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Abstract

In this paper, covariance matrices are exploited to encode the deep convolutional
neural networks (DCNN) features for facial expression recognition. The space geom-
etry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices.
By performing the classification of the facial expressions using Gaussian kernel on SPD
manifold, we show that the covariance descriptors computed on DCNN features are more
efficient than the standard classification with fully connected layers and softmax. By im-
plementing our approach using the VGG-face and ExpNet architectures with extensive
experiments on the Oulu-CASIA and SFEW datasets, we show that the proposed ap-
proach achieves performance at the state of the art for facial expression recognition.

1 Introduction

Automatic analysis of facial expressions has been attractive in computer vision research
since long time due to its wide spectrum of potential applications that go from human com-
puter interaction to medical and psychological investigations, to cite a few. Similarly to
other applications, for many years facial expression analysis has been addressed by design-
ing hand-crafted low-level descriptors, either geometric (e.g., distances between landmarks)
or appearance based (e.g., LBP, SIFT, HOG, etc.), with the aim of extracting suitable repre-
sentations of the face. Higher order relations, like the covariance descriptor, have been also
computed on raw data or low-level descriptors. Standard machine learning tools, like SVMs,
have then been used to classify expressions. Now, the approach to address this problem has
changed quite radically with Deep Convolutional Neural Networks (DCNNs). The idea here
is to make the network learn the best features from large collections of data during a training
phase. However, one drawback of DCNN:ss is that they do not take into account the spatial
relationships within the face. To overcome this issue, we propose to exploit globally and
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2 N. OTBERDOUT ET AL: DEEP COVARIANCE DESCRIPTORS FOR FER

locally the network features extracted in different regions of the face. This yields a set of
DCNN features per region. The question is how to encode them in a compact and discrim-
inative representation for a more efficient classification than the one achieved globally by
classical softmax. In this paper, we propose to encode face DCNN features in a covariance
matrix. These matrices have shown to outperform first-order features in many computer
vision tasks [23, 24]. We demonstrate the benefits of this representation in facial expres-
sion recognition from static images or collections of static peak frames (i.e., frames where
the expression reaches its maximum). In doing this, we exploit the space geometry of the
covariance matrices as points on the symmetric positive definite (SPD) manifold. Further-
more, we use a valid positive definite Gaussian RBF kernel on this manifold to train a SVM
classifier for expression classification. Implementing our approach with different network
architectures, i.e., VGG-face [22] and ExpNet [6], and by a thorough set of experiments, we
found that the classification of these matrices outperforms the classical softmax.

Overall, the proposed solution permits us to combine the geometric and appearance fea-
tures enabling an effective description of facial expressions at different spatial levels, while
taking into account the spatial relationships within the face. An overview of the proposed
solution is illustrated in Figure 1. In summary, the main contributions of our work consist
of: (i) encoding DCNN features of the face by using covariance matrices; (ii) encoding lo-
cal DCNN features by local covariance descriptors; (iii) classifying facial expressions using
Gaussian kernel on the SPD manifold; (iv) conducting an extensive experimental evaluation
with two different architectures and comparing our results with state-of-the-art methods on
two publicly available datasets.

Global and local DCNN features extraction
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Figure 1: Overview of the proposed method.

The rest of the paper is organized as follows: In Section 2, we summarize the works
that are most related to our solution, including facial expression recognition, and covariance
descriptors; In Section 3, we present our solution for facial feature extraction and, in Sec-
tion 4, we introduce the idea of DCNN covariance descriptors for expression classification.
A comprehensive experimentation using the proposed approach on two publicly available
benchmarks, and comparison with state-of-the-art solutions is reported in Section 5; Finally,
conclusions and directions for future work are sketched in Section 6.
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2 Related work

The approach we propose in this paper is mainly related to the works on facial expression
recognition and those on DCNNs combined with covariance descriptors. Accordingly, we
first summarize relevant works using DCNN for facial expression, then we present some
recent works that use covariance descriptors in conjunction with DCNN.

DCNN for Facial Expression Recognition: Motivated by the success of DCNN models
in facial analysis tasks, several papers proposed to use them for both static and dynamic fa-
cial expression recognition [12, 19, 20, 25]. However, the main reason behind the impressive
performance of DCNNSs is the availability of large-scale training datasets. As a matter of fact,
in facial expression recognition, datasets are quite small, mainly for the difficulty of produc-
ing properly annotated images for training. To overcome such a problem, Ding et al. [6]
proposed FaceNet2ExpNet, where a regularization function helps to use the face information
to train the facial expression classification net of static images. Facial expression recognition
from still images using DCNN was also proposed in [19, 20, 28]. All these methods use a
similar strategy in the network architecture: multiple convolutional and pooling layers are
used for feature extraction; fully connected ones, and softmax layers are used for classifi-
cation. In [21], the authors proposed a method for dynamic facial expression recognition
that exploits deep features extracted at the last convolutional layer of a trained DCNN. They
used a Gaussian Mixture Model (GMM) and Fisher vector encoding on the set of extracted
features from videos to get a single vector representation of the video, which is fed into a
SVM classifier to predict expressions.

DCNN and Covariance Descriptors: Covariance features were first introduced by
Tuzel et al. [23] for texture matching and classification. Bhattacharya et al. [3] constructed
covariance matrices, which capture joint statistics of both low-level motion and appearance
features extracted from a video. Dong et al. [7] constructed a deep neural network, which
embeds high dimensional SPD matrices into a more discriminative low dimensional SPD
manifold. In the context of face recognition from image sets, Wang et al. [27] presented
a Discriminative Covariance oriented Representation Learning (DCRL) framework to learn
better image representations, which can closely match the subsequent image set modeling
and classification. The framework constructs a feature learning network (e.g., a CNN) to
project the face images into a target representation space. The network is trained with the
goal of maximizing the discriminative ability of the set of covariance matrices computed
in the target space. In the dynamic facial expression recognition method proposed by Liu
et al. [18], deep and hand-crafted features are extracted from each video clip to build three
types of image set models, i.e., covariance matrix, linear subspace, and Gaussian distribution.
Then, different Riemannian kernels are used, separately and combined, for classification.

To the best of our knowledge, compared to existing literature, our work is the first one that
uses covariance descriptors in conjunction with DCNN for static expression recognition.

3 DCNN features

Given a set of ny face images F = {f1,/2,...f» f} labeled with their corresponding expres-
sions {y1,y2, ...ynf}, our goal is to find a high discriminative face representation allowing
an efficient matching between faces and their expression labels. Motivated by the success
of DCNNS in automatic extraction of non-linear features that are relevant to the problem at
hand, we opt for this technique in order to encode the facial expression into Feature Maps
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(FMs). A covariance descriptor is then computed over these FMs and is considered for global
face representation. We also extract four regions on the input face image around the eyes,
mouth, and cheeks (left and right). By mapping these regions on the extracted deep FMs, we
are able to extract local regions in these FMs that bring more accurate information about the
facial expression. A local covariance descriptor is also computed for each local region.

The first step to our approach is the extraction of non-linear features that encode well the
facial expression in the input face image. In this work, we use two DCNN models, namely,
VGG-face [22] and ExpNet [6].

3.1 Global DCNN features

VGG-Face is a DCNN model that is commonly used in facial analysis tasks. It consists of
16 layers trained on 2.6M facial images of 2.6K people for face recognition in the wild.
This model has been also successfully used for expression recognition [6]. However, the
model was trained for face identification, so it is expected to also encode information about
the identity of the persons that should be filtered-out in order to capture person-independent
facial expressions. This may deteriorate the discrimination of the expression model after
fine-tuning, especially when it comes to dealing with small datasets, which is quite common
in facial expression recognition. To tackle this problem, Ding et al. [6] proposed ExpNet,
which is a much smaller network containing only five convolutional layers and one fully
connected layer. The training of this model is regularized by the VGG-face model.

Following Ding et al. [6], we first fine-tune the VGG-face network on expression datasets
by minimizing the cross entropy loss. This fine-tuned model is then used to regularize the
ExpNet model. Because we are interested in facial feature extraction, we only consider the
FMs at the last convolutional layer of the ExpNet model. In what follows, we will denote
the set of extracted FMs from an input face image f as ®(f) = {M;,Ma, - ,M,,}, where
{M;}I" | are the m FMs at the last convolutional layer, and &(.) is the non-linear function
induced by the employed DCNN architecture at this layer.

3.2 Local DCNN features

In addition to using the global feature map ®(f), we focus on specific regions extracted
from this global feature map that are relevant for face expression analysis. To do so, we start
by detecting a set of landmark points on the input facial image using the method proposed
in [2]. Four regions {R j}é}:l are then constructed around the eyes, mouth, and both cheeks
using these points. By defining a pixel-wise mapping between the input face image and its
corresponding FMs, we map the detected regions from the input face image to the global
FMs. Indeed, a feature map M; is obtained by convolution of the input image with a linear
filter, adding a bias term and then applying a non-linear function. Accordingly, units within
a feature map will be connected to different regions R; on the input image. Based on this
assumption, we can find a mapping between the coordinates of the input image and those of
the output feature map. Specifically, for each point p of coordinates (x,,y,) in the input face
image f, we associate a feature ¢, (f,M;) in the feature map M; such that,

¢p<f7Mi):Mi(sxxp7s><yp)7 (1)
where s is the map size ratio with respect to input size, and (_) is the rounding operation. It is
worth noting that for both models used in this work, the input image and output maps have
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the same spatial extent. This is important to map landmarks position in the input image to
the coordinates of convolutional feature maps. Using this pixel-wise mapping, we map each
region R formed by r pixels {p1, p2,---, p,} on the input image into the global FMs {M;}" |
to obtain the corresponding local FMs @i () = {@,, (f, M), 0p, (F,M:), -+, 0p, (f, Mi) }1 ;.

4 DCNN based covariance descriptors

Both our local and global non-linear features ®(f) and {®F/ (f) ‘;21 can be directly used to
classify the face images. However, motivated by the great success of covariance matrices in
various recent works, we propose to compute covariance descriptors using these global and
local features. In particular, a covariance descriptor is computed for each region R; across
the corresponding local FMs ®%/(f) yielding four covariance descriptors. A covariance
descriptor is also computed on the global FMs ®( f) extracted from the whole face f. In this
way, we encode the correlation between the extracted non-linear features within different
spatial levels, which results in an efficient, compact and more discriminative representation.
Furthermore, covariance descriptors allow us to select local features and focus on local facial
regions, which is not possible with fully connected and softmax layers. We can also note that
the covariance descriptors are treated separately, then lately fused in the classifier. In what
follows, we describe the processing for the global features ®(f); the same steps hold for the
covariance descriptors computed over the local features.

The extracted features ®(f) are arranged in a (m x w X h) tensor, where w and & denote
the width and height of the feature maps, respectively, and m is their number. Each feature
map M; is vectorized into a n-dimensional vector with n = w X h to transform the input
tensor to a set of n observations stored in the matrix [vi,v7, ...,v,] € R™*". Each observation
{vi}!_, € R™ encodes the values of the pixel i across all the m feature maps. Finally, we
compute the corresponding (m x m) covariance matrix,

Co(p) = Y (vi—p)(vi— w?’, 2)

. 1 . .
where pt is the mean of the feature vectors such that 4 = — "' | v;. Covariance descriptors
n

are mostly studied under a Riemannian structure of the space of symmetric positive definite
matrices Sym™(m) [10, 23, 27]. Several metrics have been proposed to compare covari-
ance matrices on Sym ™t (m), the most widely used is the Log-Euclidean Riemannian Metric
(LERM) [1] since it has excellent theoretical properties with simple and fast computations.
Formally, given two covariance descriptors Cg(7,) and Cgy,) of two images f1 and f2, their
log-Euclidean distance d : (Sym™™" (m) x Sym*™ (m)) — R™ is given by,

d(Co(f,),Ca(fy)) = I10g(Co(f,)) —10g(Cop( 1)) I 3)

where || - || is the Frobenius norm, and log(.) is the matrix logarithm.

4.1 RBF Kernels for DCNN covariance descriptors classification

As discussed above, each face f is represented by its global and local covariance descriptors
that lie on the non-linear manifold Sym ™ (m). The problem of recognizing expressions from
facial images is then turned to classifying their covariance descriptors in Sym™ ™ (m). How-
ever, one should take into account the non-linearity of this space, where traditional machine
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learning techniques cannot be applied in a straightforward way. Accordingly, we exploit the
the log-Euclidean distance mentioned in Eq. (3) between symmetric positive definite matri-
ces to define the Gaussian RBF kernel K : (Sym™ ™ (m) x Sym™+ (m)) — R*,

K(Co(,):Cafy)) = eXP(—YdZ(Cq>(f1),Cq>(f2))) ) 4)

where d (Cq>(fl),Cq,( fz)) is the log-Euclidean distance between Cg(s,) and Cgyy,). Conve-
niently for us, this kernel has been already proved to be a positive definite kernel for all
¥ > 0 [10]. This kernel is computed for the global covariance descriptor as well as for each
local covariance descriptor yielding to five different kernels. Then, each kernel is fed, sep-
arately, to a SVM classifier that outputs a score per class. Finally, fusion is performed by
multiplying or computing a weighted sum over the scores given by the different kernels.

S Experimental results

The effectiveness of the proposed approach in recognizing basic facial expressions has been
evaluated in constrained and unconstrained (i.e., in-the-wild) settings using two publicly
available datasets with different challenges:

Oulu-CASIA dataset [29]: Includes 480 image sequences of 80 subjects taken in a
constrained environment with normal illumination conditions. For each subject, there are six
sequences, one for each of the six basic emotion labels. Each sequence begins with a neutral
facial expression and ends with the apex of the expression. For both training and testing, we
use the last three peak frames to represent the video resulting in 1440 images. Following
the same setting of the state-of-the-art, we conducted a ten-fold cross validation experiment,
with subject independent splitting.

Static Facial Expression in the Wild (SFEW) dataset [5]: Consists of 1,322 static im-
ages labeled with seven facial expressions (the six basic plus the neutral one). This dataset
has been collected from real movies and targets spontaneous expression recognition in chal-
lenging, i.e., in-the-wild, environments. It is divided into training (891 samples), validation
(431 samples), and test sets. Since the test labels are not available, here we report results on
the validation data.

5.1 Settings

As initial step, we performed some preprocessing on the images of both datasets. For Oulu-
CASIA, we first detected the face using the method proposed in [26]. For SFEW, we used
the aligned faces provided by the dataset. Then, we detected 49 facial landmarks on each
face using the Chehra Face Tracker [2]. All frames were cropped and resized to 224 x 224,
which is the input size of the DCNN models.

VGG fine-tuning: Since the two datasets are quite different, we fine-tuned the VGG-
face model on each dataset separately. To keep the experiments consistent with [6] and [21],
we conducted ten-fold cross validation on Oulu-CASIA. This results in ten different deep
models, each of them is trained on nine splits with 9 x 3 x (480/10) = 1,296 images. On the
SFEW dataset, one model is trained using the provided training data. The training procedure
for both datasets is executed for 100 epochs, with a mini-batch size of 64 and learning rate of
0.0001 decreased by 0.1 after 50 epochs. The momentum is fixed to be 0.9, and Stochastic
Gradient Descent is adopted as optimization algorithm. The fully connected layers of the
VGG-face model are trained from scratch by initializing them with a Gaussian distribution.


Citation
Citation
{Jayasumana, Hartley, Salzmann, Li, and Harandi} 2015

Citation
Citation
{Zhao, Huang, Taini, Li, and Pietik{ä}Inen} 2011

Citation
Citation
{Dhall, Ramanaprotect unhbox voidb@x penalty @M  {}Murthy, Goecke, Joshi, and Gedeon} 2015

Citation
Citation
{Viola and Jones} 2004

Citation
Citation
{Asthana, Zafeiriou, Cheng, and Pantic} 2014

Citation
Citation
{Ding, Zhou, and Chellappa} 2017

Citation
Citation
{Ofodile, Kulkarni, Corneanu, Escalera, Baro, Hyniewska, Allik, and Anbarjafari} 2017


N. OTBERDOUT ET AL: DEEP COVARIANCE DESCRIPTORS FOR FER 7

For data augmentation, we used horizontal flipping on the original data without any other
supplementary datasets.

ExpNet training: Also in this case, a ten-fold cross validation is performed on Oulu-
CASIA requiring the training of ten different deep models. The ExpNet architecture consists
of five convolutional layers, each one followed by Relu activation and max pooling [6]. As
mentioned in Section 3.1, these layers were trained first by regularization with the fine-tuned
VGG model, then we appended one fully connected layer of size 128. The whole network
is finally trained. All parameters used in the ExpNet training (learning rate, momentum,
mini-batch size, number of epochs) are the same as in [6]. We conducted all our training
experiments using the Caffe deep learning framework [11].

Features extraction: We used the last pooling layer of DCNN models to extract features
from each face image. This layer provides 512 feature maps of size 7 x 7, which yields to
covariance descriptors of size 512 x 512. For the local approach, to well map landmarks
position in the input image to the coordinates of the feature maps, we resized all feature maps
to 14 x 14, that allows us to correctly localize regions on the feature maps and minimize the
overlapping between them. The detected regions in the input image were mapped to the
feature maps using Eq. (1) with a ratio s = 1/16. Based on this mapping, we extracted
features around eyes, mouth and both cheeks from each feature map. Finally, we used these
local features to compute a covariance descriptor of size 512 x 512 for each region in the
input image. It is worth noting that the extracted regions have different sizes in different
images. However, the size of the resulting covariance matrices depends only on the number
of feature maps (as results from Eq. (2)). This yields covariance matrices of the same size
lying in the same SPD manifold Sym™*(512), without the necessity of any resizing that can
change our DCNN features. In Sections 1 and 2 of the supplementary material, we show
images of the extracted global and local FMs and their corresponding covariance matrices.

Classification: For the global approach, each static image is represented by a covariance
descriptor of size 512 x 512. In order to compare covariance descriptors in Sym™**(512),
it is empirically necessary to ensure their positive definiteness by using their regularized
version, Cq>< nt el, where € is a small regularization parameter (set to 0.0001 in all our
experiments), and / is the 512 x 512 identity matrix. To classify these descriptors, we used
multi-class SVM with Gaussian kernel on the Riemannian manifold Sym™*(512). For re-
producibility, we choose parameters of the Gaussian kernel ¥ and SVM cost § using cross
validation with grid search in the following intervals: y € [1073,1071%] and & € [10%,10%].
Concerning the local approach, each image was represented by four covariance descrip-
tors, each regularized as stated for the global covariance descriptor. This resulted in four
classification decisions that were combined using two late fusion methods: weighted sum
and product. The best performance were achieved for weighted sum fusion with wgopar,
Weyess Weheek—left> Weheek—right €qual to 1 and wyg,, = 0.2, for the Oulu-CASIA dataset, and
Welobal = 1, and Weyes, Winouths Weheek—left> Weheek—right €qual to 0.1 for the SFEW dataset.
Note that we report the results of our local approach with only ExpNet model since it pro-
vides better results with the global approach than VGG-face model. SVM classification was
obtained using the LIBSVM [4] package. Note that for testing the Oulu-CASIA dataset, we
represented each video by its three peak frames as in Ding et al. [6]. Hence, to calculate the
distance between two videos, we considered the mean of the distances between their frames.
For softmax, we considered the video as correctly classified if its three frames are correctly
recognized by the model.
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5.2 Results and discussion

As first analysis, in Table 1, we compare our proposed global (G-FMs) and local (R-FMs)
solutions with the baselines provided by the VGG-face and ExpNet models, without the use
of the covariance matrix (i.e., they used the fully connected and softmax layers). On Oulu-
CASIA, the G-FMs solution improves by 3.7% and 1.26%, respectively, the VGG-face and
ExpNet models. Though less marked, an increment of 0.69% for the VGG-face and of
0.92% for ExpNet has been also obtained on the SFEW dataset. These results prove that the
covariance descriptors computed on the convolutional features provide more discriminative
representations. Furthermore, the classification of these representations using Gaussian ker-
nel on SPD manifold is more efficient than the standard classification with fully connected
layers and softmax, even if these layers were trained in an end-to-end manner. Table 1 also
shows that the fusion of the local (R-FMs) and global (G-FMs) approaches achieves a clear
superiority on the Oulu-CASIA dataset surpassing by 1.25% the global approach, while no
improvement is observed on the SFEW dataset. This is due to the failure of landmark de-
tection skewing the extraction of the local deep features. In Section 3 of the supplementary
material, we show some failure cases of landmark detection on this dataset.

Dataset Model FC-Softmax ours (G-FMs) ours (G-FMs and R-FMs)
Oulu-CASIA VGG Face 77.8 81.5 -

ExpNet 82.29 83.55 84.80
SFEW VGG Face 46.66 47.35 -

ExpNet 48.26 49.18 49.18

Table 1: Comparison of the proposed classification scheme with respect to the VGG-Face
and ExpNet models with fully connected layer and Softmax.

In Table 2, we investigated the performance of the individual regions of the face for Exp-
Net. On both datasets, the right and left cheek provide almost the same score outperforming
at a large extent the mouth score. Results for the eye region are not coherent across the two
datasets: the eyes region is the best performing for Oulu-CASIA, but this is not the case
on SFEW. We motivate this result by the fact that, in the wild acquisitions as for the SFEW
dataset, the region of the eyes can be affected by occlusions, and the landmarks detection can
be less accurate (see Section 3 of the supplementary material for failure cases of landmark
detection in this dataset). Table 2 also compares different fusion modalities. We found con-
sistent results across the two datasets, indicating the weighted sum fusion between G-FMs
and R-FMs is the best approach.

The confusion matrices for ExpNet with weighted-sum are reported in Figure 2 left and
right plots, respectively, for Oulu-CASIA and SFEW. For Oulu-CASIA, the happy and sur-
prise expressions are better recognized over the rest. The happy expression is the best rec-
ognized one also for SFEW, followed by the neutral one, while surprise, disgust and fear
expressions are harder to recognize. This is related to the unbalanced number of expression
examples for the different classes included in this database as explained in [20].

As last analysis, in Table 3 we compare our solution with respect to state-of-the-art meth-
ods. Overall, on Oulu-CASIA, we obtained the second highest accuracy, outperforming sev-
eral recent approaches. Furthermore, Ofodil et al. [21], who achieved the highest accuracy
on this dataset, also used temporal information of the video. In addition, they did not report
the frames used to train their DCNN model, which is indeed an important information to
compare the two approaches. Note that, to compare our results with those of Ding et al. [6],
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Region Oulu-CASIA SFEW
Eyes 84.59 38.05
Mouth 70.00 38.98
Right Cheek 83.96 43.16
Left Cheek 83.12 42.93
R-FMs product fusion 83.66 42.92
G-FMs and R-FMs product fusion 84.05 45.24
R-FMs weighted-sum fusion 84.59 43.85
G-FMs and R-FMs weighted-sum fusion 84.80 49.18

Table 2: Overall accuracy (%) of different regions and fusion schemes on the Oulu-CASIA
and SFEW datasets for the ExpNet model.
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Figure 2: Confusion matrix on Oulu-CASIA (left) and SFEW (right) for ExpNet with
weighted-sum fusion.

Method Oulu-CASIA SFEW
Kacemetal. [13]* 83.13 -
Jung etal [12]* 74.17 -
Liuetal [16] - 26.14
Levietal [15] - 41.92
Mollahosseini et al. [19] - 47.70
Ngetal [20] - 48.50
Yuetal [28] - 52.29
Ding et al. [6] 82.29 48.29
Livetal [17]* 74.59 -
Guo etal.[9] * 75.52 -
Zhao et al. [30] * 84.59 -
Jung etal [12]* 81.46 -
Ofodil etal. [21]* 89.60 -
ours (ExpNet + G-FMs) 83.55 49.18
ours (ExpNet + G-FMs and R-FMs fusion) 84.80 49.18

Table 3: Comparison with state-of-the art solutions on Oulu-CASIA and SFEW. Geomet-
ric, appearance and hybrid solutions are reported in the first three groups of methods; Our
solutions are given in the last row. (*) Dynamic approaches.

which was reported per frames, we reproduced the results for their approach on a per video
basis, considering that the video is correctly classified if the three frames of the video are
correctly recognized. On the SFEW dataset, the global approach achieves the second highest
accuracy, surpassing various state of the art methods with significant gains. Moreover, the
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highest accuracy reported by [28] is obtained using a DCNN model trained on more than
35,000 additional data provided by the FER-2013 database [8]. As reported in [6], this data
augmentation can improve results on SFEW from 48.29% to 55.15%.

6 Discussion and Conclusions

In this paper, we have proposed the covariance matrix descriptor as a way to encode DCNN
features in facial expression recognition. In the general approach, DCNNs are trained to
automatically identify the patterns that characterize each class in the input images. For the
case of facial expression recognition, these patterns correspond to high-level features that
are related to Facial Action Units [14] (in the supplementary material, we have shown some
examples of the extracted features at the top of convolutional layers of a trained DCNN
model). Following a standard classification scheme in DCNN models, these features are
firstly flattened using fully connected layers by performing a set of linear combinations of
the input features followed by a softmax activation for predicting the expression. By contrast,
in this work, we discard the fully connected layers and use covariance matrices to encode
all the linear correlations between the activated non-linear features at the top convolutional
layers. This is achieved both globally and locally by focusing on specific regions of the face.
By doing so, we exploit locally and globally both first-order statistics information (deep
features) and second-order information (covariance), which results in a more discriminative
representation. More particularly, the covariance matrix belongs to the set of symmetric
positive-definite (SPD) matrices, thus laying on a special Riemannian manifold. We have
shown the classification of these representations using Gaussian kernel on the SPD manifold
is more efficient than the standard classification with fully connected layers and softmax.
By implementing our approach using different architectures, i.e., VGG-face and ExpNet,
in extensive experiments on the Oulu-CASIA and SFEW datasets, we have shown that the
proposed approach achieves state-of-the-art performance for facial expression recognition.
As future work, we aim to include the temporal dynamics of the face in the proposed model.
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