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Industrial context

Multi-objective optimization (m up to 6-8 objectives) of high
dimensional systems (d up to 40)

min
x∈X⊂Rd

(f1(x), . . . , fm(x))

Complex systems and physics ⇒ use of
computationally expensive CFD codes (12-24
hours per simulation) ⇒ optimization under
restricted budget (≈ 100 evaluations)

Multi-criteria decision-aid: choice among the optimal solutions made
by a Decision Maker (DM)

How to obtain several optimal trade-off solutions in spite of the
extremely parsimonious use of the computer code?
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Bayesian multi-objective optimization

min
x∈X⊂Rd

(f1(x), . . . , fm(x)), fi(·) expensive black-box

Multi-objective extension to EGO [2]

Fit m independent Gaussian Processes (GP) Y1(·), . . . ,Ym(·) for
the objectives to an initial design of experiments
Dn = {(x1, y1), . . . , (xn, yn)}; f(xk) = yk = (y k

1 , . . . , y
k
m)T

Computable Kriging mean predictor ŷi(x) and variance
s2
i (x) ∀x ∈ X
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Bayesian multi-objective optimization

Use a Bayesian multi-objective infill criterion (”multi-objective
version” of EI [3], e.g. EHI [1], EMI [6], SMS [5], SUR [4], ...)
relying only on Y(·) to determine xn+1

Evaluate fi(·), i = 1, . . . ,m at xn+1 ⇒ yn+1

Update the GP metamodels

Output: Pareto front approximation P̂Y
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Targeting: motivations

Restricted budget, many objectives ⇒ impossible for classical
MO-EGO approaches to find the Pareto front (growing size of
PY with m)
⇒ Uncovering the whole Pareto front in a ”region of interest”
Targeting solutions in objective space

Shrink the search to a smaller subset ⇒ faster convergence
Emphasize solutions that equilibrate the objectives: (unknown)
central part of the PF ⇒ interesting solutions for the DM
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Proposed methodology

C-EHI (Centered Expected Hypervolume Improvement) algorithm
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Center of the Pareto front: definition

C: Intersection between PY and Ideal-Nadir line L (IN), if
existing
Closest point of L to PY otherwise (projection on L)
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Center of the Pareto front: properties

Invariant to a linear scaling when PY intersects L
No intersection: closest point y ∈ PY to L remains the same
after linear scaling in bi-objective problems

Low sensitivity1 to I and N: |∂Ci

∂Ij
| and | ∂Ci

∂Nj
| < 1, i , j = 1, . . . ,m.

In Game Theory: particular Kaläı-Smorodinsky solution
(disagreement point d ≡ N)

1Under some regularity assumptions
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Center of the Pareto front: estimation

C located on L ⇒ I and N required

Use GP simulations to produce estimates Î and N̂⇒ L̂

B Choice of x’s
where Y(·) is
simulated is critical!

Choose x′s according
to probability to lead
to I or N through
probability of being
extreme and
non-dominated

Estimated center Ĉ: closest point to P̂Y on L̂
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EHI: a Bayesian multi-objective infill criterion

Hypervolume Indicator H(A;R) = Vol
(⋃

y∈A{z : y � z � R}
)

,

R reference point [7]
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EHI: a Bayesian multi-objective infill criterion

Hypervolume Indicator H(A;R) = Vol
(⋃

y∈A{z : y � z � R}
)

,

R reference point [7]

EHI(x;R) = E[H(P̂Y∪{Y(x)};R)− H(P̂Y ;R)]: Expected
Hypervolume Improvement (relatively to R) [1], if adding design x

Maximal Hypervolume ⇒ Uncover the whole Pareto front
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Targeting the center via EHI

In other works, R chosen to cover the whole Pareto front (R1)

Here: use R to target central solutions by setting R = Ĉ
⇒ Null hypervolume improvement for solutions that do not
dominate Ĉ: H(P̂Y ∪ {y}; Ĉ) = 0 ∀y � Ĉ
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EHI-mEI equivalence

Definition

mEI(·;R) =
∏m

i=1EIi(·;Ri) with EIi(·;Ri) EI considering Ri as the
current minimum in objective i .

Closed form, cheap to compute (even for large number of
objectives)

Proposition

If Y1(·), . . . ,Ym(·) are independent GPs, and P̂Y � R,
EHI (·;R) = mEI (·;R)

P̂Y � Ĉ1⇒ EHI(·; Ĉ) equivalent to mEI(·; Ĉ)

1Occurs almost always
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Example

Estimated center Ĉ + mEI

Budget of 20 calls to the expensive function: center-targeting
(left) and classical approach (right)
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Example

2 objectives (left) and 3 objectives (right)

Local convergence to the Pareto front achieved

IR unreachable (R on PY)⇒ waste of resources

Convergence to C has to be verified: stopping criterion
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Convergence criterion using the probability of domination

Probability of domination p(y): probability that objective vector
y ∈ Rm can be dominated by some (f1(x), . . . , fm(x)), x ∈ X

Estimated using simulated Pareto fronts P̃Y
(k)

:
p(y) ≈ 1

nsim

∑nsim
k=1 1P̃Y

(k)
�y
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Convergence criterion using the probability of domination

Information about uncertainty and (local) convergence towards
the PF: convergence in areas where p goes quickly from 0 to 1 /
where p(1− p) equals 0

Assume local convergence to the center of the PF when∫
L̂ p(y)(1− p(y))dy ≤ ε
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Ongoing work: expansion of the PF approximation after convergence

Convergence detected: how to use the remaining budget? Target
a broader central part of the PF
Use EHI(·;R) with R shifted backwards on L̂ ⇒ larger but still
central targeted region

Targeted region for the last iterations: largest area where
accurate enough convergence is forecasted within the remaining
budget
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Comparison with standard EHI

Budget of 40 iterations: better
convergence of C-EHI to PY in
its central part

Convergence detected at 22nd
iteration ⇒ broader area targeted
for the last 18 iterations (red
square in bottom left figure)
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Thank you for your attention,

Do you have any question?
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Attractive solutions: central solutions
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Benchmark: ”Meta NACA”

For each test case (dimension d = 3, 8 or 22), creation of a
surrogate to the computer code using

1000 points (complete factorial design) in 3D
1200 points (LHS-maximin design + refinement in areas of
compromise) in 8D and 22D

Variable number of objectives: m ∈ {2, 3, 4}
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Ideal-Nadir line of the empirical Pareto front

Center of a Pareto front ⇒ Ideal-Nadir line

Not robust when using I and N from the approximation front P̂Y
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