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Introduction

The election problem in a network consists of distinguishing a unique node, the leader, which can subsequently act as coordinator, initiator, and more generally performs distinguished operations in the network (see [START_REF] Tanenbaum | Distributed Systems -Principles and Paradigms[END_REF] p. 262). Indeed, once a leader is established, many problems become simple, making election a common building block in distributed computing. Election is probably the most studied task (together with consensus) in the distributed computing literature [START_REF] Dinitz | Bit complexity of breaking and achieving symmetry in chains and rings[END_REF], starting with the works of Le Lann [START_REF] Lelann | Distributed systems: Towards a formal approach[END_REF] and Gallager [START_REF] Gallager | Finding a leader in a network with o(e + n log n) messages[END_REF] in the late 70's.

A distributed algorithm solves the election problem if it always terminates and in the final configuration exactly one process (or node) is in the elected state and all others are in the non-elected state. It is also required that once a process becomes elected or non-elected, it remains so for the rest of the execution. The vast body of literature on election (see [START_REF] Attiya | Distributed computing: fundamentals, simulations, and advanced topics[END_REF][START_REF] Lynch | Distributed algorithms[END_REF][START_REF] Santoro | Design and analysis of distributed algorithm[END_REF][START_REF] Tel | Introduction to distributed algorithms[END_REF] and references therein) actually covers a number of different topics, which can be grouped according to three main directions: i) The feasibility of deterministic election in anonymous networks, starting with the seminal paper of Angluin [START_REF] Angluin | Local and global properties in networks of processors[END_REF] and the key role of coverings (i.e. graph homomorphisms that prevent symmetry breaking, and thereby the uniqueness of a leader); ii) The complexity of deterministic election in identified networks (i.e. every processor has a unique identifier); and iii) The complexity of probabilistic election in anonymous or identified networks (identifiers play secondary roles here).

The present work is in the second category, that is, we assume that each node has a unique identifier which is a positive integer of size O(log n), where n is the number of nodes. The network is multi-hop and nodes communicate using messages in synchronous rounds. The exact complexity of deterministic leader election in this setting has proven elusive for decades and even simple questions remain open [START_REF] Kutten | On the complexity of universal leader election[END_REF]. We review here the most relevant results and challenges around this problem (the reader is referred to the dedicated section for more content). In the case of logarithmic-size messages (i.e. messages of size O(log n)), we know since Peleg [START_REF] Peleg | Time-optimal leader election in general networks[END_REF] that O(D) rounds are sufficient to elect a leader in arbitrary networks, where D is the diameter of the network. This was recently proven optimal by Kutten et al. [START_REF] Kutten | On the complexity of universal leader election[END_REF] using a very general Ω(D) lower bound (that applies even in the probabilistic setting). Independently, Fusco and Pelc [START_REF] Fusco | Knowledge, level of symmetry, and time of leader election[END_REF] showed that the time complexity of leader election is Ω(D + λ) where λ is the smallest depth at which some node has a unique view, called the level of symmetry of the network. (The view at depth t from a node is the tree of all paths of length t originating at this node.) If nodes have unique identifiers, then λ = 0, which implies the same Ω(D) bound as in [START_REF] Kutten | On the complexity of universal leader election[END_REF].

Regarding message complexity, Gallager [START_REF] Gallager | Finding a leader in a network with o(e + n log n) messages[END_REF] presents the first election algorithm for general graphs with O(m + n log n) messages, where m is the number of edges, and a running time of O(n log n). On the negative side, Burns [START_REF] Burns | A formal model for message passing systems[END_REF] proves a Ω(n log n) lower bound and Kutten et al. [START_REF] Kutten | On the complexity of universal leader election[END_REF] a Ω(m) lower bound which applies even if n is known and the algorithm is randomized. Put together, both lower bounds yield a matching Ω(m + n log n) number of messages. (Santoro [42] also proves a Ω(m + n log n) lower bound for the more specific problem of finding the maximum ID, in a deterministic setting with n unknown.)

A few years after Gallager [START_REF] Gallager | Finding a leader in a network with o(e + n log n) messages[END_REF], Awerbuch [START_REF] Awerbuch | Optimal distributed algorithms for minimum weight spanning tree, counting, leader election and related problems (detailed summary)[END_REF] presents an algorithm whose message complexity is again O(m + n log n), but running time is taken down to O(n).

A number of questions remain open for election. Peleg asks in [START_REF] Peleg | Time-optimal leader election in general networks[END_REF] whether an algorithm could be both optimal in time and in number of messages. The answer depends on the setting, but remains essentially open [START_REF] Kutten | On the complexity of universal leader election[END_REF]. In the conclusion of their paper, Fusco and Pelc [START_REF] Fusco | Knowledge, level of symmetry, and time of leader election[END_REF] also observe that it would be interesting to investigate other complexity measures for the leader election problem, such as bit complexity. This measure can be viewed as a natural extension of communication complexity (introduced by Yao [START_REF] Yao | Some complexity questions related to distributed computing[END_REF]) to the analysis of tasks in a distributed setting.

Following [START_REF] Kothapalli | Distributed coloring in O( √ log n) bit rounds[END_REF], the bit round complexity of an algorithm A is the total number of bit rounds it takes for A to terminate, where a bit round is a round with single bit messages. This measure has become popular recently, as it captures into a single quantity aspects that relate both to time and to the amount of information exchanged. In this framework, the time-optimal algorithm of Peleg [START_REF] Peleg | Time-optimal leader election in general networks[END_REF] results in a bit round complexity of O(D log n) (i.e. O(D) rounds with O(log n) message size), and the message-optimal algorithm of [START_REF] Awerbuch | Optimal distributed algorithms for minimum weight spanning tree, counting, leader election and related problems (detailed summary)[END_REF] results in a O(n log n) bit round complexity (i.e. O(n) time with O(log n) message size). More recent approaches such as [START_REF] Förster | Deterministic leader election in multi-hop beeping networks[END_REF] in the beeping models (therefore exchanging single bits per rounds) still remain at a O(D log n) bit round complexity.

In this paper, we present the first algorithm whose bit round complexity breaks the O(D log n) barrier, using essentially a new pipelining technique for spreading the identifiers. Our algorithm requires only O(D + log n) bit rounds and works in arbitrary synchronous networks. We show that this is optimal by combining a lower bound from [START_REF] Kutten | On the complexity of universal leader election[END_REF] and a recent communication complexity result by Dinitz and Solomon [START_REF] Dinitz | Two absolute bounds for distributed bit complexity[END_REF]. This work is thus a step forward in understanding election, and a first (positive) answer to whether optimality can be achieved both in time and in the amount of information exchanged. (As opposed to measuring time on the one hand, and the number of messages of a given size on the other hand.) Incidentally, our results also illustrate the benefits of studying optimality under the unified lenses of bit round complexity.

Contributions

We present an election algorithm ST T , having time complexity of O(D + log n) with messages of size O(1), where D is the diameter of the network. Algorithm ST T solves the explicit (i.e. strong) variant of the problem defined in [START_REF] Kutten | On the complexity of universal leader election[END_REF], namely, the identifier of the elected node is eventually known to all the nodes. It also fulfills requirements from [START_REF] Dinitz | Two absolute bounds for distributed bit complexity[END_REF], such as ensuring that every non-leader node knows which local link is in direction of the leader, and these nodes learn the maximal id network-wide (MaxF), as a by-product of electing this specific node in the explicit variant.

The global architecture of our algorithm follows a (now) classical principle, similar to that used e.g. by Gallager [START_REF] Gallager | Finding a leader in a network with o(e + n log n) messages[END_REF] or Peleg [START_REF] Peleg | Time-optimal leader election in general networks[END_REF]. It consists of a competition of spanning tree constructions that works by extinction of those trees originating at nodes with lower identifiers (see also Algorithm 4 in [START_REF] Attiya | Distributed computing: fundamentals, simulations, and advanced topics[END_REF] and discussion therein). Eventually, a single spanning tree survives, whose root is the node with highest identifier. This node becomes elected when it detects termination (recursively from the leaves up the root).

Here the difficulty (and thus main contribution) arises from designing such algorithms with the extra constraint that only constant size messages are used. Of course, one might simulate O(log n)-size messages in the obvious way paying O(log n) bit rounds for each message. But then, the bit round complexity remains O(D log n). In contrast, by introducing new pipelining techniques whose applicability extends the scope of the sole election problem, we take the complexity down to O(D + log n).

For ease of exposition, the ST T algorithm is split into three components, whose execution is joint in a specific way.

1. A spreading algorithm S which pipelines the maximal identifier bitwise to every node, in a mix of battles (comparisons), conquests (progress of locally higher prefixes), and correction waves of bounded amplitude; 2. A spanning tree algorithm that executes in parallel of S and whose union with S is denoted ST . It consists of updating the tree relations based on what neighbour brought the highest prefix so far;

3. A termination detection algorithm that executes in parallel of ST and whose union with ST is denoted ST T . This component enables the node with highest identifier (and only this one) to detect termination of the spanning tree construction of which it is itself the root.

An extra component can be added to broadcast a (constant size) termination signal from the root down the tree, once election is complete. This component is trivial and therefore not described here.

Lower Bound: Dinitz and Solomon [START_REF] Dinitz | Two absolute bounds for distributed bit complexity[END_REF] prove a lower bound (Theorem 1 below) on the leader election problem among two nodes.

Theorem 1 ([19]

). Let M be an integer such that M ≥ 2. Let G be the graph with two nodes linked by an edge, and suppose that each node has a unique identifier taken from the set

Z M = {0, • • • , M }.
The bit round complexity of the Leader task and of the MaxF version is exactly 2 log 2 ((M + 2)/3.5) .

This theorem implies that the time complexity of an election algorithm with messages of size O(1) (bit round complexity) is Ω(log n).

On the other hand, the lower bound by Kutten et al. in [START_REF] Kutten | On the complexity of universal leader election[END_REF], establishing that Ω(D) time is required with logarithmic size messages, obviously extends to constant size messages. Put together, these results imply that the bit complexity of leader election with messages of size O(1) and identifiers of size O(log n) is Ω(D + log n), which makes our algorithm bit round optimal (up to a constant factor).

In fact, the lower bound holds for arbitrary sizes |id| of identifiers (necessarily larger than log n, though, since they must be unique). Likewise, the complexity of our algorithm is expressed relative to identifiers of arbitrary sizes (see Theorem 19). Hence, the bit round complexity of the election problem is in fact Θ(D+|id|). Table 1.1 summarises these elements, taking |id| = O(log n) as the most common (illustrative) value.

Time

Number of messages Message size Bit round complexity Awerbuch [START_REF] Awerbuch | Optimal distributed algorithms for minimum weight spanning tree, counting, leader election and related problems (detailed summary)[END_REF] O

(n) Θ(m + n log n) O(log n) O(n log n) Peleg [40] Θ(D) O(D m) O(log n) O(D log n) This paper O(D + log n) O((D + log n)m) O(1) Θ(D + log n)
Table 1. Best known solutions in terms of time and number of messages, compared to our algorithm.

Outline: After general definitions in Section 2, we present the three components of the algorithm: the spreading algorithm S (Section 3), its joint use with the spanning tree algorithm (ST , Section 4), and the adjunction of termination detection (ST T , Section 5). Further related works on the leader election problem are presented in Section 6. We conclude in Section 7 with some remarks.

Model and definitions

This section presents the network model (synchronous message passing, unique identifiers) and give the main definitions used throughout the paper regarding graph theory, language theory, and bit complexity.

The Network

We consider a failure-free message passing model in a point-to-point communication network described by a connected graph G = (V, E) where the nodes V represent network processes (or nodes) and the edges E represent bidirectional communication channels. Processes communicate by message passing: a process sends a message to another by depositing the message in the corresponding channel.

Let n be the size of V . We assume that each node u is identified by a unique positive integer of O(log n) bits, called identifier and denoted Id u (in fact, Id u denotes both the identifier and its binary representation). We do not assume any global knowledge on the network, not even the size or an upper bound on the size, and the nodes do not require position or distance information. Every node is equipped with a port numbering function (i.e. a bijection between the set of incident edges I u and the integers in [1, |I u |]), which allows it to identify which channel a message was received from, or must be sent to. Two nodes u and v are said to be neighbours if they can communicate through a port.

Finally, we assume the system is fully synchronous, namely, all processes start at the same time and time proceeds in synchronised rounds composed of the following three steps:

1. Send messages to (some of) the neighbours, 2. Receive messages from (some of) the neighbours, 3. Perform local computation.

The time complexity of an algorithm is the number of such rounds needed to complete the execution in the worst case.

Further definitions

The paper uses a number of definitions from graph theory and formal language theory. Although most readers may be familiar with them, we recall the most important ones. Then we define the bit round complexity.

Definitions on graphs: These definitions are selected from [START_REF]Handbook of discrete and combinatorial mathematics[END_REF] (Chapter 8). A tree is a connected acyclic graph. A rooted tree is a tree with one distinguished node, called the root, in which all edges are implicitly directed away from the root. A spanning tree of a connected graph G = (V, E) is a tree T = (V, E ) such that E ⊆ E. A forest is an acyclic graph. A spanning forest of a graph G = (V, E) is a forest whose node set is V and edge set is a subset of E. A rooted forest is a forest such that each tree of the forest is rooted. A child of a node u in a rooted tree is an immediate successor of u on a path from the root. A descendant of a node u in a rooted tree is u itself or any node that is a successor of u on a path from the root. The parent of a node u in a rooted tree is a node that is the immediate predecessor of u on a path to u from the root.

Definitions on languages: These definitions are selected from [START_REF]Handbook of discrete and combinatorial mathematics[END_REF] (Chapter 16). Let A be an alphabet, A * is the set of all words over A, the empty word is denoted by . If x is a non-empty word of length p over the alphabet A then x can be written as the concatenation of p letters, i.e.,

x = x[1]x[2] • • • x[p] with each x[i] in A. If a ∈ A
and i is a positive integer then a i is the concatenation i times of the letter a. For two words x and y over alphabet A, x is said to be a prefix (resp. proper prefix) of y if there exists a word (resp. non-empty word) z such that y = xz.

Bit round complexity:

The bit complexity in general may be viewed as a natural extension of communication complexity (introduced by Yao [START_REF] Yao | Some complexity questions related to distributed computing[END_REF]) to the analysis of tasks in a distributed setting. An introduction to the area can be found in Kushilevitz and Nisan [START_REF] Kushilevitz | Communication complexity[END_REF]. In this paper, we follow the definition from [START_REF] Kothapalli | Distributed coloring in O( √ log n) bit rounds[END_REF], that is, the bit round complexity of an algorithm A is the total number of bit rounds it takes for A to terminate, where a bit round is a synchronous round with single bit messages. This measure captures into a single quantity aspects that relate both to time and to the amount of information exchanged. Other definitions are considered in the literature, in [START_REF] Bar-Noy | One-bit algorithms[END_REF][START_REF] Bodlaender | The distributed bit complexity of the ring: from the anonymous case to the non-anonymous case[END_REF][START_REF] Bodlaender | Bit-optimal election in synchronous rings[END_REF][START_REF] Dinitz | Bit complexity of breaking and achieving symmetry in chains and rings[END_REF] the bit complexity is the total number of bits sent until global termination. In [START_REF] Schneider | Trading bit, message, and time complexity of distributed algorithms[END_REF], it is the maximum number of bits sent through a same channel. In both variants, silences may convey much information, which is why we consider the definition from [START_REF] Kothapalli | Distributed coloring in O( √ log n) bit rounds[END_REF] in terms of round complexity as more comprehensive.

A spreading algorithm

We present a distributed spreading algorithm using only messages of size O(1) which allows each node to know the highest identifier among the set of all identifiers with a time complexity of O(D + log n), where D is the diameter of G. This algorithm is the main component of the ST T algorithm, standing for the S in the acronym.

Preamble

Given the binary representation Id of an identifier, we define α(Id) as the word

α(Id) = 1 |Id| 0Id.
For instance, for the integer 23, Id = 10111 and α(Id) = 11111010111. This encoding has the nice property that it extends the natural order < of integers into a lexicographic order ≺ on their α-encoding.

If u and v are two nodes with identifiers Id u and Id v ,

Id u < Id v ⇔ α(Id u ) ≺ α(Id v ).
As a result, the order between two identifiers Id u and Id v is the order induced by the first letter which differs in α(Id u ) and α(Id v ). This property is key to our algorithm, in which the spreading of identifiers progresses bitwise based on prefix comparisons.

The algorithm S

We describe here the spreading component of the algorithm, i.e. the S in ST T , whose purpose is to spread the largest identifier network-wide. For simplicity, we present here the algorithm independently from termination detection, which is dealt with in a dedicated section (Section 5).

Variables: Each node can be active or f ollower, depending on whether it is still a candidate for becoming the leader (i.e. no higher identifier was detected so far). Each node u also has variables Y u , Z u and Z [u]v (one for each neighbour v of u) which are words over the alphabet {0, 1}. Y u is a shorthand for α(Id u ), it is set initially and never changes afterwards. Z u is a prefix of Y w , for some node w (possibly u itself). It indicates the highest prefix known so far by u. On each node, this variable will eventually converge to the α-encoding of the highest identifier. Finally, for each neighbour v of u, Z [u]v is the latest value of Z v known to u.

Initialisation: Initially every node u is active, all the Z u are set to the empty word , and the Z [u]v are accordingly set to the empty word.

Main loop:

In each round, the algorithm executes the following actions.

1. update Z u based on information received in the previous round, 2. send to all neighbours a signal indicating how Z u was updated, 3. receive such signals from neighbours, 4. update all the Z [u]v accordingly.

The main action is the update of Z u (step 1). It depends on the values of Z [u]v for all neighbours v and Z u itself at the end of the previous round. This update is done according to a number of rules. For instance, as long as u remains active and Z u is a proper prefix of Y u , the update consists in appending the next bit of Y u to Z u . Most updates are more complex and detailed further below. The three other actions (step 2, 3, and 4 above) only serve the purpose of informing the neighbours as to how Z u was updated, so that all Z [u]v are correctly updated. In fact, Z u can only be updated in seven possible ways, each causing the sending of a (constant size) particular signal among {append0, append1, delete1, delete2, delete3, change, null}, with following meaning:

-append0 or append1: Z u was updated by appending a single 0 or a single 1; -delete1, delete2, or delete3: Z u was updated by deleting one, two or three letters from the end; change: Z u was updated by changing the last letter from 0 to 1;

To determine if Z t v is well-formed, node v can check whether | Z t v |= 2j + 1, where j is the number of 1's before the first 0. Each node v is equipped with a boolean variable T erm v which is true iff v and all of its subtrees have terminated. Whenever a rule of the spreading algorithm is applied to node v or a node u becomes a child of v, the variable T erm v is set to f alse, and a signal is sent to its neighbours to indicate that T erm v = f alse. Indeed, this variable can be updated several times for a same node before stabilizing to true.

We describe an extra rule to be added to the ST algorithm in order to allow the node with highest identifier to learn that it is so by detecting termination of the spanning tree algorithm. This rule is considered after those of algorithm ST in each round. Let us denote by N v the set of neighbours of v, and by Ch v ⊆ N v those which are v's children. Also recall that we omit the round number in the expression on variables when it is non-ambiguous.

The rule: Given a node v, if (v is follower) and (T erm v = f alse) and (Z v is wellformed) and (∀w ∈ N v Z w = Z v ) and (∀w ∈ Ch v T erm w = true) then T erm v := true. Furthermore v sends to his parent a signal indicating that T erm v = true.

We denote by ST T the algorithm obtained by putting together the rules of Algorithm ST and this extra rule for termination detection.

Whenever Z v changes, a rule of algorithm S has been applied to v and so T erm v is set to false. Thus if T erm v = true then Z v has the same value it had when T erm v became true the last time.

We say that algorithm ST T terminates when every node v other than the node u with the greatest identifier has Z v = α(Id u ) and T erm v = true and so no node has any actions applicable.

From Theorem 8 and Proposition 15, we know that ST will terminate, at which time all leaves of the constructed spanning tree will have T erm = true, and a termination signal takes at most D rounds to propagate to the root. This implies: Proposition 17. Let G be a graph such that each node has a unique (integer) identifier. Algorithm ST T terminates within D rounds after the termination of ST . Furthermore, if the node u has the highest identifier then, after a run of algorithm ST T , for each neighbour v of u Z v = α(Id u ) and T erm v = true and the node u receives from each node v in N u the signal indicating that T erm v = true.

The next proposition establishes that only the node with highest identifier can receive a termination signal from all neighbours.

Proposition 18. Let G be a graph such that each node has a unique identifier. Let v be a node which has not the highest identifier and such that Z v = α(Id v ) and for each neighbour w of v Z w = Z v . Then there exists a neighbour v of v such that T erm v = f alse.

Proof. Suppose that some v which does not have the maximum identifier does have in some round Z v = α(Id v ) and for each neighbour w of v Z w = Z v and T erm(w) = true. We will deduce a contradiction.

Write A for α(Id v ). Define S(A) as the set of nodes w such that ∃t|Z t w = A and the A-parent of w ∈ S(A) \ v as the node w which becomes parent of w when Z w becomes A (say at round t). Since no α(Id) is a prefix of another α(Id ), we have Z t-1 w = A and once Z w = A, the next modification of Z w can only be a delete or a change, which implies that Z w cannot become A a second time. w is also in S(A) and so following the chain of A-parents from w must end at v. Thus any node in

S(A) \ v is a A-descendant of v.
Suppose a node w ∈ S(A) has Z t-1 w = A and sets T erm w true at round t. Then all neighbours of w have Z t-1 = A and so any A-child w of w has not changed Z w since it became A; so w is still a child of w. Hence T erm t-1 w = true. Repeating this argument, any A-descendant of w had Z t -1 = A and set T erm = true at some time t < t.

Since by supposition every neighbour w of v has Z w = Z v = A and T erm(w) = true, every node in S(A) \ v has Z t-1 = A and sets T erm = true at some time t. So any neighbour of a node in S(A) is also in S(A). Since G is connected all nodes of G are in S(A).

In particular the node with highest identifier is in S(A) \ v, implying that it has an A-parent and so became a follower during the execution in contradiction with the fact that it is always active.

If the node u with highest identifier, becomes elected as soon as, for each neighbour v of u, Z v = α(Id u ) and T erm v = true and it receives from each child v the signal indicating that T erm v = true we deduce: Theorem 19. There exists an election algorithm for graphs G in which each node has a unique integer identifier, using messages of size O(1) which terminates after at most |α(Id u )| + 3D rounds where u is the node with the highest identifier.

The time bound follows from Theorem 8 and Proposition 17.

Further Related Work

We provide here a more detailed account of the literature on the leader election problem, which recounts and extends references mentioned in Section 1. The election problem is fundamental in distributed computing and, indeed, there exists a vast body of literature on the topic -see for instance the treatment of this problem in standard books [START_REF] Tel | Introduction to distributed algorithms[END_REF][START_REF] Attiya | Distributed computing: fundamentals, simulations, and advanced topics[END_REF][START_REF] Lynch | Distributed algorithms[END_REF][START_REF] Santoro | Design and analysis of distributed algorithm[END_REF] and references therein. This problem is close to that of spanning tree construction, and it seems that it was first formulated by LeLann [START_REF] Lelann | Distributed systems: Towards a formal approach[END_REF]. As indicated in [START_REF] Kutten | On the complexity of universal leader election[END_REF], some simple questions are still open and therefore this is still a problem which is much alive in the distributed computing community. Usually, this problem is investigated in one of the following three directions:

1. Characterisation of (anonymous) graphs for which there exists a deterministic election algorithm;

2. Lower and upper bounds of the time complexity and the message complexity of deterministic election algorithms depending on how much is initially known about the graph, it is assumed that each node has a unique identifier; 3. Randomised election algorithms for anonymous graphs depending on the knowledge on the graph such as the size, the diameter or the topology (trees, complete graphs...).

For the first item the starting point is the seminal work of Angluin [START_REF] Angluin | Local and global properties in networks of processors[END_REF] which highlights, in particular, the key role of coverings: a graph G is a covering of a graph H if there is a surjective homomorphism ϕ from G to H which is locally bijective (the restriction of ϕ to incident edges of any node v is a bijection between incident edges of v and incident edges of ϕ(v)). More general definitions may be found in [START_REF] Boldi | Fibrations of graphs[END_REF]. Characterisations of graphs for which there exists an election algorithm depend on the model. The first characterisations were obtained in [START_REF] Boldi | Symmetry breaking in anonymous networks: Characterizations[END_REF][START_REF] Yamashita | Computing on anonymous networks: Part i -characterizing the solvable cases[END_REF][START_REF] Mazurkiewicz | Distributed enumeration[END_REF]. The fundamental tool in [START_REF] Boldi | Symmetry breaking in anonymous networks: Characterizations[END_REF][START_REF] Yamashita | Computing on anonymous networks: Part i -characterizing the solvable cases[END_REF] is the notion of view: the view from a node v of a labelled graph G is an infinite labelled tree rooted in v obtained by considering all labelled walks in G starting from v. The characterisation in [START_REF] Mazurkiewicz | Distributed enumeration[END_REF] used non-ambiguous graphs: a graph labelling is said to be locally bijective if vertices with the same label are not in the same ball and have isomorphic labelled neighbourhoods. A graph G is ambiguous if there exists a non-bijective labelling of G which is locally bijective. In [START_REF] Godard | Characterization of Classes of Graphs Recognizable by Local Computations[END_REF], authors prove that the non-ambiguous graphs, as introduced by Mazurkiewicz, are exactly the covering-minimal graphs. The main ideas of the election algorithm developed in [START_REF] Mazurkiewicz | Distributed enumeration[END_REF] were applied to some other models in [START_REF] Chalopin | An efficient message passing election algorithm based on mazurkiewicz's algorithm[END_REF][START_REF] Chalopin | On the power of synchronization between two adjacent processes[END_REF][START_REF] Chalopin | Local computations on closed unlabelled edges: the election problem and the naming problem (extended abstract)[END_REF] by adapting the notion of covering. A characterisation of families of graphs which admit an election algorithm (i.e., the same algorithm works on each graph of the family) can be found in [START_REF] Chalopin | Election in partially anonymous networks with arbitrary knowledge in message passing systems[END_REF].

Concerning the second item, lower bounds or upper bounds for deterministic algorithms when nodes have a unique identifier which is a non negative integer of size O(log n):

for the time complexity: Peleg presents in [START_REF] Peleg | Time-optimal leader election in general networks[END_REF] a simple time optimal election algorithm for general graphs: its time complexity is O(D); the size of messages is O(log n) thus its bit round complexity is O(D log n) and the message complexity is O(D|E|) where |E| is the size of the edge set. More recently, Kutten et al. [START_REF] Kutten | On the complexity of universal leader election[END_REF] prove the lower bound Ω(D) for the time complexity in a very general context which contains the deterministic case studied in this paper. Fusco and Pelc [START_REF] Fusco | Knowledge, level of symmetry, and time of leader election[END_REF] show that the time complexity of the election problem is Ω(D + λ) where λ is the level of symmetry of the graph G (Let G be graph. The view at depth t from a node is the tree of all paths of length t originating at this node. The symmetry of G is the smallest depth at which some node has a unique view of G). In our case, each node has a unique identifier thus λ = 0, and we obtain the same bound as [START_REF] Kutten | On the complexity of universal leader election[END_REF]. for the message complexity: Gallager [START_REF] Gallager | Finding a leader in a network with o(e + n log n) messages[END_REF] presents the first election algorithm for general graphs with O(m + n log n) messages, where m is the number of edges. On the negative side, Burns [START_REF] Burns | A formal model for message passing systems[END_REF] prove a Ω(n log n) lower bound and Kutten et al. [START_REF] Kutten | On the complexity of universal leader election[END_REF] a Ω(m) lower bound which applies even if n is known and the algorithm is randomized. Put together, both lower bounds yield a matching Ω(m + n log n) number of messages. (Santoro [42] also proves a Ω(m + n log n) lower bound for the more specific problem of finding the maximum ID, in a deterministic setting with n unknown.) The work presented in [START_REF] Gallager | A distributed algorithm for minimum-weight spanning trees[END_REF] had a great influence on many papers, the time complexity of the algorithm is O(n log n) and the message complexity is optimal in the worst case. Optimal message complexity in O(m + n log n) has been obtained also in [START_REF] Awerbuch | Optimal distributed algorithms for minimum weight spanning tree, counting, leader election and related problems (detailed summary)[END_REF], in this case the time complexity is O(n), the size of message is O(log n) and the bit round complexity is O(n log n). We can note that very efficient algorithms for both election and spanning tree computation are presented in [START_REF] Korach | A modular technique for the design of efficient distributed leader finding algorithms[END_REF].

This direction has also been subject to recent developments where the impact of particular knowledge is studied such as [START_REF] Dieudonné | Impact of knowledge on election time in anonymous networks[END_REF][START_REF] Glacet | Time vs. information tradeoffs for leader election in anonymous trees[END_REF][START_REF] Miller | Election vs. selection: How much advice is needed to find the largest node in a graph[END_REF]. Finally, the tradeoff between time and communication complexity in the case of leader election and spanning tree was considered in [START_REF] Krzywdziński | On the complexity of distributed bfs in ad hoc networks with non-spontaneous wake-ups[END_REF] in the case of ad hoc networks, when only the neighbors are known to nodes.

Regarding the third item, probabilistic algorithms, a Las Vegas algorithm is one which terminates with a positive probability (in general 1) and always produces a correct result. A Monte Carlo algorithm is a probabilistic algorithm which always terminates; nevertheless the result may be wrong with non-zero probability. Some results on graphs having n vertices are expressed with high probability, meaning with probability 1-o(n -1 ) (w.h.p. for short). Chapter 9 of [START_REF] Tel | Introduction to distributed algorithms[END_REF] and [START_REF] Lavault | Evaluation des algorithmes distribués[END_REF] give a survey of what can be done and of impossibility results in anonymous networks concerning the election problem. In particular, no deterministic algorithm can elect (see Angluin [START_REF] Angluin | Local and global properties in networks of processors[END_REF], Attiya et al. [START_REF] Attiya | Computing on an anonymous ring[END_REF] and Yamashita and Kameda [START_REF] Yamashita | Computing on an anonymous network[END_REF]); furthermore, with no knowledge on the network, there exists no Las Vegas election algorithm [START_REF] Itai | Symmetry breaking in distributed networks[END_REF]. In [START_REF] Kutten | Sublinear bounds for randomized leader election[END_REF], Kutten et al. present a leader election algorithm to elect (implicitly) a leader (with high probability) that runs in O(1) time using a sublinear amount of messages, namely O( √ n log 3/2 n). Monte Carlo election algorithms for anonymous graphs without knowledge are presented in [START_REF] Itai | Symmetry breaking in distributed networks[END_REF][START_REF] Afek | Elections in anonymous networks[END_REF][START_REF] Schieber | Calling names on nameless networks[END_REF]. They are correct with probability 1 -, where is fixed and known to all vertices. Métivier et al. [START_REF] Métivier | Analysis of fully distributed splitting and naming probabilistic procedures and applications[END_REF] presents Monte Carlo algorithms which solve the problems discussed above w.h.p. and which ensure for each node v an error probability bounded by v where v is determined by v in a fully decentralised way. To be more precise, these algorithms ensure an error probability bounded by where is the smallest value among the set of error probabilities determined independently by each node. If the network size is known then Las Vegas election algorithms exist, e.g., in [START_REF] Itai | Symmetry breaking in distributed networks[END_REF]. Finally, recent works like [START_REF] Gilbert | Leader election in well-connected graphs[END_REF] explore the role played by other network parameters such as conductance and expansion, and some questions in the same spirit as the ones we addressed in this article regarding tradeoff between time complexity and communication complexity are still open.

Conclusion

This article focused on the problem of deterministic election in arbitrary networks with unique identifiers. Three complexity measures were discussed in general: time complexity, message complexity, and bit (round) complexity. It was known that Ω(m+ n log n) is a lower bound for the number of messages and an algorithm with matching complexity exists. In [START_REF] Kutten | On the complexity of universal leader election[END_REF], Kutten et al. show that concerning the time complexity Ω(D) is a lower bound and [START_REF] Peleg | Time-optimal leader election in general networks[END_REF] implies that O(D) is a tight upper bound. For bit (round) complexity, we deduced from [START_REF] Kutten | On the complexity of universal leader election[END_REF] and [START_REF] Dinitz | Two absolute bounds for distributed bit complexity[END_REF] that Ω(D + log n) is a lower bound and we presented an algorithm that matches this bound with a running time of O(D+log n) bit rounds. This algorithm is the first whose bit round complexity breaks the O(D log n) barrier, and furthermore, through its optimality in terms of bit rounds, it gives a positive answer to whether optimality can be achieved both in time and in the amount of communication, which question was thought to be settled due to the impossibility to satisfy both when messages are (as is frequently assumed) of size O(log n). As such, our results also make a case for studying the complexity of algorithms through the lenses of bit round complexity. Finally, it could be interesting to explore whether some of the techniques presented in this article are applicable when the size of messages is less constrained, e.g., logarithmic (CONGEST model).
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null: Z u was not modified.

By the end of each round, it holds that Z [u]v = Z v for all neighbours v of u. Thus from now on, Z [u]v is simply written Z v . Another invariant is that, by the end of each round, if u and v are two neighbours, then Z u and Z v must have a common prefix followed, in each case, by at most six letters (see the proof of Lemma 6 below, second item).

We now describe the way Z u is updated by each node u (i.e. step 1).

Update of Z u in each round: Let us denote the state of some variable X at the end of round t by X t . For instance, we write Z 0 u = , where round 0 corresponds to initialisation. The computation of Z u at round t results from u being active or follower, and from the values of Z t-1 u and Z t-1 v for all neighbours v of u. It is done according to the following rules given in order of priority, i.e., R 1 has a higher priority than R 2 . (This does not apply between the subrules R 1.1 and R 1.2 , for which a different criterion is specified.) Whenever a rule is applied, the subsequent rules are ignored.

-R 1 (delete). The relationship between Z t-1 u and Z t-1 v for any neighbour v of u may mean that a delete operation is possible. This may be done according to the two following subrules; if both are applicable, possibly relative to various neighbors, the one deleting the greatest number of letters is chosen. (In case of ties, the choice does not matter.)

and a null signal is sent. Otherwise, a signal corresponding to the resulting action is sent. We now prove some properties on Algorithm S including Corollary 7 which shows that when R 1.2 is applied, |x| ≤ 3 so that the signal to be sent is within our set of 7 signals.

Lemma 2. For all t, if a node u carries out a delete operation at round t, u's operation at round t + 1 must be another delete operation or a change operation.

Proof. By induction on t. For t = 1, it is trivially true since there can be no delete operation at round 1. Suppose u makes a delete at time t. The delete operation carried out at round t on u was made possible by one or more neighbours of u according to rule 1. Let v be one such neighbour.

-If R 1.1 was applied at round t on u:

v d (for some non-empty d), and Z t u is obtained from Z t-1 u by erasing at most |d| letters at the end, i.e., Z t u = Z t-1 v d for some d . By induction, v's action at round t is another delete operation or a change.

• If it is a delete operation, then Z t v is again obtained by erasing some letters at the end of Z t-1 v thus it is a proper prefix of Z t-1 v and a proper prefix of

and either d is a non empty word and R 1.2 applies with y = on Z t u = Z t-1 v d = w0d , or d is the empty word and R 2 applies with y = on Z t u = Z t-1 v = u will do a change at round t + 1 unless another neighbour makes a delete possible.

-Otherwise R 1.2 was applied at round t on u:

= w1y for some v, and • Z t u = w0 by the delete operation at round t. Then:

• If the operation at round t on Z t-1 v was a delete operation, according to whether at least 1y is deleted or not, the operation on Z t u at round (t + 1) is a delete or a change.

• If the operation at round t on Z t-1 v is a change, an append or null, then the operation on Z t u at round t + 1 is also a change (again unless another neighbour makes a delete possible.) Lemma 2 induces immediately: Corollary 3. A sequence of delete operations on a node u ends with a change operation on u.

Remark 4. While a node u remains active and has not performed a delete, Z u cannot be a proper prefix of any Z v . If u does perform a delete, by Corollary 3, this delete will be followed, possibly after other deletes, by a change. That is the first rules applied to u other than R 5 must be a (possibly empty) sequence of deletes followed by an R 2 . When this R 2 is applied, u ceases to be active. Lemma 5. For all t, for every vertex u, there is a vertex w such that Z t u is a prefix of α(Id w ).

Proof. By induction on t.

By Remark 4, while u remains active,

In the following lemma and its proof, a always stands for a single letter, 0 or 1.

Lemma 6. Let u and v be two neighbours. Let t be a round number. The words Z t u and Z t v will always take one of the following forms (up to renaming of u and v) where p and w are words. Proof. By induction on t.

At round t = 0, Z t u = and Z t v = . Without loss of generality, we will always consider the form given in the lemma and not the reverse.

We consider the five possible relations between Z t-1 u and Z t-1 v and show that in each case Z t u and Z t v still have one of the five forms.

Each node may carry out any operation. If each carries out the same operation, we remain in case 1.

= p = p 0 and Z t v is obtained by truncating 1, 2 or 3 letters from p 0, the same as truncating the same number of letters from p 1 = Z t u . Thus Z t v is a proper prefix of Z t u giving case 2 if 1 or 2 letters were deleted and case 5 otherwise. -If u does a delete.

• If v does a delete then one word will be a prefix of the other as in case 1 or case 2. • If v does an append or null it is case 2 or case 5.

-In the remaining cases both do append or null it is either case 2 or case 4. -If u does an append, it must be an append1 if the first bit of w is 1 (since R 3 has priority over R 4 ). If v does an append the result will be case 2 if u appended the first bit of w or case 4 otherwise (if the first bit of w is 0 and u appended 1). If v does null the result will be case 2 or 4. If v does delete the result will be case 1, 2, 4 or 5.

The node u will do change or delete giving p1 or a prefix of p respectively, again leaving one word a prefix of the other for any operation carried out by v. This gives case 1, 2 or 5. 4. Z t-1 u = p1, Z t-1 v = p0w and |w| ≤ 3.

-If |w| > 0, v will do a delete of at least |w| bits (R 1.2 ). If u does a delete or v deletes more than |w| bits, then one word is a prefix of the other, leading to cases 1, 2 or 5. If u appended a bit and v deletes |w| bits, then we get case 3.

If u did null and v deletes |w| bits, then we get case 4. -Otherwise w = , v will do a change or a delete leaving one word a prefix of the other. Again this gives case 1, 2 or 5. 5. Z t-1 u = p, Z t-1 v = pw, 3 ≤ |w| ≤ 6 where u has just performed a delete. Then v will apply R 1.1 and do a delete3, and u a delete operation or a change operation (Lemma 3). leaving case 1, 2 or 5, or case 4 if the last bit of p is 0 and u does a Item 4 of lemma 6 is the only one which allows rule R 1.2 to be applied, leading to:

2 is applied then 0 < |x| ≤ 3 and y = .

Lemma 6 implies: Theorem 8. Let G be a graph of size n and diameter D such that each node u is endowed with a unique identifier Id u which is a non-negative integer. Let X be the highest identifier. After at most |α(X)| + 2D rounds, algorithm S terminates (that is, after this time no node does any operation other than null) and for each node u, Z u = α(X).

Proof. Let u 0 be the node endowed with the highest identifier. Let k be a non negative integer. By induction on k we prove that after at most |α(X)| + 2k rounds each node at distance at most k from u 0 has Z = α(X). If u 0 ever does a change, let the first round at which this happens be t. Then by Corollary 3 Z t u 0 is lexicographically greater than α(X) but by Lemma 5 Z t u 0 is a prefix of some α(Y w ) contradicting the fact that X is the highest identifier. Hence u 0 can never cease to be active, and so as long as |α(Id u 0 )| > t, u 0 applies R 5 at round t. It follows that the Theorem is true for k = 0.

For the inductive step, we assume that each node at distance at most k from u 0 has Z |α(X)|+2k = α(X). Let v be a node at distance k + 1 from u 0 . Let u be a node at distance k from u 0 and neighbour of v. By induction, Z |α(X)|+2k u = α(X). Once a node u has Z u = α(X), it will never do any operation other than null because that would lead, possibly after a sequence of deletes, to a Z u lexicographically greater than α(X) contradicting Lemma 5. From Lemma 6 and knowing that Z u = α(X) where X is the highest identifier, we deduce that words Z u and Z v will always take one of the following forms at round |α(X)| + 2k where p and w are words and a is the bit 1 or the bit 0: (In all cases except the first Z u must be the lexicographically greater of the two.) The fifth form is impossible since it would lead to v, possibly after a sequence of deletes, doing a change resulting in Z v α(X). The first form has Z v already equal to α(X). In the second and third forms, similarly v cannot do a delete (or in the second form a change) because that would lead eventually to Z v α(X), so Z v becomes equal to Z after, respectively, |w| appends or a change and an append (of a). In the fourth form, v will do a delete of |w| letters followed by a change to arrive at Z u .

Hence, after at most |α(X)|+2(k +1) rounds Z v = α(X) and the result follows.

A Spanning Tree Algorithm

This section explains how the computation of a spanning tree may be associated to the spreading algorithm S by selecting for each node u the edge through which Z u was modified.

Let u be a node, we add for each neighbour v, a variable status v u whose possible values are in {child, parent, other}, which indicates the status of neighbour v at node u; initially status v u = other. The computation of the spanning tree occurs concurrently with the spreading algorithm S as follows. If R 2 , R 3 , or R 4 is applied at round t relative to neighbour v, then u chooses v as parent (if not already the case). v is chosen arbitrarily among those of u's neighbours justifying the rule applied. Then, in addition to the signals of the spreading algorithm (indicating how Z u was updated), u sends a signal parent to v and a signal other to its previous parent v (if different from v), and it sets status v u to other (so that it never has more than one parent). As a result, v sets status u v to child and v sets status u v to other. After receiving signals from neighbours, in addition to the computation of the new value of Z v for each neighbour v by Algorithm S, u updates status v u . Algorithm ST denotes the algorithm obtained with Rules of the spreading algorithm S and actions described just above. Remark 9. By Remark 4, the first rules applied to u other than R 5 must be a (possibly empty) sequence of deletes followed by an R 2 . When this R 2 is applied, u ceases to be active and acquires a parent. Thus a node has no parent if and only if it is active. Remark 10. A node has at most one parent.

The next definition introduces for each node u a pair P u that is used to prove that the graph induced by all the parent relations has no cycle. Definition 11. Let u be a node, let t be a round number of the spreading algorithm S; M t u is equal to the maximum of Z t u for t ≤ t, f t u is the minimum t such that Z t u = M t u and P t u is the pair (M t u , f t u ).

Every change in Z u produces a Z t+1 u which is lexicographically greater than Z t u , except a delete which produces a Z t+1 u which is a proper prefix of Z t u . Hence Z t u = M t u unless u did a delete at round t -1 when Z t u is a proper prefix of M t u .

Definition 12. Let P 1 and P 2 be two pairs (M 1 , f 1 ) and (M 2 , f 2 ).

In this order, P t u is monotonic non-decreasing in t. The following establishes that any non-active node has a parent with a greater value of P . Lemma 13. Let t be a round number. Let u 1 be a node. Then either u 1 is active or there exist (u i ) 1≤i≤p nodes of G such that: for 2 ≤ i ≤ p u i is parent of u i-1 and u p is active.

Proof. If v becomes parent of u at round t, then u has done a change or an append at t. Inspecting rules R2, R3 and R4 show that

and round t is the first at which Z t u has attained this value and so P t-1 v > P t u . Then P v remains greater than P u until Z u next increases and a node v (possibly the same as v) becomes parent of u. Hence if v is parent of u at the end of round t, P t v > P t u .

Definition 14. We say that algorithm ST terminates when algorithm S terminates, that is no rules of algorithm S apply at any node. We denote by ST (G) the subgraph of G = (V, E) having V as node set and such that there is an edge between the node u and the node v if u is the parent of v or v is the parent of u when algorithm ST terminates.

By Theorem 8, when Algorithm ST terminates there is exactly one active node: the node with highest identifier. Now, from Remark 9 and 10, and Lemma 13: Proposition 15. Let G be a connected graph such that each node has a unique identifier. Let u be the node with the highest identifier. When algorithm ST terminates, the graph ST (G) is a spanning tree of G with u as root.

Termination Detection of Algorithm ST

This section presents some actions which, added to algorithm ST , enable the node with the highest identifier to detect termination of algorithm ST ; furthermore, as it is the only one, when it detects the termination it becomes elected. Our solution is a bitwise adaptation of the propagation process with feedback introduced in [START_REF] Segall | Distributed network protocols[END_REF] and further formalised and studied in Chapter 6 and 7 of [START_REF] Tel | Introduction to distributed algorithms[END_REF]. Definition 16. Let v be a node. Let t be a round number of the spreading algorithm. The variable Z t v is said to be well-formed if there exists an identifier Id such that Z t v = α(Id).