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We investigate the quantum optical torque on an atom interacting with an inhomogeneous electromagnetic
environment described by the most general linear constitutive relations. The atom is modeled as a two-level
system prepared in an arbitrary initial energy state. Using the Heisenberg equation of motion (HEM) and under
the Markov approximation, we show that the optical torque has a resonant and nonresonant part, associated,
respectively, with a spontaneous-emission process and Casimir-type interactions with the quantum vacuum,
which can both be written explicitly in terms of the system Green function. Our formulation is valid for
any three-dimensional inhomogeneous, dissipative, dispersive, nonreciprocal, and bianisotropic structure. We
apply this general theory to a scenario in which the atom interacts with a material characterized by strong
nonreciprocity and modal unidirectionality. In this case, the main decay channel of the atom energy is represented
by the unidirectional surface waves launched at the nonreciprocal material-vacuum interface. To provide relevant
physical insight into the role of these unidirectional surface waves in the emergence of nontrivial optical torque,
we derive closed-form expressions for the induced torque under the quasistatic approximation. Finally, we
investigate the equilibrium states of the atom polarization, along which the atom spontaneously tends to align
due to the action of the torque. Our theoretical predictions may be experimentally tested with cold Rydberg
atoms and superconducting qubits near a nonreciprocal material. We believe that our general theory may find
broad application in the context of nanomechanical and biomechanical systems.

DOI: 10.1103/PhysRevB.98.125146

I. INTRODUCTION

Optically induced mechanical torque, originating from the
transfer of angular momentum between light and material
bodies, is a topic of research with a long history, dating back
to the early 20th century [1–3]. The optical torque exerted
on a trapped atom, molecule, or a microparticle induces a
rotation about a specific axis, and provides additional degrees
of freedom to change the state of the considered object
[4,5]. This process leads to optical manipulations with a
wide range of applications in physics, chemistry, biology, and
medicine [6–10]. In a related context, Casimir effects due to
zero-point energy fluctuations [12] are attracting increasing
attention for their potential application in micro- and nano-
electromechanical systems [13,14]. The Casimir effect was
first discovered in 1948 by Casimir [11], who predicted that
two electrically neutral metallic plates in vacuum experience
an attractive force due to the zero-point fluctuations of the
quantized electromagnetic field (i.e., due to the confinement of
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these fluctuations by the plates). In [15,16], Casimir’s theory
was then generalized to the case of a system composed of
two birefringent plates (i.e., a system with in-plane optical
anisotropy) showing, for the first time, the emergence of a
fluctuation-induced mechanical torque that makes the plates
rotate toward a position with minimum zero-point energy.
Further investigations and generalizations are discussed in
[17–24].

In a completely different context, it has been known for
a few decades that optical systems with broken time-reversal
symmetry may enable strong nonreciprocal wave-propagation
effects. Most notably, suitably designed nonreciprocal struc-
tures may support purely unidirectional surface waves on
the interface with a different medium [25]. A subclass of
these systems that has been gaining increasing attention are
“photonic topological insulators” with broken time-reversal
symmetry—the photonic analog of the quantum-Hall insu-
lators in condensed-matter physics [26]—in which unidirec-
tional surface waves, emerging in the bulk-mode band gap, are
associated with a topological invariant number, a property that
makes them intrinsically robust to continuous perturbations
and immune to back-scattering at discontinuities [27–29]. We
would like to stress, however, that the class of strongly non-
reciprocal systems supporting unidirectional surface waves is
broader than the class of nonreciprocal photonic topological
insulators, as unidirectional surface modes may also exist
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outside the bulk-mode band gap. For the purposes of our
work, we therefore focus on unidirectional surface modes
in general, rather than on modes with specific topological
properties. In the context of optical forces/torques, it is indeed
the possibility of having an asymmetric mode (unidirectional,
in the extreme case) that may enable qualitatively differ-
ent optomechanical effects compared to conventional optical
structures. This has recently inspired new theoretical studies
on the lateral recoil force exerted on an atom interacting
with an interface that supports a unidirectional surface mode
[30,31]. In addition, the Casimir optical torque between two
nonreciprocal topological surfaces was recently studied in
[32].

In contrast to any previous quantum-optical torque work,
which focused on specific geometries in their ground-energy
state, in the present paper we offer a completely general theory
of the quantum-optical torque exerted on a two-level system
(e.g., an atom, molecule, quantum dot) interacting with a
generic electromagnetic environment, composed of materials
described by the most general linear constitutive relations.
We consider both resonant and nonresonant contributions
to the mechanical torque, associated, respectively, with the
spontaneous emission of an initially excited atom, and the
fluctuation-induced Casimir torque. We then specialize our
general theory to the case of an atom near a material with
strong nonreciprocity, and we provide relevant physical in-
sight into unusual and counterintuitive effects enabled by the
unidirectional nature of the surface modes supported by this
system.

The paper is organized as follows. In Sec. II, we derive
the optical quantum torque exerted on an atom in a generic
dispersive bianisotropic electromagnetic environment. The
derivation is based on the Heisenberg equation of motion,
ignoring the effect of thermal fluctuations. The Markov ap-
proximation is used to derive a closed-form expression for
the dynamics of the reservoir bosonic field and the atomic
operators in the time domain. To simplify the problem, the
atom is modeled as a two-level system. Using a quantized
modal expansion, we show that, for an atom in an arbitrary
initial state, the optical torque can be decomposed into a res-
onant and a nonresonant part. In Sec. II B, the exact solution
of the optical torque is written in terms of the system Green
function, which allows further generalization of our theory to
dissipative systems. In Sec. III, we use our theory to study the
case of a three-dimensional nonreciprocal material half-space,
realized as a continuous gyrotropic material (a magnetized
plasma). Then, under a quasistatic approximation, we char-
acterize the plasmonic modes of the system and obtain an
explicit expression for the optical torque. Finally, in Sec. IV,
we present an extensive numerical study that elucidates the
symmetry requirements to obtain nonzero optical torque, and
we explore the existence of equilibrium states along which
the atom spontaneously tends to align due to the action of the
optical torque.

II. GENERAL THEORETICAL FORMULATION

In this section, we investigate the quantum-optical torque
on a two-level system, initially prepared in an arbitrary energy
state, interacting with a generic inhomogeneous electromag-

netic environment. The atom gets depopulated from its initial
state through spontaneous emission. We rigorously formulate
the optical torque that the atom experiences during the emis-
sion process in terms of the exact classical Green function of
the system, and we show that the expectation of the torque
can be decomposed into a resonant term and a nonresonant
(Casimir) term.

A. Modal expansion of optical torque

The quantum-optical torque operator is obtained from the
classical definition of torque by promoting all quantities to
operators [34],

τ̂ = p̂g × F̂, (1)

where the six-vector F̂ = [Ê Ĥ]T contains the quantized
electromagnetic fields of the system, and p̂g = [p̂ 0̂]T is
a generalized dipole moment operator, with zero magnetic
dipole moment, such that p̂ = γ ∗σ̂+ + γ σ̂−, where γ is the
dipole transition matrix element and σ̂± is the atom raising
and lowering operators. As is usually done, the quantized
electromagnetic fields can be written in the form of posi-
tive and negative frequency components F̂ = F̂− + F̂+, with
F̂+ = F̂†

− due to the reality (Hermiticity) of the operator. We
then expand the negative-frequency quantized field as

F̂−(r, t ) =
∑

ωnk>0

√
h̄ωnk

2
Fnk(r)ânk(t ), (2)

where Fnk(r) represents a cavity mode normalized as [35]

1

2

∫
d3r F∗

nk · ∂ (ωM)

∂ω
· Fnk = 1, (3)

where ωnk is the mode oscillation frequency, and

M =
(

ε(r, ω) ξ (r, ω)/c

ζ (r, ω)/c μ(r, ω)

)
(4)

contains the material information, which relates the classical
D and B fields with the classical E and H fields. Equation (3)
indicates that the stored energy of the modes is normalized
to unity. In the modal expansion (2), ânk is the (annihila-
tion) bosonic field operator (â†

nk is the corresponding creation
operator), which represents the reservoir field and satisfies
[ânk, â

†
nk′ ] = δk,k′ .

The total Hamiltonian of the system in the dipole approxi-
mation is

Ĥ = h̄ω0σ̂+σ̂− +
∑

ωnk>0

h̄ωnk

2
(ânkâ

†
nk + â

†
nkânk ) − p̂ · Ê(r0),

(5)

where the right side can be decomposed into the atom Hamil-
tonian (first term), the reservoir Hamiltonian (second term),
and the interaction Hamiltonian (third term), where r0 is
the atom position. Using the Heisenberg equation of motion
∂t ânk = ih̄−1[Ĥ, ânk] for a single atom interacting with a
reservoir electric field and applying the Markov approxima-
tion (i.e., the evolution of the quantum system is “local” in
time; at each time instant t , the system’s memory of earlier

125146-2



OPTICAL TORQUE ON A TWO-LEVEL SYSTEM NEAR A … PHYSICAL REVIEW B 98, 125146 (2018)

times t < t ′ is negligible), it can be shown that [30,33]

ânk(t ) ≈ ânke
−iωnk t +

√
ωnk

2h̄
γ̃ · F∗

nk(r0)σ̂−(t )
1

ωnk − ω0

+
√

ωnk

2h̄
γ̃ ∗ · F∗

nk(r0)σ̂+(t )
1

ωnk + ω0
, (6)

where γ̃ = [γ 0]T. The first term ânke
−iωnk t is the free-

field solution without an emitter. Using normal ordering, the
expectation of the torque can be written as τ̂ = 2 Re〈p̂g × F̂−〉
(note that, by writing the torque in terms of F̂−, the free-field
operator does not contribute to the final expression of the
torque, as F̂− acts on the vacuum state, and ânk|0〉 = 0). Then,
using Eqs. (2) and (6) and considering

〈σ̂+(t )σ̂−(t )〉 = ρee(t ), 〈σ̂−(t )σ̂+(t )〉 = 1 − ρee(t ),

〈σ̂+(t )σ̂+(t )〉 = 〈σ̂−(t )σ̂−(t )〉 = 0, (7)

where ρee(t ) is the probability of the atom to be found in its
excited state, one can finally obtain

τ̂ = ρee(t )τ̂ r + [1 − ρee(t )]τ̂ n, (8)

where τ̂r and τ̂n are the resonant and nonresonant parts of the
optical torque, respectively, which can be written in terms of
the modal expansion as

τ̂ r = Re

{∑
nk>0

γ̃ ∗ × {[Fnk(r0) ⊗ F∗
nk(r0)] · γ̃ } ωnk

ωnk − ω0

}
,

τ̂ n = Re

{∑
nk>0

γ̃ × {[Fnk(r0) ⊗ F∗
nk(r0)] · γ̃ ∗} ωnk

ωnk + ω0

}
.

(9)

In the nonpumped scenario, in which the atom is assumed
to be initially prepared in an excited state, and there is no
external excitation during the spontaneous-emission process,
the excited-state population decays exponentially as ρee(t ) =
e−�11t , where �11 is the spontaneous-emission rate.

B. Exact solution in terms of the Green function

In this section, we express the modal expansion of the torque
in Eqs. (9) in terms of the Green function of the system. The
classical Green function for the wave equation satisfies N ·
G = ωM · G + iIδ(r − r0), where N = ( 0 i∇×I3×3

−i∇×I3×3 0
)

contains the spatial derivatives, and G = (GEE GEH
GHE GHH

) is a

6 × 6 dyad. It can be shown that, in the limit of low losses,
the Green function of the system can be written in terms of
the modal expansion as follows [35]:

G = G+ + G− + 1

iω
M−1

∞ δ(r − r0), (10)

where

(−iω)G+ =
∑

ωnk>0

ωnk

2

1

ωnk − ω
Fnk(r) ⊗ F∗

nk(r0),

(−iω)G− =
∑

ωnk>0

ωnk

2

1

ωnk + ω
F∗

nk(r) ⊗ Fnk(r0) (11)

are the positive and negative frequency parts of the Green
function, respectively, and M∞ is the material response at
infinite frequency. The δ-function term is associated with the
self-field, which we ignore [34]. Then, by comparing Eqs. (11)
and (9), we can write (8) as

τ̂ = 2ρee(t )Re{γ̃ ∗ × (−iωG+(r0, r0, ω0)) · γ̃ }
+ 2[1 − ρee(t )]Re{[γ̃ ∗ × (−iωG−(r0, r0, ω0)) · γ̃ ]∗}.

(12)

The conjugation of the second term in the above equation
can be safely dropped, since we are taking the real part. We
then replace G+ by G − G−, and by noting that G−, defined
in (11), is a complex analytic function for Re{ω} > 0, we can
invoke Cauchy’s theorem and represent the second term of this
equation as an integral over the imaginary frequency axis,

τ̂ = 2ρee(t )Re{γ̃ ∗ × [−iωG(r0, r0, ω0)] · γ̃ }+2[1−2ρee(t )]

× Re

{
1

2π

∫ ∞

−∞
dξ γ̃ ∗ × (−iωG−)ω=iξ

ω0 − iξ
· γ̃

}
. (13)

Since
∫ ∞
−∞ dξ γ̃ × (−iωG− )ω=iξ

ω0+iξ
· γ̃ ∗ = 0 (no poles are enclosed

by Cauchy’s integration contour with an infinite semicircle
for Re{ω} > 0), we can add this term to the integrand above
without changing the result,

τ̂ = 2ρee(t )Re{γ̃ ∗ × [−iωG(r0, r0, ω0)] · γ̃ }

+ 2[1−2ρee(t )] Re

{
1

2π

∫ ∞

−∞
dξ

[
γ̃ ∗ × (−iωG−)ω=iξ

ω0 − iξ
· γ̃ + γ̃ × (−iωG−)ω=iξ

ω0 + iξ
· γ̃ ∗

]}
. (14)

Moreover, since we take the real part of the nonresonant term, we can conjugate the integrand, and noting that

(−iωG
−

(r0, r0, ω))ω=iξ = [(−iωG
+

(r0, r0, ω))ω=iξ ]
∗
, we can then replace G− by G+. This implies that we can also replace

G− in Eq. (14) by one-half of the full Green function, G/2, without changing the result. We therefore obtain

τ̂ = 2ρee(t )Re{γ̃ ∗ × [−iωG(r0, r0, ω0)] · γ̃ }

+ 2[1 − 2ρee(t )] Re

{
1

4π

∫ ∞

−∞
dξ

[
γ̃ ∗ × (−iωG)ω=iξ

ω0 − iξ
· γ̃ + γ̃ × (−iωG)ω=iξ

ω0 + iξ
· γ̃ ∗

]}
, (15)

which gives the expression of the quantum-optical torque in
terms of the classical Green function of the system, for an
atom interacting with a generic inhomogeneous bianisotropic

electromagnetic reservoir. While in the derivation above we
have initially made the assumption of vanishing losses in order
to write the fields as a sum of orthonormal cavity modes in
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FIG. 1. A two-level system (e.g., an atom) near the surface of a
nonreciprocal (gyrotropic) material, experiencing an optical torque.
The black arrow indicates the direction of the torque, and the curved
red arrow represents the direction of the induced rotation in the
xoz plane. The radiation emitted by an initially excited atom may
launch unidirectional surface waves [e.g., surface plasmon polaritons
(SPPs)] on the surface of the nonreciprocal material, resulting in
a resonant optical torque. An additional nonresonant contribution
to the optical torque originates from quantum-vacuum fluctuations
(Casimir torque), which exist even for an atom in its ground state.

Eq. (2), the final expression in Eq. (15) is given in terms of the
full system’s Green function, not a modal expansion. Thanks
to this formulation, the first term of Eq. (15) is valid in all
cases, including for lossy systems, whereas the second term
only requires some minor modifications in the case of a lossy
environment, as detailed in Appendix B.

More broadly, our general theory applies to any lossy
and/or active media, and hence it can directly be extended to
non-Hermitian nonreciprocal/topological systems, which are
currently the subject of several studies (e.g., [36,37]). The
analysis of non-Hermitian topological media as reservoirs for
quantum emitters has recently been studied in [38], and will
be considered further in future works.

III. QUASISTATIC ANALYSIS IN A THREE-DIMENSIONAL
NONRECIPROCAL MATERIAL ENVIRONMENT

To provide a closed-form quasistatic evaluation of Eq. (15),
we need to specialize our discussion to a system of interest,
and consider the relevant modes supported by the structure
that contribute to the torque exerted on the atom. We consider
here a scenario in which the electromagnetic environment
is a three-dimensional nonreciprocal material half-space. As
shown in Fig. 1, the considered system is stratified in the
z direction, with a generic continuum nonreciprocal mate-
rial filling the half-space z < 0, and vacuum in the upper
half-space z > 0. An atom modeled as a two-level system
with Hamiltonian Ĥa = ∑

j=e,g Ej |j 〉〈j | is located at z = z0

above the interface, where Ej is the energy associated with
the excited and ground states of the atom. As a specific
example of a continuum nonreciprocal medium, we con-
sider a gyrotropic material with tensorial permittivity ε =
ε0(εtIt + εa ŷŷ + iεg ŷ × I) and μ = μ0I, where It = I − ŷŷ,
and εg is a gyrotropy parameter that models the nonreciprocal
response of the material (the permittivity tensor is nonsym-
metric if εg 
= 0).

When the atom is located electrically close to the gy-
rotropic material, z0 � λ0, where λ0 is the free-space radi-
ation wavelength, the dynamics of the system is expected to
be governed by the surface waves excited on the nonrecip-
rocal material-air interface, e.g., surface plasmon polaritons
(SPPs) if the gyrotropic material is a magnetized plasma. This
allows us to replace the modal expansion in Eqs. (9) with
its quasistatic solution Fnk ≈ [Enk 0]T ≈ [−∇φk 0]T. The
magnetic field is assumed negligible, and the electric field
is written in terms of an electric potential φk that satisfies
Laplace’s equation, ∇ · (ε · ∇φk ) = 0. The solutions of this
quasistatic equation are of the form

φk = Ak‖√
S

eik‖·r
{

e−k‖z, z > 0,

e+k̃‖z, z < 0,
(16)

where k‖ = kx x̂ + ky ŷ is the wave vector of the SPPs, k̃‖ =√
k2
x + (εa/εt )k2

y , S is the area of the slab, and

|Ak‖ |2 = 2

ε0

[
k‖ + �(ωθ, ωc, ωp )

2k̃‖

]−1

(17)

with �(ω,ωc, ωp ) = ∂ω(εtω)(k̃2
‖ + k2

x ) + ∂ω(εaω)k2
y +

∂ω(εgω)2kxk̃‖. By applying the boundary condition at the
interface (i.e., ẑ · ε · ∇φk continuous at z = 0), we find the
SPP dispersion equation

−k‖ = kxεg (ω) + k̃‖εt (ω). (18)

For a lossy magnetized plasma with bias magnetic field
along the +y axis, the frequency-dispersive permittivity el-
ements are given by [39]

εt = 1 − ω2
p(1 + i�/ω)

(ω + i�)2 − ω2
c

,

εa = 1 − ω2
p

ω(ω + i�)
, εg = 1

ω

ωcω
2
p

ω2
c − (ω + i�)2 , (19)

where ωp is the plasma frequency, � the collision rate associ-
ated with damping, ωc = −q|B0|/m the cyclotron frequency,
q = −e the electron charge, m the effective electron mass, and
B0 the static bias. As an example of a material platform, n-
doped narrow-gap semiconductors such as n-type InSb under
moderate magnetic bias act as magnetized electron gases, with
permittivity elements consistent with (19) in the low THz
range [40,41]. Considering the dispersive material model of
biased plasma in the limit of zero damping, the solution of
Eq. (18) yields a single branch of modes ωk, which depend
only on the angle θ of the wave vector with respect to the +x

axis,

ωk = ωθ = ωc

2
cos(θ ) +

√
ω2

p

2
+ ω2

c

4
[1 + sin2(θ )]. (20)

For ωc > 0, one has ω− < ωk < ω+, with

ω+ ≡ ωkx>0,ky=0 = 1
2

(
ωc +

√
2ω2

p + ω2
c

)
,

ω− ≡ ωkx<0,ky=0 = 1
2

( − ωc +
√

2ω2
p + ω2

c

)
. (21)
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FIG. 2. Angular direction of the dominant wave vector (red) and
group velocity (direction of energy flow) (blue) of the two SPP
beams launched on the surface of the nonreciprocal material in
Fig. 1 (biased plasma), as a function of frequency for ωc = 0.4ωp .
The dashed pink lines indicate ω− and ω+, defined in the text. In
this frequency range, the equifrequency contours of the dispersion
function are hyperbolic, with the dominant wave vector of the beams
determined by the hyperbola asymptotes. In comparison, for a typical
reciprocal hyperbolic material, the figure would have four branches
for the wave vector and group velocity, instead of two, due to the
symmetry of the equifrequency contour with respect to the origin of
k space.

In this frequency range, the equifrequency contours of the
dispersion function of the SPP are hyperbolic curves. The hy-
perbolic dispersion results in two beams at ±θ with respect to
the +x axis [30,31]. It is important to note that the quasistatic
analysis above gives the SPP solutions for large wave numbers
(i.e., short wavelengths), which contain the dominant part of
the atom-environment interaction. Figure 2 shows the angle of
the dominant wave vector (red lines) and group velocity vector
(blue line) of the launched hyperbolic SPP beams with respect
to the +x axis. Note that the group velocity direction (power
flow direction) is approximately rotated by 90◦ with respect
to the wave-vector direction, consistent with a hyperbolic
equifrequency contour for wave vectors of large magnitude.
We also note that as frequency varies ω− → ω+, the wave
vector sweeps the entire xoy plane, whereas the direction of
power flow always remains in the half-plane that includes the
positive x axis. This asymmetry in the excitation of SPPs (no
energy launched toward the negative x semiplane) is a conse-
quence of breaking reciprocity by applying a static magnetic
bias, which enables the emergence of unidirectional surface
modes. We would like to stress that such unidirectionality is
crucial to have nontrivial optical torque. The torque exerted on
an atom is associated with a recoil force; due to conservation
of momentum, the direction of this force is opposite to the
direction of momentum release (wave vector). Therefore, in
reciprocal systems in which SPP propagation is symmetric
in space, the symmetric release of momentum does not lead
to any net force/torque on the emitter. Instead, nonreciprocity
allows breaking these symmetries, hence leading to nontrivial
optical torque [42].

In the following subsections, we use the quasistatic so-
lution of the eigenmodes in Eq. (16) and the corresponding
eigenfrequencies in Eq. (20) to derive a closed-form expres-
sion for the resonant and nonresonant parts of the optical
torque in Eq. (9).

A. Resonant term

The resonant component of the torque is given by the first
of Eq. (9). Rewriting this for a single mode and considering
Fnk ≈ Fk = [Ek 0]T = [−∇φk 0]T gives

Fk(r) =
[
−(ik‖ − k‖ẑ)

Ak‖√
S

eik‖·r−k‖z 0
]T

. (22)

Considering the translational invariance of the system
in the xoy plane, we can use polar coordinates k‖ =
k‖(cos(θ ), sin(θ ), 0) and, by replacing ωk with ωθ , we can
transform the summation over the discrete modes in (9) into an
integral, 1

S

∑
ωk>0 → 1

(2π )2

∫ θ=2π

θ=0 dθ
∫ k‖=+∞
k‖=0 k‖dk‖, obtaining

τ̂ r = Re

{
1

(2π )2

∫ θ=2π

θ=0
dθ

∫ k‖=+∞

k‖=0
dk‖k‖|Ak‖ |2e−2k‖z0ωθγ

∗

× [(ik‖ − k‖ẑ)(−ik‖ − k‖ẑ) · γ ]
1

ωθ − ω0

}
. (23)

The integral in (23) can be rewritten as

τ̂ r = Re

{
1

ε0(2π )2

∫ θ=2π

θ=0
dθ

∫ k‖=+∞

k‖=0
k2
‖e

−2k‖z0dk‖

× aθωθ [γ ∗ × Mθ ]
1

ωθ − ω0

}
, (24)

where aθ ≡ |Ak‖ |2ε0k‖ and

Mθ = 1

k2
‖

(ik‖ − k‖ẑ)(−ik‖ − k‖ẑ) · γ , (25)

which are only functions of θ , not of k‖. In (24), the integral
over k‖ can be evaluated as

∫ +∞
0 k2

‖e
−2k‖z0dk‖ = 1/4z3

0; hence,
we obtain

τ̂ r = 1

4z3
0ε0(2π )2

Re

{∫ θ=2π

θ=0
dθ aθωθ [γ ∗ × Mθ ]

1

ωθ − ω0

}
.

(26)

Finally, the integral over θ may be written as the corre-
sponding principal value (P) integral plus the contribution
of the two poles θ = ±θ0, for which the plasmon frequency
in Eq. (20) matches the transition frequency of the atom
(ω±θ0 = ω0),

τ̂ r = 1

4z3
0ε0(2π )2

Re

{
P

∫ θ=2π

θ=0
aθωθ

[γ ∗ × Mθ ]

ωθ − ω0
dθ

+ iπaθωθ

|∂θωθ | |θ=θ0
[γ ∗ × Mθ=+θ0 + γ ∗ × Mθ=−θ0 ]

}
.

(27)

125146-5



S. ALI HASSANI GANGARAJ et al. PHYSICAL REVIEW B 98, 125146 (2018)

B. Nonresonant term

The nonresonant (Casimir) component of the torque is
given by the second of Eqs. (9). By rewriting it for a single
mode, and following the same procedure as for the resonant
term, it can be shown that

τ̂ n = 1

4z3
0ε0(2π )2

Re

{∫ θ=2π

θ=0
dθ aθωθ

γ × M′
θ

ωθ + ω0

}
, (28)

where the principal value is not necessary due to the absence
of poles on the integration contour, and

M′
θ = 1

k2
‖

(ik‖ − k‖ẑ)(−ik‖ − k‖ẑ) · γ ∗. (29)

IV. SYMMETRIES, EQUILIBRIUM STATES, AND
STABLE/UNSTABLE PHASES

A. Optical torque and symmetry considerations

As discussed in the previous sections [see Eq. (8)], the
optical torque is composed of two components: (i) a resonant
part, τ̂ r , which is the dominant term when the two-level atom
is in its excited energy state, |e〉 [i.e., ρee(t ) = 1], and (ii)
a nonresonant part, τ̂ n, also known as Casimir torque. The
nonresonant part becomes dominant once the atom decays to
its ground state |g〉 [i.e., ρee(t ) = 0]. At any intermediate state
[i.e., 1 > ρee(t ) > 0] both parts contribute. In this section, to
illustrate the application and validity of the developed theory,
we consider a system composed of a two-level atom with
transition frequency ω0 above an interface between vacuum
and a magnetized plasma with ωc/ωp = 0.4. We compare the
exact and quasistatic solutions for the optical torque exerted
on the atom, and offer relevant physical insight into some
interesting and counterintuitive physical effects.

We consider first the resonant component of the optical
torque: the exact solution can be obtained from Eq. (15) by
assuming the atom to be in its excited state (further details on
the calculations of the “electric part” of the Green function
GEE for a gyrotropic half-space are provided in Appendix A).
The quasistatic solution is given by Eq. (27). Figure 3 com-
pares the resonant torque, normalized to N = |γ |2/16z3

0ε0π

(τ̃j = τ̂j /N with j = x, y, z), obtained from the exact and
quasistatic methods, for different orientations of a linearly
(left column) and circularly (right column) polarized atom.
As clearly seen in the figure, the quasistatic and exact results
are in good agreement, which confirms the validity of the
assumptions of our quasistatic analysis, namely the fact that
the dynamics of the system is governed by the unidirectional
excitation of surface waves on the nonreciprocal material-
vacuum interface.

Interestingly, Fig. 3 (left column) shows that for a linearly
polarized atom the optical torque is nonzero only in certain
directions; in particular, the y axis (direction of the bias)
seems to be a privileged direction for the torque. These
results are consistent with general symmetry considerations
applied to the considered system in Fig. 1 biased by a
magnetic field along the +y axis. Due to the presence of a
static bias, the rotational symmetry of the system is broken.
However, our biased system is symmetric (invariant) under
a space inversion (parity transformation) along the y axis,

FIG. 3. Resonant part of the optical torque on an initially excited
atom located at z0 = 0.01c/ωp in the vacuum region above the
plasma-vacuum interface, with ωc/ωp = 0.4. The atom radiates at
frequency ω0, which is varied within the frequency range [ω− ω+],
given by Eq. (21). Left column: linearly polarized atoms, with (a)
γ = x̂, (b) γ = ŷ, and (c) γ = ẑ. Right column: circularly polarized
atoms, with (d) γ = x̂ + iẑ, (e) γ = x̂ + iŷ, and (f) γ = ŷ + iẑ.

Py : y → −y, which transforms a generic magnetic field
(an axial vector) as (Bx, By, Bz) → (−Bx, By,−Bz) (hence,
it does not flip the sign of the y-directed magnetic bias
considered in our system). In addition, the operator Py

transforms the electric dipole moment (a polar vector) as
(γx, γy, γz) → (γx,−γy, γz). The electric field is transformed
in the same way. Hence the torque (∝ γ × E) is transformed
as (τx, τy, τz) → (−τx, τy, − τz).

Now we consider the particular case of a linear
dipole aligned along one of the principal coordinate axes
(x, y, or z), as in the first column of Fig. 3. It is clear that
after the transformation described above, the atom polariza-
tion stays invariant (flipping the sign of the dipole moment
does not change the linear polarization state). Due to the
system’s symmetries, the torque must be invariant under the
parity transformation, Py τ̂ = τ̂ . Thus, the components of the
torque τx and τz, which are odd under the transformation,
must vanish for a dipole aligned along one of the coordinate
axes, meaning that the only nontrivial torque component for
a linearly polarized atom is τy . This fact is indeed consistent
with the results in Fig. 3.

We would like to note that the same symmetry considera-
tions also apply to any polarization state completely contained
in the xoz plane, predicting that the optical torque is nonzero
only along the y direction. This is consistent with the results
in Fig. 3(d) for the case of a circularly polarized dipole in the
xoz plane. To further confirm these predictions, we have also
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FIG. 4. Optical torque on an initially excited atom linearly polar-
ized in the xoz plane, sweeping the radiation frequency in the range
[ω− ω+] (the other parameters of the system are given in the caption
of Fig. 3). The red arrow indicates the orientation of the dipole with
respect to the z axis. As discussed in the text, only the y component
of the torque is nonzero, keeping the atom in the xoz plane.

calculated the torque on an atom linearly polarized in the xoz

plane with different angles with respect to the z axis, as shown
in Fig. 4. Again, the only nonzero component of the torque
is τy . All these results indicate that the optical torque will
not change the plane of polarization for an atom arbitrarily
polarized in the xoz plane.

For the nonresonant component of the optical torque
(Casimir torque), the exact solution is given by Eq. (15)
specialized for an atom in its ground state (hence, for a
sufficiently large time at which the spontaneous-emission
process is completed). The quasistatic solution is given by
Eq. (28). We have verified that the exact and quasistatic
solutions are in good agreement for all the configurations
considered in Fig. 3 (linearly polarized and circularly polar-
ized atoms along the main axes/planes of the system); for
these cases, the nonresonant part of the torque is quite small.
To further show the general applicability of our theory, we
also considered a more complicated (elliptical and oblique)
dipole polarization, as indicated in the caption of Fig. 5, which
yields a larger Casimir torque. As shown in Fig. 5, the two
solutions are in good agreement, confirming again the validity
of our quasistatic assumptions, namely the fact that response
is dominated by unidirectional surface waves.

B. Polarization equilibrium states for resonant optical torque

One of the most interesting aspects that can be studied
with our theory is the existence of equilibrium states for
the polarization of an atom under resonant and nonresonant
torque action. In other words, are there planes and axes along
which the atom dipole moment tends to spontaneously align?

As discussed in the previous section, the symmetries of the
system imply that, for an atom arbitrarily polarized in the xoz

plane, the only nontrivial torque component is along the y

axis; therefore, the torque acts to rotate the dipole in the xoz

plane, but it does not change the plane of polarization.
To understand whether the xoz plane truly represents a sta-

ble plane for an atom in the environment considered in Fig. 1,
we perturb the initial polarization state out of this plane.
Figure 6(a) shows a right-handed circularly polarized (RCP)
atom (“right-handed” looking at the atom toward the +y axis)

FIG. 5. Nonresonant part of the optical torque (fluctuation-
induced Casimir torque) on an atom in its ground state, with γ =
(1 + 1i )x̂ + iŷ + ẑ, sweeping the radiation frequency in the range
[ω− ω+] (the other parameters of the system are given in the caption
of Fig. 3). The three panels show the three Cartesian components of
the torque, comparing the quasistatic solution (solid blue) with the
exact solution (dashed red).

with dipole moment mostly in the xoz plane, but with a small
component along the y axis. When the y component of the
dipole moment is positive (negative), a positive (negative)
torque appears along the z axis, which tends to rotate the
plane of polarization out of the xoz plane. Therefore, the xoz

plane is not a stable equilibrium plane for an RCP atom. The
situation is drastically different for a left-handed circularly
polarized (LCP) atom (“left-handed” looking at the atom
toward the +y axis). As depicted in Fig. 6(b), when the LCP
atom dipole moment is deviated toward the positive (negative)
sides of the y axis, a negative (positive) torque along the z axis

FIG. 6. Normalized optical torque τz, in the frequency range
[ω− ω+], exerted on an LCP atom (a) and an RCP atom (b), with
the polarization plane tilted from the xoz plane by a small angle δφ.
The torque tends to align the polarization plane of an LCP atom to
the xoz plane, whereas it tends to rotate the polarization plane of an
RCP atom out of the xoz plane.
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FIG. 7. Normalized optical torque components, τz (a) and τx

(b), in the frequency range [ω− ω+], exerted on an atom linearly
polarized in a direction slightly deviated from the y axis by a small
angle δφ toward (a) the x axis and (b) the z axis. Depending on
the frequency, an atom with linear polarization nearly parallel to the
y axis (direction of the static bias) may exhibit stable or unstable
behavior. The vertical dashed line represents the frequency boundary
between stable and unstable phases, corresponding to the vertical
dashed line in Fig. 2.

appears, which pushes back the plane of polarization to its
equilibrium state, hence trying to keep the polarization in the
xoz plane. To give an intuitive description of this effect, we
note that this behavior is consistent with an heuristic analogy
between a CP dipole, a circulating current, and a magnetic
dipole: the equivalent magnetic dipole, orthogonal to the plane
of polarization of the CP dipole, tends to align along the static
magnetic field (+y axis). Depending on the sense of rotation
of the CP dipole, the equivalent magnetic dipole will therefore
be mostly parallel (LCP) or antiparallel (RCP) with respect to
the bias direction. In the latter case, the torque will make the
atom rotate by 180◦ about the z axis, so that the dipole sense
of rotation also flips from the point of view of the bias field
direction.

Before proceeding in our discussion, it is worthwhile to
briefly summarize the main results obtained so far. If the atom
is free to rotate: (i) for any polarization, an atom with dipole
moment in the xoz plane will stay in the xoz plane; (ii) a
linearly polarized atom with dipole moment along the bias
will remain along the bias; (iii) an arbitrarily oriented LCP
atom will be pushed into the xoz plane. These findings hold
over the entire frequency range where unidirectional SPPs
exist, i.e., ω− � ω � ω+.

Next, we study whether the direction of the bias itself
provides a stable equilibrium position for a linearly polarized
atom in this frequency range. As shown in Fig. 3(b), when
the atom is linearly polarized along the y axis, the torque is
identically zero. To investigate the stability of an atom along
this direction, we deviate the polarization along the x and z

axes, and study the resulting torque on the atom. Figure 7(a)
shows the case in which the polarization has a small positive
(negative) angle with respect to the +x axis. We see that, for
the range of frequencies

ω− = 1

2

( − ωc +
√

2ω2
p + ω2

c

)
< ω0 < ωm =

√
ω2

p

2
+ ω2

c

2
,

(30)
a positive (negative) torque along the z axis appears, which
pushes the polarization back toward the y axis; conversely,

for the rest of the frequency range, the sign of the torque flips,
which tends to deviate the atom polarization even more toward
the x axis. Similarly, if we consider a small deviation along the
z axis, a nonzero torque appears along the x axis, as shown
in Fig. 7(b). In this case, within the same frequency range
as in (30), a positive (negative) torque appears for negative
(positive) deviations, which brings back the atom to its initial
state along the y axis, whereas for the rest of the frequency
range the atom polarization is unstable and the torque tries to
increase the z component of the dipole moment. Therefore,
for a linearly polarized atom along the y axis (direction of
magnetic bias), for transition frequencies within [ω− ωm], we
observe an unusually stable behavior: the linearly polarized
electric dipole tends to align itself along the static magnetic
field direction, which is a behavior typically expected from
magnetic dipoles. Conversely, for transition frequencies larger
than ωm the state of polarization along the y axis is unstable.
The boundary between these two regimes is the frequency
ωm, at which the momentum of the SPP modes becomes
parallel to the y axis (bias direction) with θ = ±90◦, as seen
in Eq. (20) and Fig. 2 (dashed black line in Fig. 2). Exactly
at this frequency the atom releases momentum symmetrically
with respect to the geometry of the system, hence the recoil
force felt by the atom [30,31] is minimized. Interestingly,
by tuning the bias, and thereby the cyclotron frequency, this
boundary frequency ωm between stable and unstable phases
can be largely tuned, which provides an additional degree of
freedom for the manipulation of small polarized objects.

C. Polarization equilibrium states for fluctuation-induced
Casimir torque

As shown in Appendix B, the Casimir torque (nonresonant
part of the torque) can be calculated directly from the zero-
point interaction energy [30]

EC = − 1

2π

∫ ∞

0
dξ tr{(−iωG)ω=iξ · α̃(iξ )} (31)

by taking the derivative of the energy with respect to the
spatial angle of the dipole (the energy needed to rotate an
object by an angle ϕ is τϕ). Equation (31) is valid for both
lossless and lossy environments, and the quantity α̃ is the
normalized polarizability of the two-level system. Further
details are discussed in Appendix B. Hence, since the Casimir
torque is directly determined by the angular distribution of
the zero-point energy, it is possible to find the equilibrium
states of the polarization for Casimir torque by plotting the
energy as a function of the orientation of the dipole. This is
done in Fig. 8, where the minima of the energy correspond
to the stable equilibrium positions and the maxima of the en-
ergy correspond to unstable equilibrium points. These results
show that an atom in its ground state above a nonreciprocal
gyrotropic material will experience a nonzero torque if its
orientation is not along one of the stable directions in Fig. 8,
namely, φ = π/2, θ = π/2 or 3π/2, corresponding to the y

axis of the system (bias direction). Hence, if the atom is free
to move, it will gain a finite nonzero amount of energy, in
the form of kinetic energy, corresponding to the difference
between its initial state and the final state, i.e., the minima
of the Casimir energy in Fig. 8. This energy could then be
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FIG. 8. Normalized zero-point interaction energy for a linearly
polarized atom above a nonreciprocal (gyrotropic) material with
properties given in the caption of Fig. 3, for different angular
orientations. As indicated in Fig. 1, θ is measured from the +x axis
and φ from the +z axis. The derivative of the zero-point energy, with
respect to the angle, gives the Casimir torque on the atom, as shown
in Appendix B.

released, exactly one time, for example in the form of a
photon or phonon, and the atom would align itself along
the y axis to minimize the zero-point energy (note that this
“extraction” of energy from the quantum vacuum does not
violate any thermodynamics law: this finite amount of energy
always comes from the work done to prepare the system in a
configuration where Casimir force/torque is observed).

V. CONCLUSION

In this paper, we have investigated the quantum optical
torque acting on a two-level system, initially prepared in an
arbitrary state, interacting with a general (nonreciprocal, bian-
isotropic, and dispersive) electromagnetic environment under
the Markov approximation. We have rigorously shown that the
optical torque can be decomposed into resonant and nonreso-
nant parts, expressed explicitly in terms of the system’s Green
function. When the atom is initially excited, and undergoes a
spontaneous-emission process, the resonant term dominates,
governed by the resonantly excited electromagnetic modes of
the surrounding structure (e.g., guided surface modes if the
atom is above a stratified medium); conversely, when the atom
decays to its ground state, it is the nonresonant part of the
torque (fluctuation-induced Casimir torque) that dominates
the response.

We have then applied our general theory to study the rele-
vant case of a two-level atom above a continuous material with
strong nonreciprocity, implemented in the form of an electric
plasma biased by a static magnetic field. For this physical
system, the optical torque has been evaluated with our exact
formulation and with an approximated quasistatic analysis.
Numerical studies confirm the emergence of nonzero torque
on the atom in specific directions, due to the excitation of
unidirectional surface plasmons on the nonreciprocal material
interface. Interestingly, we have discovered the existence of
equilibrium polarization planes and axes, determined by the
direction of the magnetic bias, along which the polarized atom
naturally tends to align, behaving analogously to a magnetic
dipole in a constant magnetic field. We have also found that,
depending on the atom energy state, polarization, and atomic
transition frequency, there are distinct stable and unstable
phases, in which the optical torque produces a force working

to change the polarization of the atom (unstable) or to keep
the atom in its initial polarization state (stable).

We expect that the theoretical predictions presented in this
paper would still be valid, at least qualitatively, in other types
of structures that support unidirectional wave propagation, as
the described physical effects mostly depend on the existence
of a preferential sense of direction in the system, rather than
on its specific implementation details. In this context, we
would like to note that our general theory can be applied to
study other classes of nonreciprocal and topological systems,
and, more broadly, any inhomogeneous, dissipative, disper-
sive, bianisotropic structure.

In summary, we believe that the theory and results pre-
sented in this paper offer relevant physical insight into the
electrodynamics of quantum emitters near complex media,
and may open new and interesting research directions at
the intersection of different fields, including nanophotonics,
quantum optics, optomechanics, and the emerging area of
topological and nonreciprocal photonics.
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APPENDIX A: ELECTRIC DYADIC GREEN FUNCTION
FOR A THREE-DIMENSIONAL NONRECIPROCAL

MATERIAL HALF-SPACE

The electric dyadic Green function GEE relates the electric
field emitted by a classical dipole with its electric dipole
moment γ through the relation E = Ep + Es = −iωGEE · γ ,
where Ep is the primary field radiated by the dipole in free
space, and Es is the scattered field from the environment in
which the dipole is located. Since the expression of Ep is
given in several textbooks, we only derive here the scattered
field for the structure of interest. For an arbitrary-polarized
electric dipole (emitting atom) above the interface between
a gyrotropic medium (magnetized plasma) and vacuum, the
scattered electric field above the interface can be written as
[30]

Es = 1

(2π )2

∫∫
dkxdkye

ik‖·r e−γ0(d+z)

2γ0
C(ω, k‖) · γ

ε0
, (A1)

where

C(ω, k‖)=
(

I‖+ẑ
ik‖
γ0

)
· R(ω, k‖) · (

iγ0k‖̂z + k2
0I‖−k‖k‖

)
,

(A2)

with I‖ = x̂̂x + ŷ̂y and k‖ = kx x̂ + ky ŷ. Here, R(ω, kx, ky )
is a 2 × 2 reflection matrix that relates the tangential (to the
interface) components x and y of the reflected electric field
to the corresponding x and y components of the incident field
[30],

R(ω, k‖) = (Y0 + Yg )−1 · (Y0 − Yg ), (A3)
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where

Y0 = 1

ik0γ0

(
−γ 2

0 + k2
x kxky

kxky −γ 2
0 + k2

y

)
, (A4)

and

Yg =
⎛⎝ �1k

2
t,1

k0

�2k
2
t,2

k0

�1kxky+iγz,1(θ1−1)ky

k0

�2kxky+iγz,2(θ2−1)ky

k0

⎞⎠
×

(
kx + iγz,1�1 kx + iγz,2�2

θ1ky θ2ky

)−1

(A5)

relates the tangential components of the magnetic field to the
tangential components of the electric field in vacuum and in
the magnetized plasma, respectively. The parameters γz,i , i =
1, 2, with Re(γz,i ) > 0 and �i , θi , in the matrices above are
defined in [30].

Equation (A2) can be written in the following form:

C(ω, k‖) = A · R(ω, k‖) · B, (A6)

with

A = x̂x̂ + ŷŷ + i

γ0
(kxẑx̂ + kyẑŷ) =

⎛⎝ 1 0 0
0 1 0
ikx

γ0

iky

γ0
0

⎞⎠,

(A7)

B = iγ0(kxx̂ẑ + kyŷẑ) + k2
0 x̂x̂ + k2

0 ŷŷ − k2
x x̂x̂ − kxkyx̂ŷ

− kykxŷx̂ − kykyŷŷ =

⎛⎜⎝k2
0 − k2

x −kxky iγ0kx

−kykx k2
0 − k2

y iγ0ky

0 0 0

⎞⎟⎠.

(A8)

The reflection matrix R(ω, k‖) is a 2 × 2 matrix, which we
write in 3 × 3 form as

R
(
ω, k‖

) =
⎛⎝R11 R12 0

R21 R22 0
0 0 0

⎞⎠, (A9)

therefore

C =
⎛⎝ 1 0 0

0 1 0
ikx

γ0

iky

γ0
0

⎞⎠⎛⎝R11 R12 0
R21 R22 0
0 0 0

⎞⎠⎛⎝k2
0 − k2

x −kxky iγ0kx

−kykx k2
0 − k2

y iγ0ky

0 0 0

⎞⎠

=

⎛⎜⎝R11(k2
0 − k2

x ) + R12(−kykx ) R11(−kxky ) + R12(k2
0 − k2

y ) R11(iγ0kx ) + R12(iγ0ky )

R21(k2
0 − k2

x ) + R22(−kykx ) R21(−kxky ) + R22(k2
0 − k2

y ) R21(iγ0kx ) + R22(iγ0ky )

J31(k2
0 − k2

x ) + J32(−kykx ) J31(−kxky ) + J32(k2
0 − k2

y ) J31(iγ0kx ) + J32(iγ0ky )

⎞⎟⎠, (A10)

where

J31 = i

γ0
(kxR11 + kyR21), J32 = i

γ0
(kxR12 + kyR22).

(A11)

For an atom with generic polarization, γ = γxx̂ + γyŷ +
γzẑ, the integrand of (A1) can therefore be obtained in a
straightforward manner from the equations above.

APPENDIX B: ZERO-POINT TORQUE FOR LOSSY
ENVIRONMENT

While the Green function for a closed lossless environment
is analytic everywhere in the complex frequency plane except
on the real axis, in the lossy case the Green function is usually
not analytic in the lower half-plane, and may have poles
on the lower-half-plane imaginary axis. Hence, our integral
formulation in the main text only strictly applies to lossless
environments. Nevertheless, it is known from the fluctuation-
dissipation theorem that fluctuation-induced forces/torques
are determined, in all cases, by the values of the Green
function in the upper half-plane [12]. Therefore, if we can
write the response (e.g., Casimir torque) of the system in terms
of only the upper-half-plane values of the Green function, this

modified formulation would apply to both lossless and lossy
cases.

From Eq. (15), the torque for the quantum-vacuum case is

τC = Re

{
1

2π

∫ ∞

−∞
dξ

[
γ̃ ∗ × (−iωG)ω=iξ

ω0 − iξ
· γ̃ + γ̃

× (−iωG)ω=iξ

ω0 + iξ
· γ̃ ∗

]}
. (B1)

This result was derived under the assumption that the
system is lossless. To extend it to a lossy environment, as
mentioned above, we need to rewrite the torque as an integral
in the upper-half complex frequency plane.

To this end, still assuming for now that there is no dissi-
pation, we rewrite the zero-point torque in a more compact
manner as

τC = 1

2π
Re

∫ ∞

−∞
dξ tr(α̃(iξ ) × (−iωG)ω=iξ ), (B2)

where

α̃(iξ ) =
(

γ̃ γ̃ ∗ 1

ω0 − iξ
+ γ̃ ∗γ̃

1

ω0 + iξ

)
(B3)
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is the normalized polarizability of the two-level atom. For two
generic (6 × 6) matrices A and B, we define

tr(A × B) ≡
∑

i

ûi · (A × B) · ûi , (B4)

where A × B = A · (1× 0
0 1×)B is a rank 3 tensor, and 1 is the

unit matrix of dimension 3. Note that tr(A × B) is a vector.
It can be checked that α̃(iξ ) = α̃∗(iξ ) and, because of the

reality of the electromagnetic field,

G∗(r, r′, ω) = G(r, r′,−ω∗). (B5)

Hence, G(r, r, ω) is always real-valued on the imaginary-
frequency axis. These properties show that it is possible to
drop the “Re” operator in Eq. (B2).

Furthermore, we note that for a lossless system, the Green
function satisfies

G†(r, r′, ω) = −G(r′, r, ω∗), (B6)

which, in conjunction with Eq. (B5), implies that

[−iωG(r, r, ω)]ω=−iξ = [−iωG(r, r, ω)]T ω=+iξ . (B7)

Using the above formula and α̃(−iξ ) = α̃T (iξ ) in Eq. (B2),
we can write the zero-point torque as an integral over the semi-
infinite section of the imaginary axis contained in the upper-
half plane,

τC = 1

2π

∫ ∞

0
dξ [tr{α̃(iξ ) × (−iωG)ω=iξ }

+ tr{α̃T (iξ ) × (−iωG)T ω=iξ }]. (B8)

Taking into account that tr(A × B) = −tr(BT × AT ), we get

τC = 1

2π

∫ ∞

0
dξ [tr{α̃(iξ ) × (−iωG)ω=iξ }

− tr{(−iωG)ω=iξ × α̃(iξ )}]. (B9)

Finally, this result may be spelled out as follows:

τC = 1

2π

∫ ∞

0
dξ

(
1

ω0 − iξ
γ̃ ∗ × (−iωG)ω=iξ · γ̃

+ 1

ω0 + iξ
γ̃ × (−iωG)ω=iξ · γ̃ ∗

)

− 1

2π

∫ ∞

0
dξ

(
1

ω0 − iξ
γ̃ ∗ · (−iωG)ω=iξ × γ̃

+ 1

ω0 + iξ
γ̃ · (−iωG)ω=iξ × γ̃ ∗

)
. (B10)

This formula gives the zero-point torque as an integral of
the system’s Green function evaluated in the upper half of
the complex frequency plane, and thereby it can be used to
evaluate the torque of generic lossy photonic systems.

For completeness, next we prove that the zero-point torque
[Eq. (B10)] can be directly written in terms of the zero-point
energy of the system [30]. The formula given in Ref. [30] is
only valid for lossless systems, but it can be extended to lossy
systems using an approach similar to the one used above for
the torque, obtaining

EC = − 1

2π

∫ ∞

0
dξ

(
1

ω0 − iξ
γ̃ ∗ · (−iωG)ω=iξ · γ̃

+ 1

ω0 + iξ
γ̃ · (−iωG)ω=iξ · γ̃ ∗

)
, (B11)

which corresponds to Eq. (31).
As an example, we consider that the atom polariza-

tion is linear, and we calculate the torque along the z di-
rection. Hence, we can write γ = γ (cos(θ ), sin(θ ), 0) (θ
is measured from the +x axis; see Fig. 1). Since ∂θ =
γ (−sin(θ ), cos(θ ), 0) = ẑ × γ , and noting that the Green
function is independent of the dipole orientation, it follows
that

−∂θEC = 1

2π

∫ ∞

0
dξ

(
1

ω0 − iξ
ẑ × γ̃ ∗ · (−iωG)ω=iξ · γ̃

+ 1

ω0 + iξ
ẑ × γ̃ · (−iωG)ω=iξ · γ̃ ∗

)
+ 1

2π

∫ ∞

0
dξ

(
1

ω0 − iξ
γ̃ ∗ · (−iωG)ω=iξ · ẑ × γ̃

+ 1

ω0 + iξ
γ̃ · (−iωG)ω=iξ · ẑ × γ̃ ∗

)
. (B12)

By comparing this formula with Eq. (B10), we see that, as
expected, ẑ · τC = −∂θEC .
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