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Abstract. Multi-objective optimization aims at finding trade-off solu-
tions to conflicting objectives. These constitute the Pareto optimal set.
In the context of expensive-to-evaluate functions, it is impossible and
often non-informative to look for the entire set. As an end-user would
typically prefer solutions with equilibrated trade-offs between the ob-
jectives, we define a Pareto front center. We then modify the Bayesian
multi-objective optimization algorithm which uses Gaussian Processes to
maximize the expected hypervolume improvement, to restrict the search
to the Pareto front center. The cumulated effects of the Gaussian Pro-
cesses and the center targeting strategy lead to a particularly efficient
convergence to a critical part of the Pareto set.

Keywords: Gaussian Processes - Parsimonious Optimization - Com-
puter Experiments - Preference-Based Optimization

1 Introduction

Multi-objective optimization aims at minimizing m objectives simultaneously:

min d(fl (X), .., fm(x)). As these objectives are generally competing, optimal
xeXCR
trade-off solutions x7,..,x7 known as the Pareto optimal set Px are sought.

These solutions are non-dominated (ND): it is not possible to improve one ob-
jective without worsening another (Vi = 1,..,¢q, iz < x7). The image of Py in
the objective space is called the Pareto front, Py = {f(x),x € Px}. The Ideal
and the Nadir points bound the Pareto front and are defined respectively as
I= (yrggi)yl, ..,yrg%)r;ym) and N = (}I}g%};yl, ..,)I,Ié%);ym).

Multi-objective optimization algorithms aim at constructing the best ap-
proximation to Py, called the empirical Pareto front Py which is made of non-
dominated observations. At the end of the search, ’ﬁ;; is delivered to a Decision
Maker (DM) who will choose the solution he/she prefers.

However, when dealing with expensive computer codes, only a few designs
x can be evaluated. In Bayesian optimization, a surrogate is built for each ob-
jective upon all past evaluations using Gaussian Process (GP) regression [1].



Information given by these metamodels is used in order to sequentially evaluate
new promising inputs with the aim of reaching the Pareto front. As the latter
encompasses a large number of solutions when many objectives are considered, it
may be impossible to compute an accurate approximation within the restricted
computational budget. That approximation being used afterwards by a DM,
it may anyway be irrelevant to provide the whole Pareto front because it will
contain many uninteresting solutions from the DM’s point of view.

Without additional knowledge about the preferences of the DM, we argue
that “well-balanced” solutions, in a sense that will be defined hereafter as the
central part of the Pareto front, are the most interesting ones. Therefore, we show
how to estimate the center of the Pareto front and how classical infill criteria
used in Bayesian optimization can be tailored to intensify the search towards it.

2 Center of the Pareto Front: definition and estimation

Definition. We define the center, C, of the Pareto front as the projection (inter-
section in case of a continuous front) of the closest ND point on the Ideal-Nadir
line (in the Euclidean objective space). An example of Pareto front center can be
seen in Fig. 1. This center corresponds visually to an equilibrium among all ob-
jectives. Alternative definitions involving e.g. the barycenter of the Pareto front,
are likely to be harder to calculate in high-dimensional spaces. Furthermore, this
center has the property of being insensitive to a linear scaling of the objectives
in a bi-objective case*. C is also very little sensitive to perturbations of the Ideal

or the Nadir point: under mild regularity conditions on the Pareto front, |‘?§j
and |§f/ <1l,4,5=1,...,m.

Estimation. As the Ideal and the Nadir of the empirical Pareto front will some-
times be weak substitutes for the real ones (leading to a biased estimated center),
those two points have to be truly estimated for the purpose of computing the
center. The probabilistic nature of the metamodels (GPs) allows to simulate pos-
sible responses of the objective functions. Conditional GP simulations are thus
performed to create possible Pareto fronts, each of which defines a sample for
I and N. The estimated Ideal and Nadir are the medians of the samples. The
intersection between the line £ joining those points and the empirical Pareto
front (or the projection if there is no intersection) is the estimated center C.

3 Targeting Infill Criteria for Bayesian Optimization

Articulating preferences has already been addressed in evolutionary multi-objective
optimization [2]. In Bayesian multi-objective optimization, fitted to costly objec-
tives, new points are sequentially added using an infill criterion whose purpose is
to guide the search towards the Pareto front. After having been evaluated, that

4 Non-sensitivity to a linear scaling of the objectives is true when the Pareto front
intersects the Ideal-Nadir line. Without intersection, exceptions may occur for m > 3.



point is used to update the metamodel. The Expected Hypervolume Improve-
ment (EHI, [3]) is a commonly used multi-objective infill criterion. EHI chooses
the input x that maximizes the expected growth of the hypervolume dominated
by Py up to a reference point R. Classically, R is taken beyond the observed
Nadir, e.g. [4], in order to cover the entire front. WHI [5] is a variant of EHI
for targeting particular regions of the objective space through a user-defined
weighting function.

Our approach targets the central part of the Pareto front with EHI by solely
controlling the reference point R. Indeed, the choice of R is instrumental in
deciding the combination of objectives for which Improvement occurs: Ir =
{y € Y : y < R}. Positioning R at the (estimated) center of the Pareto front C
will favour EHI’s search at objective vectors belonging to Zg.

When the objectives are modeled by independent GPs and the used reference
point R £ Py, one has EHI(-; R) = mEI(-; R), where mEI stands for the prod-
uct of the famous mono-objective Expected Improvement (EI) [1] considering
R as the observed minimum in each objective, mEI(x;R) = [[", EL;(x; R;).
This observation is particularly appealing from a computational point of view:
EHI requires the computation of m-dimensional hypervolumes involving expen-
sive Monte-Carlo estimations in a many-objectives case. For this reason, in our
algorithm where R = C is not dominated, EHI is replaced by mEL

Targeting a particular (here, central) part of the Pareto front leads to a fast
local convergence. Once R is on the real Pareto front, the algorithm will try
to improve non-improvable values (see left of Fig. 2). To avoid wasting costly
evaluations, the convergence has to be checked. To this aim, we estimate p(y), the
probability of dominating y € Y, simulating Pareto fronts through conditional
GPs. p(y)(1 — p(y)) is a measure of domination uncertainty, which tends to 0
as p(y) tends to 0 or 1. We assume local convergence when the line-uncertainty,
fzp(y)(l —p(y))dy, is small enough. The complete algorithm, called C-EHI, is

summarized below. Fig. 1 shows a convergence of R = C to the true center of
the Pareto front, C.
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Center-Targeting Algorithm (C-EHI)
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4 Optimization Results

We apply the proposed methodology to a benchmark built from real-world airfoil
aerodynamic data. Fig. 2 shows that, compared with standard techniques, the
proposed methodology leads to a faster and a more precise convergence to the
central part of the Pareto front at the cost of a narrower covering of the front.
The results are shown at the iteration which triggers the convergence criterion:
only marginal gains would indeed be obtained continuing targeting the same
region.
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Fig. 2. Two objectives optimization with C-EHI (left). The initial approximation
(black) has mainly been improved around the center. Compared with a standard EHI
(right), the proposed methodology achieves convergence to the central part of the front.

EHI considers more compromises between objectives, but cannot converge within the
given budget (46 evaluations).

Further work will consider the continuation of the search to a broader but
central part of the Pareto front. That newly targeted region, controlled again
through R, will be as large as possible while being still attainable within the
remaining budget.
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