change
using O(n) messages (and same time), while the O(m)
messages of the “blast away” approach was thought
to be optimal. (This demonstrates, incidentally,
the revelance of updating a solution rather than
recomputing it from scratch in the case of minimum
spanning trees.) The algorithm has good properties for
highly dynamic networks. For instance, it considers
as natural the fact that components may split or
merge perpetually. Furthermore, it tolerates new
topological events while an ongoing update operation
is executing. In this case, update operations are
enqueued and consistently executed one after the other.
While this mechanism allows for an arbitrary number
of topological events at times, it still requires that
such burst of changes are only episodical and that the
network remains eventually stable for (at least) a linear
amount of time in the number of nodes, in order for the
update operations to complete and thus the logical tree
to be consistent with physical reality.

All the aforementioned algorithms either assume that
global update operations (e.g. wave mechanisms) can
be performed regularly, or that some node can collect
global information about the tree structure. As far as
dynamics is concerned, this forbids arbitrary and ever
going changes to occur in the network.

1.2. A high-level (graph-level) mechanism.

A high-level graph scheme for the maintenance of a (not
necessarily minimum) spanning forest in unrestricted
dynamic networks was proposed in [10], using a coarse
grain interaction model inspired from graph relabeling
systems [18] (bearing common features with so-called
population protocols [3]). The algorithm was left
without further analysis until [12], where its correctness
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was established and basic properties discussed in more
details, however still considering the coarse-grain graph-
based model. In the present article, this algorithm can
be seen as a guiding principle, the main components
of which – merging, circulation, and regeneration – are
non-trivially adapted into a distributed message passing
algorithm.

The principle is as follows. Initially every node
hosts a token and is the root of its own individual
tree. Whenever two roots/tokens are located at both
endpoints of a same edge (see merging rule on Figure 2),
one of them is destroyed and the underlying node
selects the other as parent: both trees (of arbitrary
size) are merged locally and instantly. In absence of
merging opportunity, the tokens execute a random walk
within their own tree in the hope for (farther) merging
opportunities (see circulation rule on Figure 2). As they
circulate, the tokens flip (again, locally) the parent-
child relations so that a directed path from any node in
the tree towards its root is maintained. The fact that
the random walk takes place within the tree (as opposed
to the whole network) is crucial for this property. In
fact, this simple feature is what enables to recover a
consistent state immediately after an edge of the tree
has disappeared. Indeed, it suffices for the child side
of the lost edge to regenerate a new token/root, while
being safe that no other node in the tree can do so
(see regeneration rule on Figure 2). In conclusion, this
scheme allows for all operations to be handled in a
purely localized fashion (let apart global convergence).

(a) Merging rule (b) Circulation rule

×

(c) Regeneration rule

FIGURE 2. Spanning forest principle (high-level
representation). Black nodes are those having a token. Black
directed edges denote child-to-parent relationships. Gray
vertical arrows represent transitions. The cross on the edge
in (c) represents a loss of link (disconnection).

More precisely, at a graph level, this scheme
guarantees that the network remains covered by a
spanning forest at any time, in which 1) no cycle ever
appears, 2) maximal subtrees always are directed rooted
trees (with a token at the root), and 3) every node
always belongs to such a tree, and so, whatever the rate
and scale of topological changes. As to performance,
analyzing it requires first to define what metric is
relevant in this context. It is not expected that the rate
of changes allows any algorithm to converge towards
a single tree per connected component (which is, in
a sense, the optimal state in such problem). Before

such concerns, a more important question remained to
be answered as to whether such a mechanism could
be implemented in more conventional message passing
models.

1.3. Our contribution.

We present the first adaptation of the above mechanism
into the synchronous message passing model from [17].
Due to the loss of atomicity (in particular, the loss
of exclusivity) in the interaction, the algorithm turns
out to be much more sophisticated than its graph-level
counterpart. While still reflecting the same abstract
principle, it faces problems that require conceptual
differences. In particular, the original model prevented
(conveniently) a node to select a parent at the same time
as it is itself selected as parent by another node, thereby
making cycle avoidance straightforward. One of the
ingredients in the new algorithm to circumvent this type
of problem is an original technique (referred to as the
unique score technique) that consists of maintaining,
network-wide, a set of score variables that always
remains a permutation of the set of nodes IDs. This
mechanism allows us to break symmetry and avoid the
formation of cycles in a context where IDs alone did not
suffice. (We believe this technique is of independent
interest.) The synchronicity in our model remains
a significant restriction. However, one may consider
the fact that, in addition to considering unrestricted
dynamics, the transition from a coarse-grain abstract
model to a distributed message passing model already
induces an significant gap in difficulty, of both the
description of the algorithm and its correctness analysis.
The current work makes a step forward in the direction
of even more realistic models, being possibly semi-
synchronous or asynchronous.

The paper is organized as follows. In Section 2,
we present the synchronous message passing model
from [17], slightly adapted (in an equivalent way) and
notations that we use throughout the paper. Then,
Section 3 presents the algorithm, whose correctness
analysis is developped through Section 4. Finally,
Section 5 discusses some aspects related to performance
that include preliminary experimental results, which
can be seen as (partial) practical validation of our
algorithm.

2. MODEL AND NOTATIONS

The network is represented by a graph sequence G =
(G1, G2, . . . ), such that Gi = (V,Ei), where V is a fixed
set of vertices and Ei is a dynamically changing set of
undirected edges. (We indeed assume, for simplicity
of the analysis, that nodes do not join or leave during
execution. However, this is not a design limitation
of the algorithm itself, which can deal with churn so
long as new nodes are correctly initialized.) Following
Kuhn et al. [17], we consider a synchronous (rounded)
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computational model, where in each round i, the set
of edges Ei determines which nodes communicate.
At the beginning of each round, each node sends a
message that was prepared at the end of the previous
round. This message is sent to all its neighbors in
Ei, although the list of these neighbors is a priori
unknown to the node. Then, it receives all messages
sent by its neighbors (in the same round), and finally
computes its new state and its message for the next
round. Due to the reciprocity of undirected links,
a node can determine upon reception which nodes
have received its own message. In summary, each
round corresponds to three phases (send, receive,

compute), which corresponds to a rotation of the
original model of [17] where the phases are (compute,

send, receive). This adaptation is not necessary,
but makes the expression of our algorithm and of
its correctness simpler. In particular, correctness
predicates are satisfied by the end of each round (as
opposed to the middle of each round if the original
model had been used).

The nodes possess unique identifiers which are non-
negative integers; in particular, for any two nodes u
and v, it either holds that ID(u) > ID(v) or ID(u) <
ID(v). A node can specify what neighbor its message
is intended to (although all neighbors will receive it) by
setting the target field of that message. Symmetrically,
the ID of the emitter of a message can be read in
the sender field of that message. Since the edges are
undirected, if u receives a message from v at round i,
then v also receives a message from u at round i. We
call this property the principle of reciprocity.

Globally, the progress of the execution is represented
as a sequence of configurations (C0, C1, C2, ..., Ci),
where each Ci captures the state of all nodes at the end
of round i (except for C0, the initial state). We use
interchangeably the terminology “after round i” and
“at/by the end of round i”, and similarly for “before
round i” and “at the beginning of round i”.

3. THE ALGORITHM

In this section, we present a message passing algorithm
which adapts (“implements” in the theoretical sense)
the spanning forest mechanism described in Section 1.2
into the synchronous model from [17]. We first describe
the variables present at each node, then the structure
of a message, and finally the algorithm itself with both
an informal description and detailed listings of pseudo-
code.

3.1. State variables

Besides the ID variable, which we assume is externally
initialized, each node has a set of variables which
reflects its situation in the tree: status accounts for
the possession of a token (T if it has a token, N if it
does not); parent contains the ID of this node’s parent

(⊥ if it has none); children contains the set of this
node’s children (∅ if it has none). Observe that both
variables status and parent are somewhat redundant,
since in the spanning forest principle (see Section 1.2)
the possession of a token is equivalent to being a root.
Our algorithm enforces this equivalence, yet, keeping
both variables separated simplifies the description of
the algorithm and our ability to think of it intuitively.
Variable neighbors contains the set of nodes from
which a message was received in the last reception.
These neighbors may or may not belong to the same
tree as the current node. Variable contender contains
the ID of a neighbor that the current node considers
selecting as parent in the next round (or ⊥ if there is
no such node). Finally, the variable score is the main
ingredient of our cycle-avoidance mechanism, whose
role is described below.

3.1.1. Initial values:
All the nodes are uniformly initialized. They are
initially the root of their own individual tree (i.e.
status = T , parent = ⊥, and children = ∅). They
know none of their neighbors (neighbors = ∅), have no
contenders (contender = ⊥), and their score is set to
their own ID.

3.2. Structure of a message (and associated
variables)

Messages are composed of a number of fields: sender

is the ID of the sending node; status its status in
the tree (either T or N); and score its score when
the message was prepared. The field action is one
of {FLIP, SELECT,HELLO}. Informally, SELECT
messages are sent by a root node to another root node
to signify that it “adopts” it as a parent (merging
operation); FLIP messages are sent by a root node
to circulate the token to one of its children (circulation
operation); HELLO messages are sent by a node by
default, when none of the other messages are sent, to
make its presence and status known by its neighbors.
Finally, target is the ID of the neighbor to which
a FLIP or a SELECT message are intended (⊥ for
HELLO messages).

Received messages are stored in a variable mailbox,
which is a map collection whose keys are the senders ID
(i.e., a message whose sender ID is u can be accessed as
mailbox[u]). In each round, the algorithm makes use
of a RECEIVE() function that clears the mailbox and fill
it with all the messages received in that round (one for
each physical neighbor). A node can thus update the
set of its neighbors by fetching the keys of its mailbox.
Similarly, it can eliminate from its list of children those
nodes which are no more neighbor.

As mentioned above, every node prepares at the end
of a round the message to be sent at the beginning of
the next round. This message is stored in a variable
outMessage. We allow the short hand m← (a, b, c, d, e)
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to define a new message m whose emitter is node a (with
status b and score e); target is node d; and action is c.

3.2.1. Initial values:
The mailbox is initially empty (mailbox = ∅)
and outMessage is initialized to the tuple
(ID, T,HELLO,⊥, ID).

3.3. Description of the algorithm

The algorithm implements the general scheme presented
in Section 1.2. In this section we explain how each of the
three components (merging, circulation, regeneration) is
implemented. Then we discuss the specificities of the
merging operation in more details. In particular, the
loss of atomicity in the message passing model makes
this operation entangled with that of circulation. The
resulting solution is substantially more sophisticated
than its original scheme, and yet it faithfully reflects
the same high-level principle. Let us start with some
generalities. In each round, each node broadcasts
to its neighbors a message containing, among others,
its status (T or N) and an action (SELECT, FLIP,
or HELLO). Whether or not the message is intended
to a specific target (which is the case for SELECT
and FLIP messages), all the nodes who receive it can
possibly use this information for their own decisions.
(In absence of SELECT or FLIP messages, recall that
HELLO messages are sent to make such information
always available.) More generally, based on the received
information and the local state, each node computes
at the end of the round its new status and the local
structure of its tree (variables children and parent),
then it prepares the next message to be sent. We
now describe the three operations. Throughout the
explanations, the reader is invited to refer to Figure 3,
where an example of execution involving all of them
is shown. The detailed algorithm is given in the
listings of Algorithm 1, which uses functions defined
in Algorithm 2.

3.3.1. Merging:
If a root (i.e. a node having a token), say v, detects
the existence of a neighbor root with higher score

than its own, then it considers that node as a possible
contender, i.e. as a node that it might select as
a parent in the next round (Lines 18 to 20). The
value of this score is recorded in a variable called
contenderScore. If several such roots exist, then
the one with highest score, say u, is chosen (through
updating contenderScore every time a larger value is
found). At the beginning of the next round, v sends
a SELECT message to u (Line 24) to inform it that
it is its new parent. Two cases are possible: either
the considered edge is still present in that round, or
it disappeared in-between both rounds. If it is still
present, then u receives the message and adds v to
its children list, among others (Line 16). As for v,

it sets its parent variable to u and its status to N
(Lines 8 and 9). If the edge disappeared, then u does
not receive the message, which is lost. However, due
to the reciprocity of message exchange, v does not
receive a message from u either and thus simply does
not executes the corresponding changes. By the end of
the round, either the trees are properly merged, or they
are properly separated.

3.3.2. Circulation:
If a root v does not detect another root with higher
score, then it selects one of its children at random, if
it has any (see Line 27), otherwise it simply remains
root. Randomness is not a strict requirement of
our algorithm; the random walk strategy could be
replaced with other deterministic strategies (although
with possible consequences on performance). Once the
child is chosen, say u, the root prepares a FLIP message
intended to u, and sends it at the beginning of the next
round. Two cases are again possible, whether or not
the edge {u, v} is still present in that round. If it is
still present, then u receives the message, it updates
its status and adds v to its children list, among others
(Lines 15 and Line 16). As for v, it sets its parent

variable to u and its status to N (Lines 8 and 9). If
the edge disappeared, then v can detect it as before
simply does not executes the corresponding changes.
Node u, on the other hand, detects that the edge leading
to its current parent disappeared, thus it regenerates a
token (discussed next). Notice that in the absence of
a merging opportunity, a node receiving the token in
round i will immediately prepare a FLIP message to
circulate the token in the next round. Unless the tree is
composed of a single node, the tokens are thus moved
in each round. In order for them to remain detectable
in this case, the status announced in FLIP messages is
T (whereas it is N for SELECT messages).

3.3.3. Regeneration:
The first thing a non-root node does after receiving the
messages of the current round is to check whether the
edge leading to its current parent is still present. If
the edge disappeared, then the node regenerates a root
directly (Line 7), and only this node regenerates a token
in the resulting tree. And if a tree is broken into several
pieces simultaneously, then each of the resulting subtree
will have exactly one node performing this operation.

3.3.4. The unique score technique:
Unlike the high-level graph model from [12], in which
the merging operation involves two nodes in an exclusive
way, the non-atomic nature of message passing allows
for a chain of selection with arbitrary many nodes (e.g.
a selects b, b selects c, etc.). This has both advantages
and drawbacks. One advantage is that it speeds up the
initial merging process (see rounds 1 and 2 in Figure 3).
On the other hand, these chains may create cycles,
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FIGURE 3. Example of execution of the algorithm with all types of operations: parent selection (s→, for SELECT), token
circulation (f →, for FLIP), and tree disconnection (× ←). Hello messages are omitted for readability (except for Fig (a));
they are sent by default when no other message is sent (see Section 3.2). The displayed states are at the end of each round,
showing messages to be sent at the beginning of next round. Black (resp. white) nodes are those (not) having a token (i.e.
being roots). Tree edges are represented by bold directed arrows. Dashed edges are edges which have just disappeared.

and they are the reasons why the score technique was
introduced. Figure 4 shows an example of execution in
which breaking ties based on IDs may create a cycle.
Consider a chain of selection in round i + 1 that ends
up at some root node u (here, ID 5). Nothing prevents
u to have passed the token to a lower-ID child v (ID 1)
in round i. Then, node v may select in round i + 1 a
node (here, ID 2, of which it overheard a T -message
in round i) which lies downstream a selection chain
ending up at u, thereby creating a cycle. The score
mechanism prevents such a situation by enforcing that
after each FLIP, the new root has a larger score than
its predecessor (see Lines 9 and 13 in Algorithm 2).
The score mechanism also guarantees that the current
set of scores (network-wide) is always a permutation
of the initial set of scores. Hence, scores are always
unique. All of these elements are crucial ingredients in
the proofs of correctness (Section 4).

4. CORRECTNESS ANALYSIS

This section establishes a number of properties about
the spanning forest algorithm. In particular, we prove
the claims regarding what property is always satisfied,
regardless of the rate of changes. Because the proofs
are technical, we provide first a preamble that includes
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FIGURE 4. Example of use of the score technique (ID
permutation). In the left scenario, the token is lost and a
cycle is created, while this cannot happen.
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Algorithm 1: Main Algorithm

1 repeat
2 SEND(outMessage);

3 mailbox ← RECEIVE(); // Received messages, indexed by sender ID

4 neighbors ← mailbox.keys(); // All the senders IDs

5 children ← children ∩ neighbors

// Regenerates a token if parent link is lost

6 if status=N ∧ parent 6∈ neighbors then
7 BECOME ROOT();

// Checks if the outgoing FLIP or SELECT (if any) was successful

8 if outMessage.action ∈ {FLIP,SELECT} ∧ outMessage.target ∈ neighbors then
9 ADOPT PARENT(outMessage)

// Processes the received messages

10 contender ← ⊥;
11 contenderScore ← 0;
12 forall message ∈ mailbox do
13 if message.target = ID then
14 if message.action = FLIP then
15 BECOME ROOT();

16 ADOPT CHILD(message); // called for both FLIP or SELECT

17 else
18 if message.status = T ∧ message.score > contenderScore then
19 contender ← message.sender;

20 contenderScore ← message.score;

// Prepares the message to be sent

21 outMessage ← ⊥
22 if status = T then
23 if contenderScore > score then
24 PREPARE MESSAGE(SELECT, contender);
25 else
26 if children 6= ∅ then
27 PREPARE MESSAGE(FLIP, random(children));

28 if outMessage = ⊥ then
29 PREPARE MESSAGE(HELLO, ⊥)
30 ;

a few helping definitions and a less technical outline
of the proof. Then, the proof is described through
two main parts called consistency and correctness, in
reference to aspects defined in the preamble.

4.1. Preamble and outline of the proof

We first define a handful of instrumental concepts that
help minimize the number of properties to be proven.
Then, as we start formulating the key properties to be
proved, we adopt concise notations regarding the state
of the system. Precisely, we denote by (i−)u.varname
(resp. (i+)u.varname) the value of variable varname
at node u at the beginning (resp. at the end) of round i.
(For concision, we use before and after [round i] with the
same meaning.) Notice that for any node u, round i,

and variable varname, it holds that (i+)u.varname =
((i+ 1)−)u.varname. We use whichever notation is the
most convenient in the given context.

4.1.1. Helping definitions
These definitions are not specific to our algorithm, they
are general graph concepts that simplify the subsequent
proofs.

Definition 4.1 (Pseudotree and pseudoforest). A
directed graph whose vertices have outdegree at most
1 is a pseudoforest. A vertex whose outdegree is 0 is
called a root. The weakly connected components of a
pseudoforest are called pseudotrees.

Lemma 4.1. A pseudotree has at most one root.
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Algorithm 2: Functions called in Algorithm 1.

1 procedure BECOME ROOT

2 status ← T;
3 parent ← ⊥;

4 procedure ADOPT PARENT(outMessage)

5 status ← N;
6 parent ← outMessage.target;
7 if outMessage.action = FLIP then
8 children ← childrenrparent;
9 score ← min(score,

mailbox[parent].score);

10 procedure ADOPT CHILD(message)

11 children ← children + message.ID;

12 if message.action = FLIP then
13 score ← max(score, message.score);

14 procedure PREPARE MESSAGE(action, target)

15 switch action do
16 case SELECT do
17 outMessage ← (ID, N, SELECT,

target, score);

18 case FLIP do
19 outMessage ← (ID, T, FLIP,

target, score);

20 case HELLO do
21 outMessage ← (ID, status, ⊥, ⊥,

score);

Proof. By definition, a pseudotree T = (VT , ET ) is
connected, thus |ET | ≥ |VT | − 1. If T has several
roots, then at least two nodes in VT have no outgoing
edge. Since the others have at most one, we must have
|ET | ≤ |VT | − 2, which is a contradiction.

Lemma 4.2. If a pseudotree T contains a root r, then
it has no cycle.

Proof. Let V1 ⊂ T be the set of nodes at distance 1
from V0 = {r}. Since r has outdegree 0, there is an edge
from each node in V1 to r. Since T is a pseudotree, these
nodes have no other outgoing edge than those ending up
in V0. The same argument can be applied inductively,
all nodes at distance i having no other outgoing edges
than those ending up in Vi−1.

Definition 4.2 (Correct tree and correct forest). At
the light of Lemma 4.1 and 4.2, we define a correct tree
(or simply a tree) as a pseudotree in which a root can be
found. We naturally define a correct forest (or simply
a forest) as a pseudoforest whose pseudotrees are trees.

Finally, because forests are considered in a spanning
context, we say that a pseudoforest F is a correct forest
on graph G iff F is a correct forest and F is a subgraph
of G. Defining correct trees as pseudotrees in which

a root can be found is the key. When the moment
arrives, this will allow us to reduce the correctness of our
algorithm to the presence of a root in each pseudotree.

4.1.2. Consistency
At the end of a round, the state of an edge (whether it
belongs to a tree, and if so, in what direction) must be
consistently decided at both endpoints:

Definition 4.3 (forest consistency). The configura-
tion Ci is forest consistent if and only if for all nodes
u, (i+)u.parent = v ⇔ u ∈ (i+)v.children.

The proof of forest consistency is inductively
established by Theorem 4.1, based on the consistency
of the initial configuration (Lemma 4.3) and the
maintenance of the consistency over the rounds
(Lemma 4.18). Forest consistency allows us to reduce
the output of interest of the algorithm after each round i
to the mere parent variable.

At the end of round i, the values of all parent

variables should be consistent with the underlying
graph Gi.

Definition 4.4 (graph consistency). The configura-
tion Ci is graph consistent if and only if for all nodes
u, (i+)u.parent = v ⇒ {u, v} ∈ Ei.

This property is established by Corollary 4.1. Graph
consistency allows us to say that the output of the
algorithm forms a pseudoforest on Gi.

Definition 4.5 (Resulting forest). Given a round
i ≥ 1, occurring on graph Gi, the graph Fi = (V,EFi)
such that EFi

= {(u, v) : {u, v} ∈ Ei, (i
+)u.parent = v}

is called the pseudoforest resulting from round i.

As explained in Section 3.1, the variables parent and
status are somewhat redundant, since the possession
of a token is synonymous with being a root. The
equivalence between both variables after each round
is established in Lemma 4.4 (state consistency). The
main advantage of this equivalence is that it allows
us to formulate and prove a large number of lemmas
using either variable, depending on which is the most
convenient in the given context.

4.1.3. Outline of the proof
In this section, we prove that the resulting forest is
always correct (Definition 4.2). To achieve that goal, we
first define a validity criterion at the node level, which
recursively ensures the correctness of the pseudotree
this node belongs to thanks to Definition 4.2 (i.e. the
existence of a root implies correctness).

Definition 4.6. A node u is said to be valid at the
beginning of round i if either (i−)u.status = T or
(i−)u.parent is valid at the beginning of round i.

The correctness of the whole forest can thus be
established through showing that, first, it is initially
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correct (Lemma 4.3) and, second, if it is correct
after round i, then it is correct after round i + 1
(Theorem 4.2). The latter is difficult to prove, and it
involves a number of intermediate steps that correspond
to a case analysis based on every action a node can
perform (sending FLIP messages, SELECT messages,
etc.).

We say that u sends a FLIP (resp. SELECT)
in round i if and only if (i−)u.outMessage.action =
FLIP (resp. SELECT). We say that it sends it to node
v if and only if (i−)u.outMessage.target = v. Finally
the FLIP or SELECT is said to be successful (resp.
unsuccessful) if {u, v} ∈ Ei (resp. {u, v} /∈ Ei).

We first prove that a node u that sends a successful
FLIP to v in a round, is valid at the end of that round
(Lemma 4.23) because at the end of that round v is
a root. The proof relies on the fact that during a
given round, a node cannot receive a FLIP and send
a SELECT or a FLIP (Lemma 4.20).

We then prove some necessary properties on the
score variable at each node. For instance, a node
changes its score at most once during a round
(Lemma 4.25 and 4.26). Also, the set of all scores are
a permutation of the node identifiers after each round
(Lemma 4.27).

Then we prove that a node that sends a successful
SELECT in a round i, is valid at the end of that round
(Lemma 4.36). This part is the most technical and is
the one that proves that chains of selection can not
create cycles thanks to the property that score variables
remain a permutation of all nodes IDs.

Finally, we prove that all roots at the beginning
of a round are still valid at the end of the round
(Lemma 4.37). Therefore, if all nodes are valid at the
beginning of round, then they are also valid at the end
of the round (Theorem 4.2). Since they are initially
valid (Lemma 4.3), we conclude by induction on the
number of rounds.

4.2. Consistency (detailed proofs)

Lemma 4.3. The configuration C0 is forest consistent
and graph consistent. In C0, the resulting pseudoforest
is correct.

Proof. The parent variable is initialized to ⊥ and
u.children is empty for every node u. So, the
configuration C0 is forest consistent and graph
consistent. Furthermore, all initial pseudotrees are of
the form Tu = ({u}, ∅); they contain a root (u itself)
and are therefore correct trees.

Lemma 4.4 (state consistency). For all round i, for
all node u, (i+)u.status = T ⇔ (i+)u.parent = ⊥

Proof. Initially, at any node u, u.status = T and
u.parent = ⊥. The change of u.status to N
always comes with the assignment of a non-null
identifier (outMessage.target) to u.parent (procedure

ADOPT PARENT()), and assigning the value T to u.status
is always followed by the change of u.parent to ⊥
(procedure BECOME ROOT()). So at any configuration,
v.parent = ⊥ if and only if v.status = T .

Lemma 4.5. If u does not send a FLIP or SELECT
in round i, then u does not execute the procedure
ADOPT PARENT() during round i.

Proof. The execution of the procedure ADOPT PARENT()

by u is conditioned by the sending of a SELECT or a
FLIP by u during the current round (Line 8).

Observation 1. Whenever a node u prepares its
message to be sent during round i, we have u.parent =
((i− 1)+)u.parent (resp. children, status).

Lemma 4.6. If u sends a FLIP or SELECT in
round i, then (i−)u.status = T .

Proof. u sends in round i the message prepared in round
i−1. If u sends a FLIP or a SELECT in round i then in
round i− 1 PREPARE MESSAGE() is called with FLIP or
SELECT as action (lines 24 or 27). Both instructions
are conditioned by status = T .

Lemma 4.7. If u sends a message containing T in
round i, then (i−)u.status = T .

Proof. The procedure PREPARE MESSAGE() is executed
by a node u in round i− 1 to construct the message m
to be sent in round i. In all cases PREPARE MESSAGE()

sets m.status to T only if u.status = T .

Lemma 4.8. If u sends a SELECT to v in round i,
then (i−)u.score < ((i− 1)−)v.score.

Proof. The value of the score field in the message sent
by a node v in round i− 1 is ((i− 1)−)v.score.

Assumes that the node u sends a SELECT to v
in a round i. So, during round i − 1, u sets its
contender variable to v and its contenderScore variable
to message.score, message being the message sent by
v at the begining of round i− 1. From that time to the
end of round i− 1, u.score is not modified.

So (i−)u.score < ((i − 1)−)v.score, if u sends a
SELECT to v in a round i.

Lemma 4.9. If at the beginning of round i, the
configuration is forest consistent then only (i−)u.parent
can send a FLIP to u during round i.

Proof. A node v can prepare a FLIP message to
the node u at the end of round i − 1 only if u ∈
(i−)v.children. We have (i−)u.parent = v according
to the hypothesis (forest consistency at the beginning
of round). Therefore, only the node (i−)u.parent can
prepare a FLIP message to node u, at the end of round
i− 1.
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4.2.1. Graph consistency:
Lemma 4.10. Let u be a node such that

(i−)u.parent 6= v ∧ (i+)u.parent = v. Then u
sends a successful FLIP or SELECT to v during
round i.

Proof. The only change of parent by u to a non-null
identifier v in a round i is at the execution of the
procedure ADOPT PARENT() which is conditioned by the
reception of a message from v (Line 9). If u receives
the message of v during round i then v effectively
receives the message sent by u (reciprocal reception
property).

Lemma 4.11. Let u be a node such that
(i−)u.parent = v ∧ (i+)u.parent = v. We have
{u, v} ∈ Ei.

Proof. By Lemma 4.4, we have (i−)u.status =
N . So, u does not send a FLIP or SELECT
during round i (Lemma 4.6). Then, u does not
execute ADOPT PARENT() during round i according to
Lemma 4.5. Since (i+)u.parent = v we conclude that u
does not execute the procedure BECOME ROOT() during
round i. So u did receive a message from (i−)u.parent
in round i. We have {u, v} ∈ Ei.

Corollary 4.1 (graph consistency). Every configu-
ration is graph consistent.

Proof. The configuration reached after any round is
graph consistent (Lemmas 4.10 and 4.11).

4.2.2. Forest consistency:
Lemma 4.12. If (i−)u.parent = v then

(i+)u.parent = v or (i+)u.parent = ⊥.

Proof. According to Lemma 4.4, we have
(i−)u.status = N , so u cannot send a FLIP or
a SELECT in round i (by Lemma 4.6). There-
fore, u does not execute ADOPT PARENT() in round i
(Lemma 4.5). We conclude that (i+)u.parent = v or
(i+)u.parent = ⊥.

Lemma 4.13. Assume that at the beginning of
round i, the configuration is forest consistent. If u
receives a FLIP in round i, then it does not send a
FLIP nor a SELECT in round i.

Proof. We will establish the contraposition of the
lemma statement: if u sends a FLIP or a SELECT in
round i, then it does not receive a FLIP in round i. By
Lemma 4.6, we have (i−)u.status = T . According to
Lemma 4.4, (i−)u.parent = ⊥. Thus according to the
hypothesis (forest consistency at the beginning of the
round), for any node v, u /∈ (i−)v.children. Therefore
no node has prepared a FLIP message destined to u, in
round i − 1 (Lemma 4.9). So u cannot receive a FLIP
in round i.

Lemma 4.14. Assume that at the beginning of
round i, the configuration is forest consistent. If

in round i, u changes u.parent to v then u ∈
(i+)v.children: (i−)u.parent 6= v∧(i+)u.parent = v ⇒
u ∈ (i+)v.children.

Proof. u sets u.parent to v only if the FLIP or SELECT
was successful (Lemma 4.10). Therefore v has received
the FLIP or SELECT message sent by u.

The addition of a node u to v.children by v is done
during the excution of the procedure ADOPT CHILD()

which is conditioned by the reception of a FLIP or
a SELECT message mu from u (mu.target = v,
Line 16). The procedure ADOPT CHILD() is executed
after Line 5 which is the only instruction that could
remove u from v.children. So, u ∈ (i+)v.children.
We have (i−)u.parent 6= v ∧ (i+)u.parent = v ⇒ u ∈
(i+)v.children.

Lemma 4.15. Assume that at the beginning of
round i, the configuration is forest consistent. If in
round i, v adds u to v.children then (i+)u.parent =
v: u 6∈ (i−)v.children ∧ u ∈ (i+)v.children ⇒
(i+)u.parent = v.

Proof. v adds u to v.children only if it excutes the
procedure ADOPT CHILD() which is conditioned by the
reception of a FLIP or a SELECT sent by u. As the
reception of messages is reciprocal, u also receives in
round i a message from v. This satisfies the condition
for u to execute the procedure ADOPT PARENT() which
sets u.parent to v.

Only the execution of BECOME ROOT() (at line 15)
could modify the value of u.parent. This procedure
would be executed only if u has received a FLIP during
round i which cannot be the case. Notice that u does
not receive a FLIP during round i (Lemma 4.13).

Lemma 4.16. Assume that at the beginning of
round i, the configuration is forest consistent. If
in round i, u changes u.parent from v to another
value then u 6∈ (i+)v.children: (i−)u.parent = v ∧
(i+)u.parent 6= v ⇒ u 6∈ (i+)v.children.

Proof. If u changes (i+)u.parent then we have
(i+)u.parent = ⊥ (Lemma 4.12). Only the execution
of BECOME ROOT() by u sets u.parent to ⊥. The
procedure BECOME ROOT() is executed in two cases: at
the detection of a disconnection (Line 7), and at the
reception of a FLIP message (Line 15).

In the first case, the reciprocal reception property
ensures that v does not receive the message sent by
u. So, v removes u from children (Line 5).

In the second case, u receives a FLIP from
(i−)u.parent (Lemma 4.9). According to the re-
ciprocal reception property, v receives the mes-
sage sent by u during round i. So, v executes
ADOPT PARENT((i−)v.outMessage) which removes u
(i.e. (i−)v.outMessage.target) from v.children
(Line 9).

Lemma 4.17. Assume that at the beginning of
round i, the configuration is forest consistent. If
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in round i, v removes u from v.children then
(i+)u.parent 6= v: u ∈ (i−)v.children ∧ u 6∈
(i+)v.children⇒ (i+)u.parent 6= v.

Proof. v removes u from v.children in two cases: at
the detection of a disconnection (v does not receive
a message from u, line 5), and when v executes
(ADOPT PARENT((i).v.outMessage), line 9)

In the first case, the reciprocal reception property
ensures that u does not receive the message sent by
v during round i. So, u becomes a root: it executes the
procedure BECOME ROOT() (Line 7).

In the second case, v executes
ADOPT PARENT((i).v.outMessage). So v did send
a successful FLIP or SELECT (Lemma 4.5).
As v removes u from v.children during the ex-
ecution of ADOPT PARENT((i).v.outMessage),
we have (i−).v.outMessage.target = u and
(i−).v.outMessage.action = FLIP (see the pro-
cedure ADOPT PARENT(outMessage)). So v sends a
successful FLIP to u during round i. Therefore, in
round i, u executes the procedure BECOME ROOT()

(Line 15): u sets u.parent to ⊥.

Lemma 4.18 (Forest Consistency). Let i be a round
starting from a forest consistent configuration. The
configuration reached at the end of round i is forest
consistent

Proof. The configuration after the round i is forest
consistent according to Lemmas 4.14, 4.15, 4.16, 4.17.
Notice that in the case where u does not change
the value of its parent variable (resp. u stays in
v.children) during round i, at the end of round i the
forest consistency property is preserved according to the
contraposition of Lemma 4.17 (resp. contraposition of
Lemma 4.16) and the hypothesis.

Theorem 4.1 (Consistency). Every configuration is
forest consistent.

Proof. C0 is forest consistent (Lemma 4.3). The
configuration reached after any round is forest
consistent (Lemma 4.18).

4.3. Correctness (detailed proofs)

4.3.1. Correctness of the resulting forest after token
circulation:

Lemma 4.19. Let v be a node. Only (i−)v.parent can
send a FLIP to node v during round i.

Proof. At the beginning of round i, the configuration
is forest consistent (Theorem 4.1). Therefore, only the
node (i−)v.parent can prepare a FLIP message to node
v, at the end of round i− 1 (Lemma 4.9).

Lemma 4.20. If u receives a FLIP in round i, then
it does not send a FLIP nor a SELECT in round i.

Proof. At the beginning of round i, the configuration
is forest consistent (Theorem 4.1). Therefore no node

has prepared a FLIP message to node u, in round i− 1
(Lemma 4.13).

Lemma 4.21 (Adoption). If u sends a successful
FLIP or SELECT to v in round i, then (i+)u.status =
N and (i+)u.parent = v.

Proof. In round i, u.outMessage.action = FLIP or
SELECT and v ∈ (i+)u.neighbors. During round i, u
executes the procedure ADOPT PARENT() (Line 9) which
sets (i+)u.parent to v. According to Lemma 4.20, u did
not receive any FLIP message during round i. Only an
execution of BECOME ROOT() by u at line 15 can change
the value of u.parent during round i. This line is not
executed during round i.

Lemma 4.22. If u sends a successful FLIP to v, then
(i+)v.status = T .

Proof. v received a message from u in round i, so
{u, v} ∈ Ei. v executes the procedure BECOME ROOT()

that changes v.status to T . After the execution of line
9, no instruction can set v.status to N until the end of
round i. So (i+)v.status = T .

Lemma 4.23. If u sends a successful FLIP in round i,
then u is valid after round i.

Proof. By Lemmas 4.21 and 4.22 u’s parent has a status
T after round i.

4.3.2. Proofs on score permutations:
Lemma 4.24. If u sends a successful FLIP to v, then

(i−)u.score ≤ (i+)v.score.

Proof. u sent a message mu to v at the beginning of
round i such that mu.action = FLIP, mu.target =
v.ID and mu.score = (i−)u.score. v received mu in
round i, so {u, v} ∈ Ei. v executes the procedure
ADOPT CHILD(mu) at line 16 in round i. This procedure
sets the current score of v to max(v.score,mu.score),
as mu.score = (i−)u.score. After the execution of this
instruction, we have mu.score = (i−)u.score ≤ v.score.
We notice that after this operation, no instruction
can change the value of v.score during this round
(Lemma 4.19).

Lemma 4.25. (i−)u.score = (i+)u.score unless u
sends or receives a successful FLIP in round i.

Proof. u changes its score value only by executing
ADOPT PARENT(mu) or ADOPT CHILD(mu). Both
instructions that changes u.score value in these
procedures (Algorithm 2, line 9, 16) are conditioned
by mu.action = FLIP .

Lemma 4.26. A node u changes u.score at most once
during a round.

Proof. A node sends at most one FLIP message during
a round. A node receives at most one FLIP message
during a round (Lemma 4.19). Either a node receives
a FLIP, sends one, or it does not receive and does not
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send a FLIP during a given round (Lemma 4.20). So,
according to Lemma 4.25, a node changes u.score at
most once during a round.

Lemma 4.27. Before each round, the set of scores is
a permutation of the set of identifiers.

Proof. After the initialization in each node u, u.score =
u.ID. A node u changes its score only by executing
ADOPT PARENT() or ADOPT CHILD(). We will do a proof
by induction. We assume at the beginning of round i,
the set of scores is a a permutation of the set of
indentifiers. We have for any node u, mu.score =
(i−)u.score.

According to Lemma 4.25, only a node sending or
receiving a successful FLIP may change its score value.
Assume that the node u changes its score value during
round i. Without lost of generality, we assume u sends
the successful FLIP to a node v in round i.

By hypothesis, u changes its score to (i−)v.score
during the execution of ADOPT PARENT() in round i.
We have (i−)u.score ≥ (i−)v.score. v executes the
procedure ADOPT CHILD(mu) at line 16 in round i.
This procedure sets the current score of v to
max(v.score,mu.score), as mu.score = (i−)u.score.
After the execution of this instruction, we have
v.score = (i−)u.score (Lemma 4.24).

According Lemma 4.26, we have (i+)v.score =
(i−)u.score and (i+)u.score = (i−)v.score.

4.3.3. Correctness of the resulting forest after merg-
ings:

In lemmas 4.31 and 4.32, we establish that if u
sends a successful SELECT to v in round i either
(i−)v.status = T or (i−)v.parent.status = T . In
the first case, we have (i−)u.score < (i−)v.score,
and in the second case, we have (i−)u.score <
(i−)v.parent.score. Let ch be a series of nodes u0, u1, u2

such that (i+)uj .parent = uj+1 and such that u0 sends
a successful SELECT to u1 during round i. As a ch’s
subchain of nodes having strictly increasing scores at
the beginning of round i may be built: ch has no loops.
So ch ends by a node having a token: all nodes on that
chain are valid.

Lemma 4.28. If v sends a message containing T in
round i and (i+)v.status = N , let w = (i+)v.parent,
then (i+)w.status = T .

Proof. If v sends a message containing T in round i,
then (i−)v.status = T . If (i+)v.status = N , then v
has executed ADOPT PARENT() in round i, because it is
the only procedure that sets v.status to N . v executes
ADOPT PARENT() only if it has sent a FLIP message
mv to a node w (mv.action 6= SELECT because
mv.status = T ), and if w has received the message
mv (reciprocal reception property). At the reception of
mv by w, w executes BECOME ROOT() (Line 16) which
sets w.status to T and from this line until the end of

the round no instruction can change w.status to N . So
(i+)w.status = T .

At the execution of ADOPT PARENT() by v, v sets
v.parent to w. After this instruction there is only
BECOME ROOT() that can modify the value of v.parent,
and it is conditioned by the reception of a FLIP
message. According to Lemma 4.20 v cannot call
BECOME ROOT() because it cannot receive a FLIP
message. So w = (i+)v.parent.

So, if v sends a message containing T in round i
and (i+)v.status = N , and w = (i+)v.parent, then
(i+)w.status = T .

Lemma 4.29. If v sends a message containing T in
round i and (i+)v.status = N , let u = (i+)v.parent,
then (i+)u.score ≥ (i−)v.score.

Proof. We have (i−)v.status = T because in round
i − 1, v.status cannot be modified after the execution
of PREPARE MESSAGE(). If (i−)v.children 6= ∅ then v
sends a FLIP message in round i to one of its children
u. Then, either {u, v} ∈ Ei and (i+)v.parent = u,
(i+)u.status = T and (i+)u.score ≥ (i−)v.score (see
Lemmas 4.22 and 4.24); or (i+)v.status = T .

Lemma 4.30. If u sends a successful SELECT to v
in round i then ((i− 1)−)v.status = T .

Proof. Node u prepared a SELECT message to v in
round i− 1, thus it had u.contender = v, which implies
it received from v a message containing T . We have
then ((i−1)−)v.status = T because after the execution
of PREPERE MESSAGE() by v in round i − 2, v.status
cannot be changed.

Lemma 4.31. If u sends a successful SELECT to v
in round i and (i−)v.status = T , then (i−)u.score <
(i−)v.score.

Proof. Lemma 4.30 implies that ((i−1)−)v.status = T .
By Lemma 4.8, the sending of the SELECT implies
that (i−)u.score < ((i − 1)−)v.score and Lemma 4.25
implies in turn that ((i − 1)−)v.score = (i−)v.score,
which yields the inequality. (Lemma 4.25 says that the
score of v could have only changed if v sent or received
a successful FLIP in round i−1, which was not the case
for reception since ((i−1)−)v.status = T (Lemme 4.19,
nor for emission since (i−)v.status = T (Lemma 4.21).)

Lemma 4.32. If u sends a successful SELECT to
v in round i and (i−)v.status = N , then let w =
(i−)v.parent. It holds that (i−)w.status = T and
(i−)u.score < (i−)w.score.

Proof. By Lemma 4.30 we have ((i−1)−)v.status = T .
Furthermore, the fact that v is considered as a
contender implies that v sent a message containing
T in round i − 1. Then, Lemmas 4.8 and 4.29
respectively imply that (i−)u.score < ((i− 1)−)v.score
and ((i − 1)−)v.score ≤ (i−)w.score. Lemma 4.28
implies that (i−)w.status = T .
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Lemma 4.33 (Cancellation). If u sends a failed FLIP
or SELECT in round i, then (i+)u.status = T .

Proof. By Lemma 4.6, we have (i−)u.status = T . v did
not receive the message from u implies that {u, v} /∈ Ei.
So, in round i, v /∈ u.neighbors (u did not receive
the message from v). Only during the execution of
ADOPT PARENT(), called in line 9, u can change its
status to N . This procedure is not executed during
round i.

Lemma 4.34 (Conservation). If (i−)u.status = T
and u does not send a FLIP or SELECT in round i,
then (i+)u.status = T .

Proof. By Lemma 4.5, u does not execute the procedure
ADOPT PARENT() during round i. u can set status

variable to N only if it executes ADOPT PARENT().

Lemma 4.35. If (i−)u.status = T and u does not
send a successful SELECT in round i, then u is valid
after the round i.

Proof. According to Lemma 4.23, after the successful
sending of a FLIP message in round i, u is valid at the
end of round i. If u sends a failed SELECT or a failed
FLIP then u is valid after the round i by Lemma 4.33.
otherwise, u did not send a SELECT or a FLIP during
the round: it is also valid at the end of the round by
Lemma 4.34.

Lemma 4.36. If a node sends a successful SELECT
in round i, then it is valid at the end of round i.

Proof. Let S be the set of nodes that send a successful
SELECT in round i and are not valid at the end of
round i. We will prove, by contradiction, that S is
empty. Assume S is non-empty and consider the node
in S that had the largest score at the beginning of the
round (say, node u). Such a node exists by Lemma 4.27.
We will prove that u is valid after the round, which is
a contradiction. Let v be the recipient of u’s successful
SELECT. By Lemma 4.21 (i+)u.parent = v, thus it
is enough to show that v is valid after round i to get
our contradiction. Let us examine both cases whether
(i−)v.state = T or N .

If (i−)v.status = T , then either v also sends a
successful SELECT in round i, or it does not. If it
does not, then it is valid after round i (Lemma 4.35). If
it does, then it must be valid otherwise u is not maximal
in S (Lemma 4.31).

If (i−)v.status = N , then let w = (i−)v.parent.
Two cases are considered, whether {v, w} ∈ Ei or not.
If {v, w} /∈ Ei then (i+)v.status = T because the
condition forces v to call the procedure BECOME ROOT()

in Line 7 which makes it take the status T . After this, v
can take the status N only during the execution of the
procedure ADOPT PARENT() in Line 9. This procedure
is called by v only if it sends a FLIP or a SELECT at
the beginning of round i by Lemma 4.5. By Lemma 4.6,
this cannot happen. Thus v is valid after round i. If

{v, w} ∈ Ei, we use the fact that (i−)w.status = T
(Lemma 4.28, applicable because if u sends a SELECT
to v in round i, then v’s message in round i−1 contained
a T , otherwise v would not be considered as a contender
by u.) in order to apply the same idea as we did above:
either w also sends a successful SELECT in round i,
or it does not. If it does not, then it is valid after
round i (Lemma 4.35). If it does, then it must be valid
otherwise u is not maximal in S (Lemma 4.32).

4.3.4. Correctness of resulting forest:
Lemma 4.37. If (i−)u.status = T then u is valid

after round i.

Proof. According to Lemma 4.36, after the successful
sending of a SELECT message in round i, u is valid at
the end of round i. According to Lemma 4.23, after
the successful sending of a FLIP message in round i,
u is valid at the end of round i. If u sends a failed
SELECT or a failed FLIP then u is valid after the round
by Lemma 4.33. In otherwise, u is also valid the round
by Lemma 4.34.

Theorem 4.2 (Resulting forest correctness). If all
nodes are valid at the beginning of round i, then all
nodes are valid after round i.

Proof. Assume that a node v is invalid after round i.
According to Lemma 4.37, (i−)v.status = N .

Let u0, u1, u2, ..., uk be the finite series of nodes
such that for j ∈ [0, k − 1], (i−)uj .parent = uj+1,
(i−)uk.status = T , and u0 = v. This series exists
because v is valid at the beginning of round i.

Let u′1, u
′
2, ..., be the infinite series of nodes such

that for all j ≥ 1 (i+)u′j .parent = uj+1, and
(i+)v.parent = u′1. This series exists because v is
invalid (by hypothesis).

According to Lemma 4.12, j ∈ [1, k], uj = u′j .
According to Lemma 4.37, uk is valid. So all nodes
of the series u0, u1, u2, ..., uk are valid. There is a
contradiction.

5. DISCUSSION ABOUT PERFORMANCE

Our main focus in this paper is to present the spanning
forest algorithm and prove that it guarantees a number
of key properties, whatever the dynamics. Somewhat
ironically, the same properties are satisfied even if the
algorithm does nothing beyond initialization: every
node remains forever a single-node tree, which satisfies
all the predicates. Naturally, one expects more from
an algorithm, in particular regarding convergence and
performance. We offer here a preliminary discussion on
these topics, starting with the quality metric to be used
in such contexts and how our algorithm behaves in this
respect.



14 5 DISCUSSION ABOUT PERFORMANCE

5.1. How to measure performance?

Since the network may always be partitioned, the
natural way to define an optimal (at least, irreductible)
state of our algorithm is that every connected
component is covered by a single tree. However, if
the rate of topological changes is high, then it may
simply be impossible for an algorithm (however good) to
converge towards such an optimal state in-between the
changes. Completion time does not make sense either
since this type of algorithms never terminate.

In this context, a reasonable metric seems to be
rather the number of trees per connected component,
e.g. averaged over the execution or characterized in
a stationary regime (for stochastic models of dynamic
networks). This being said, if the network were to
stabilize, then one would indeed hope that a single tree
spans each component. Both aspects are now discussed.

5.2. Convergence in case of network stability

At an abstract level, the spanning forest algorithm
presented in this paper relies on random walks in trees.
Since trees are bipartite graphs, it may so happen
that two tokens never meet (at both extremities of
a common edge) even if their respective trees offer
merging opportunities. Standard techniques exist for
preventing periodic walks, such as stopping the tokens
occasionally (also called lazy walks). This variant is
easy to incorporate in the existing algorithm, by having
a node decide whether or not circulating the token
(FLIP messages) with some probability. Apart from
this, markov chain theory tells us that if the graph does
not change, eventually all tokens in each component will
merge leaving a single tree per component.

5.3. A practical scenario

We verified the applicability of our algorithm in a
real world scenario. The algorithm was implemented1

using the JBotSim library [11] and tested against the
Infocomm06 dataset [19]. This well known dataset is
a record of the communication links among devices
given to 78 people during the Infocomm conference
in 2006. The update rate for the links is every
120 seconds, which means that the presence time of
an edge is a multiple of 120 seconds, a somewhat
optimistic granularity. In order to use these traces, one
must decide how many rounds (of our computational
model) can effectively be performed each second. We
chose pessimistic options to counterbalance the coarse
granularity of edge presence, namely either 10 rounds
per second (mildly pessimistic) or 1 round per second
(very pessimistic). For each, we measured the evolution
of the number of connected components versus the
number of trees resulting from the execution of our
algorithm (upper curves on Figures 5 and 6, using the

1The source code of our algorithm is available upon request.

scale on the left side). The average ratio between both
(i.e. the metric of interest, as discussed in Section 5.1) is
depicted on the lower curves of the same Figures (using
the scale on the right side). Every point of these curves
corresponds to an average over 100 executions.

FIGURE 5. Number of roots (trees) versus number of
connected components, assuming 10 rounds per second. The
lower curves show the resulting ratio. (Infocomm06 dataset
on 78 nodes.)

In summary, the number of trees per connected
component is often close to 1 (1.027 in average in the
first case, and 1.080 in the second case). Furthermore,
the algorithm achieves an optimal configuration of a
single spanning tree per connected component about
47% of the time in the first case (32.68% in the second
case), which implies that the algorithm may be relevant
in (at least some) practical scenarios. In fact, these
traces correspond to a rather sparse scenario. The
number of trees ranges from 10 to 70, on top of 78
nodes, which corresponds to trees whose average size
ranges from 1.1 to 7.8 depending on the moment.
Small trees are profitable to token-based algorithms
in general and ours as a particular case. However,
this setting is neither unrealistic nor uncommon, as
sparseness is a typical feature of delay-tolerant networks
(i.e. partitioned networks which are connected only
over time and space), an important sub-class of highly-
dynamic networks.

5.4. Additional remarks

This section proposed an initial discussion about
performance. It is by no mean comprehensive and
the performance evaluation of our algorithm remains
essentially open, both experimentally and theoretically.
On the experimental side, it would be interesting to
consider scenarios (data sets) with various scales of
density and stability. On the theoretical side, the
process at play here is one of coalescing random walks
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FIGURE 6. Number of roots (trees) versus number of
connected components, assuming 10 rounds per second. The
lower curves show the resulting ratio. (Infocomm06 dataset
on 78 nodes.)

over dynamic graphs. These processes are known
to be difficult to analyse even in static graphs (see
e.g. [14]), and restricting the walks to trees adds
even more dependency in the analysis. In this paper,
we introduced the first message passing algorithm
for maintaining spanning forests under unrestricted
dynamics. Both the algorithm and its correctness
are significantly more sophisticated than their coarse-
grain analogues. A deeper performance analysis that
combines both experimental and theoretical aspects is
considered for future works.
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