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Abstract—The theory of belief functions is widely used for data
from multiple sources. Different evidence combination rules have
been proposed in this framework according to the properties
of the sources to combine. However, most of these combination
rules are not efficient when there are a large number of sources.
This is due to either the complexity or the existence of an
absorbing element such as the total conflict mass function for the
conjunctive based rules when applied on unreliable evidence. In
this paper, based on the assumption that the majority of sources
are reliable, a combination rule for a large number of sources
is proposed using a simple idea: the more common ideas the
sources share, the more reliable these sources are supposed to
be. This rule is adaptable for aggregating a large number of
sources which may not all be reliable. It will keep the spirit of
the conjunctive rule to reinforce the belief on the focal elements
with which the sources are in agreement. The mass on the empty
set will be kept as an indicator of the conflict.

The proposed rule, called LNS-CR (Conjunctive combination
Rule for a Large Number of Sources), is evaluated on synthetic
mass functions. The experimental results verify that the rule can
be effectively used to combine a large number of mass functions
and to elicit the major opinion.

Index Terms—Theory of belief functions, big data, combina-
tion, large number of sources, reliability

I. INTRODUCTION

IN recent years, Dempster–Shafer Theory (DST), also called
the theory of belief functions, has gained increasing at-

tention in the scientific community as it allows to the deal
with the imprecise and uncertain information. It has been
applied in various domains, such as data classification [2, 3],
data clustering [4, 5], social network analysis [6], etc. In
complex environment, multiple stake-holders attempt to reach
a decision by combining several sources of information and ag-
gregating their points of view by stressing common agreement.
The theory of belief functions, which has provided many rules
to combine information represented by mass functions [7], are
widely used for decision making. In real applications, there
are usually a large number of sources. Most of the existing
combination rules are not applicable in this case, and cannot
be used to find the major opinion from many participants.

One of the most famous combination rule in belief function
framework is the Dempster’s rule [7]. Smets [8] proposed
a modification of Dempster’s rule, often called “conjunctive
rule”, where the empty set can be assigned with a non-null
mass under the Transferable Belief Model (TBM) [9]. In fact,
the conjunctive rule is equivalent to the Dempster rule without

This paper is an extension and revision of [1].

the normalization process. It has a fast and clear convergence
towards a solution. But this rule has a strong assumption that
all the sources are reliable. In real applications, it is difficult to
be either satisfied or verified. Moreover, the more sources there
are, the more chance that there is some unreliable evidence.

Smets [8] reasoned that the mass on the empty set can
play the role of alarm. When the global conflict (the mass
assigned to the empty set) is high, it indicates that there is
strong disagreement among the sources of mass functions to
combine. However, as observed in [10, 11, 12], the mass on the
empty set is not sufficient to exactly describe the conflict since
it includes an amount of auto-conflict [13]. Sometimes when
there is only a small amount of concordant evidence, the total
conflict mass function, i.e. m(∅) = 1 will be an absorbing
element. Consequently, when combining a large number of
(incompatible) mass functions using the conjunctive rule, the
global conflict may tend to 1. This makes it impossible to
reveal the cause of high global conflict. We do not know
whether it is due to the sources to fuse or caused by the
absorption power of the empty set [10, 14]. In other words,
even the combined mass function by the conjunctive rule
is m(∅) ≈ 1, the proposition that the sources are highly
conflicting may be incorrect.

In order to rectify the drawbacks of the classical Dempster’s
rule and Smets’ conjunctive rule, many approaches have been
made through the modification of the combination rule. Some
authors tried to find alternative repartitions of the conflict. A
plethora of combination rules have been brought forward in
this way. For example, Yager [15] and Dubois and Prade [16]
suggested assigning the highly conflicting mass to the whole
set or a particular set. The Proportional Conflict Redistribution
(PCR) rule, which can distribute the partial conflicts among
the involved focal elements rather than to their union, is
developed in [13, 17]. Apart from these approaches working
directly on the combination rule, some studies manage the
conflict through evidence discounting, where the reliability
of sources is automatically and adaptively taken into account
[10, 16, 18, 19].

Most of the existing combination rules are not efficient when
applied on a large number of sources due to the ineffective way
to handle conflict or the high complexity of the computation.
Orponen [20] proved that the complexity of the conjunctive
rule is NP-hard, but the complexity depends on the way to
program the belief functions [21]. Some rules can manage
efficiently the conflict but have large complexity [13, 16, 22,
23], making them infeasible when applied to combine a large
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number of mass functions.
In this paper, a conjunctive-based combination rule, named

LNS-CR (Large Number of Sources), is proposed to aggregate
a large number of mass functions. Our perspective on belief
function combination is that combining mass functions from
different sources is similar to combining opinions from multi-
ple stake-holders in group decision-making [24], i.e. the more
one’s opinion is consistent with the other experts, the more
reliable the source is. We assume that all the mass functions
available are separable mass functions, which means they can
be expressed by a group of simple support mass functions. In
many applications, the mass assignments are directly in the
form of Simple Support Functions (SSF) [25]. The advantage
of SSFs is that we can group the mass functions in such a
way that sources in the same group share the same viewpoint.
Mass functions in each small group are first fused and then
discounted according to the proportions. After that the number
of mass functions participating the next global combination
process is independent of the number of sources, but only
depends on the number of classes. As a result, the problem
brought by the absorbing element (the empty set) using the
conjunctive rule can be avoided. Moreover, an approximation
method when the number of mass functions is large enough is
presented. The main contributions of this paper are as follows:
• A new conjunctive-based combination rule, named

LNS-CR rule, is brought froward. The property to re-
inforce the belief on the focal elements with which most
of the sources agree is preserved in the proposed rule;

• The assumption of the LNS-CR rule on the reliability of
the sources is more relaxed, as it does not require all the
sources are reliable, but only at least half of them are
reliable.

• LNS-CR can be used to combine mass functions from a
large number of sources, especially can be used to elicit
the major opinion;

• Derivation that the LNS-CR rule is within acceptable
complexity.

The rest of this paper is organized as follows. In Section
2, some basic knowledge of belief function theory is briefly
introduced. The proposed evidence combination approach is
presented in detail in Section 3. Numerical examples are
employed to compare different combination rules and show
the effectiveness of LNS-CR rule in Section 4. Finally, Section
5 concludes the paper.

II. BACKGROUND

A. Basic knowledge of belief function theory

Let Θ = {θ1, θ2, . . . , θn} be the discernment frame. A mass
function is defined on the power set 2Θ = {A : A ⊆ Θ}. The
mass function m : 2Θ → [0, 1] is said to be a Basic Belief
Assignment (bba) on 2Θ, if it satisfies:∑

A⊆Θ

m(A) = 1. (1)

Every A ∈ 2Θ such that m(A) > 0 is called
a focal element, and the set of focal elements is de-
noted by F . In a practical way of programming, the

element of 2Θ can be arranged by natural order [26]:
θ1, θ2, {θ1, θ2}, θ3, · · · , {θ1, θ2, θ3}, θ4, · · · ,Θ.

The frame of discernment can also be a focal element.
If Θ is a focal element, the mass function is called non-
dogmatic. The mass assigned to the frame of discernment,
m(Θ), is interpreted as a degree of ignorance. In the case
of total ignorance, m(Θ) = 1. This type of mass assign-
ment is vacuous. If there is only one focal element, i.e.
m(A) = 1, A ⊂ Θ, the mass function is categorical. Another
special case of assignment is named consonant mass functions,
where the focal elements include each other as a subset, i.e.
if A,B ∈ F , A ⊂ B or B ⊂ A.

The credibility and plausibility functions are derived from
a bba m as in Eqs. (2) and (3):

Bel(A) =
∑

B⊆A,B 6=∅

m(B), ∀A ⊆ Θ, (2)

Pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Θ. (3)

Each quantity Bel(A) measures the minimal belief on A
justified by available information on B(B ⊆ A) , while
Pl(A) is the maximal belief on A justified by information
on B which are not contradictory with A (A ∩ B 6= ∅). The
commonality function q and the implicability function b are
defined respectively as

q(A) =
∑
A⊆B

m(B), ∀A ⊆ Θ (4)

and
b(A) = Bel(A) +m(∅), ∀A ⊆ Θ. (5)

A bba m can be recovered from any of these functions. For
instance,

m(A) =
∑
B⊇A

(−1)|B|−|A|q(B), ∀A ⊆ Θ (6)

and
m(A) =

∑
B⊆A

(−1)|A|−|B|b(B), ∀A ⊆ Θ. (7)

Belief functions can be transformed into a probability
function by Smets’ method [27], where each mass of belief
m(A) is equally distributed among the elements of A. This
leads to the concept of pignistic probability, BetP. For all
θi ∈ Θ, we have

BetP(θi) =
∑

A⊆Θ|θi∈A

m(A)

|A|(1−m(∅))
, (8)

where |A| is the cardinality of set A (number of elements of
Θ in A). Pignistic probabilities can help make a decision.

B. Consistency of mass assignments

The consistency between two bbas can be defined in two
different ways. Suppose the sets of focal elements for m1 and
m2 are F1 and F2 respectively. Mass functions m1 and m2

are called strong consistent if and only if

∩E∈{F1∪F2} 6= ∅. (9)
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Meanwhile, bbas m1 and m2 are called weak consistent if and
only if

∀A ∈ F1, B ∈ F2, A ∩B 6= ∅. (10)

Strong consistent evidence means that there is at least one
element that is common to all subsets [28]. It is easy to see
that, when m1 and m2 are strong consistent, they are sure to be
weak consistent. This is the definition of consistency between
belief functions. The inconsistency within an individual mass
assignment can be defined similarly [12].

C. Reliability-based discounting

When the sources of evidence are not completely reliable,
the discounting operation proposed by Shafer [25] and justified
by Smets [29] could be applied. Denote the reliability degree
of mass function m by α ∈ [0, 1], then the discounting
operation can be defined as:

m
′
(A) =

{
α×m(A) ∀A ⊂ Θ,

1− α+ α×m(Θ) if A = Θ.
(11)

If α = 1, the evidence is completely reliable and the bba will
remain unchanged. On the contrary, if α = 0, the evidence
is completely unreliable. In this case the so-called vacuous
belief function, m(Θ) = 1, could be got. It describes the total
ignorance.

Before evoking the discounting process, the reliability of
each sources should be known. One possible way to estimate
the reliability is to use confusion matrices [30]. Generally,
the goal of discounting is to reduce global conflict before
combination. One can assume that the conflict comes from
the unreliability of the sources. Therefore, the source reliability
estimation is to some extent linked to the estimation of conflict
between sources.

Hence, Martin et al. [10] proposed to use a conflict measure
to evaluate the relative reliability of experts. Once the degree
of conflict is computed, the relative reliability of the source
can be computed accordingly. Suppose there are S sources,
S = {s1, s2, · · · , sS}, the reliability discounting factor αj of
source sj can be defined as follows:

αj = f (Conf (sj ,S)) , (12)

where Conf (sj ,S) quantifies the degree that source sj con-
flicts with the other sources in S, and f is a decreasing
function. The following function is suggested by the authors:

αj =
(

1− Conf (sj ,S)
λ
) 1
λ

, (13)

where λ > 0.
In [31], the authors considered to use those two possible

conflict origins, extrinsic measure and intrinsic measure, to
estimate reliability. In their opinion, conflict may not only
come from the source’s contradiction (extrinsic measure), but
also from the confusion rate of a source (intrinsic measure).
The reliability discounting factor, called Generic Discounting
Factor (GDF), is then suggested to be a weighted sum of the
two items:

α =
kδ + lβ

k + l
, (14)

where k > 0, l > 0 are the weight factors. In the above
equation, δ denotes the internal conflict measure of the
treated source indicating its confusion rate while β is the
average distance between the treated sources si and sj where
j ∈ S, j 6= i. Different intrinsic and extrinsic conflict measures
can be adopted here.

There are some other methods to estimate the reliability.
In [32], the authors proposed to estimate the reliability of
sources based on a degree of falsity. The bbas are sequentially
and incrementally discounted until the mass assigned to the
empty set is smaller than a given threshold k. After that
the discounted mass functions can be combined using the
conjunctive rule since there is little global conflict at this time.
In [33], the source reliability is obtained by minimizing the
distance between the pignistic probabilities computed from the
discounted beliefs and the actual value of the data. In Samet
et al. [34], the authors proposed two different versions of
generic discounting approaches: weighted GDA and exponent
GDA. A new degree of disagreement is proposed by Yang et al.
[35], where the reliability discounting factor can be generated.
Klein and Colot [36] viewed the degree of conflict as a
function of discounting rates and introduced a new criterion
assessing bbas’ reliability. These reliability estimation methods
either consider the distance (or dissimilarity) between each
pair of bbas, or the mass assigned to the empty set after the
conjunctive combination. However, these methods are of high
complexity and not suitable for large data applications.

D. Simple support function

Suppose m is a bba defined on the frame of discernment Θ.
If there exists a subset A ⊆ Θ such that m could be expressed
in the following form:

m(X) =


w X = Θ,

1− w X = A,

0 otherwise.
(15)

where w ∈ [0, 1], then the belief function related to bba m
is called a Simple Support Function (SSF) (also called simple
mass function) [25] focused on A. Such a SSF can be denoted
by Aw(·) where the exponent w of the focal element A is the
basic belief mass (bbm) given to the frame of discernment
Θ, m(Θ). The complement of w to 1, i.e. 1− w, is the bbm
allocated to A [37]. If w = 1 the mass function represents the
total ignorance, if w = 0 the mass function is a categorical
bba on A.

A belief function is separable if it is a SSF or if it is the
conjunctive combination of some SSFs [38]. In the work of
[38], this kind of separable masses is called u-separable where
“u” stands for “unnormalized”, indicating the conjunctive rule
is the unnormalized version of Dempster-Shafer rule. The set
of separable mass functions is not obvious to obtain. It is easy
to see consonant mass functions (the focal element are nested)
are separable [39]. Smets [37] defined the Generalized Simple
Support Function (GSSF) by relaxing the weight w to [0,∞).
Those GSSFs with w ∈ (1,∞) are called Inverse Simple
Support Functions (ISSF). Smets proved all non-dogmatic
mass functions are separable if one uses GSSFs. For any
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non-dogmatic belief function m0, the canonical decomposition
method proposed by Smets is as follows. First, calculate the
commonality number for all focal elements, which is given by

Q0(X) =
∑
B⊇X

m0(B). (16)

Secondly for any A ⊆ Θ, calculate wA value as follows:

wA =
∏
X⊇A

Q0(X)(−1)|X|−|A|+1

. (17)

Then the belief function m0 can be represented by the con-
junctive combination of all the functions AwA , i.e.

m0 = ∩©
A⊆Θ

AwA , (18)

where ∩© denotes the conjunctive combination rule. For fast
computation, the Fast Möbius Transform (FMT) method [40]
can be evoked.

E. Some combination rules

How to combine efficiently several bbas coming from
distinct sources is a major information fusion problem in the
belief function framework. Many rules have been proposed for
such a task. Here we just briefly recall how some most popular
rules are mathematically defined.

When information sources are reliable, the used fusion
operators can be based on the conjunctive combination. If bbas
mj , j = 1, 2, · · · , S describing S distinct items of evidence on
Θ, the included result of the conjunctive rule [9] is defined
as

mconj(X) = ( ∩©
j=1,··· ,S

mj)(X) =
∑

Y1∩···∩YS=X

S∏
j=1

mj(Yj),

(19)
where mj(Yj) is the mass allocated to Yj by expert j. To apply
this rule, the sources are assumed reliable and cognitively
independent.

Another kind of conjunctive combination is Dempster’s
rule [41]. Assuming that mconj(∅) 6= 1, the result of the
combination by Dempster’s rule is

mDempster(X) =

{
0 if X = ∅,
mconj(X)

1−mconj(∅) otherwise.
(20)

The item

κ , mconj(∅) =
∑

Y1∩···∩YS=∅

S∏
j=1

mj(Yj)

is generally called Dempster’s degree of conflict of the com-
bination or the inconsistency of the combination. As the con-
junctive rule is not idempotent, mconj(∅) includes an amount
of auto-conflict [42], and it is called global conflict to make
the difference.

The conjunctive rule can be applied only if all the experts
are reliable. In the other case, the disjunctive rule [43], which
only assumes that at least one of the sources is reliable, can be

used. The disjunctive combination of S sources can be defined
as

mdisj(X) =

(
∪©

j=1,··· ,S
mj

)
(X) =

∑
Y1∪···∪YS=X

S∏
j=1

mj(Yj).

(21)
The conjunctive and disjunctive rules can be conveniently

expressed by means of the commonality function q (Eq. (4))
and the implacability function b (Eq. (5)) [43]. Let qi and bi be
the commonality function and implacability function respec-
tively (associated with mi), then the commonality function of
the conjunctive combination of S bbas is

qconj(A) =

S∏
i=1

qi(A), ∀A ⊆ Θ (22)

while the implacability function of the disjunctive combination
of S bbas is

bdisj(A) =

S∏
i=1

bi(A), ∀A ⊆ Θ. (23)

Since functions m, q and b (as well as bel and pl) are
equivalent representations, the mass function m can be recov-
ered using the Fast Möbius Transform (FMT) method given
the functions q and b. The conversion can be done in time
proportional to n2n [44]∗. For the conjunctive combination of
S sources, the S bbas should be converted into commonality
functions first. After calculating the product of S commonality
functions, another transformation from m to q should be
evoked. Overall the total complexity is O(Sn2n+S2n+n2n),
and the time needed is proportional to Sn2n [44, 45].

The conflict could be redistributed on partial ignorance like
in the Dubois and Prade rule (DP rule) [16], which can be
seen as a mixed conjunctive and disjunctive rule. For all X ⊆
Θ, X 6= ∅:

mDP(X) =
∑

Y1∩···∩YS=X

S∏
j=1

mj(Yj)+

∑
Y1 ∪ · · · ∪ YS = X
Y1 ∩ · · · ∩ YS = ∅

S∏
j=1

mj(Yj), (24)

where mj is the mass function delivered by expert j. In a
general case, this rule cannot be programmed with the Fast
Möbius Transform method because all the partial conflict must
be considered. If the implementation is made like that in
Ref. [46], it takes much more time than the conjunctive rule.

Denœux [38] proposed a family of conjunctive and disjunc-
tive rules using triangular norms. The cautious rule [47, 48]
belongs to that family and could be used to combine mass
functions for which independence assumption is not verified.
Cautious combination of S non-dogmatic mass functions

∗This is based on the assumption that the mass functions are arranged in
natural order. If not, the complexity is proportional to n22n. The complexity
analysis in this work all assumes that the bbas to be combined are encoded
using the natural order.
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mj , j = 1, 2, · · · , S is defined by the bba with the following
weight function:

w(A) =
S
∧
j=1

wj(A), A ∈ 2Θ \Θ. (25)

We thus have

mCautious(X) = ∩©
A(Θ

A

S
∧
j=1

wj(A)
, (26)

where Awj(A) is the simple support function focused on A
with weight function wj(A) issued from the canonical decom-
position of mj . Note also that ∧ is the min operator. The time
consumption of the cautious rule includes the canonical de-
composition of non-dogmatic mass functions and is therefore
bigger than the conjunctive rule. If this rule is implemented in
Fast Möbius Transform method, the complexity is proportional
to Sn2n.

Murphy [49] presented the average combination rule and
proposed to utilize the mean of the basic belief assignments
as the fusion of evidence. Therefore, for each focal element
X ∈ 2Θ of S mass functions, the combined one is defined as
follows:

mAve(X) =
1

S

S∑
j=1

mj(X),∀X ⊆ Θ. (27)

The complexity of the average is proportional to S2n.
A family of fusion rules based on new Proportional Conflict

Redistributions (PCR) for the combination of uncertainty
and conflicting information have been developed in Dezert–
Smarandache Theory (DSmT) framework [50]. Among them,
the fusion rule called PCR6 proposed by Martin and Osswald
[13] is one of the most popular one among the PCR rules. For
the combination of S > 2 sources, the fused mass is given by
mPCR6(∅) = 0, and for X 6= ∅ in 2Θ

mPCR6(X) = mconj(X) +

S∑
i=1

{
(mi (X))

2×

∑
⋂S−1
k=1 Yσi(k) ∩X ≡ ∅(

Yσi(1), · · · , Yσi(S−1)

)
∈
(
2Θ
)S−1


S−1∏
j=1

mσi(j)(Yσi(j))

mi(X)+
S−1∑
j=1

mσi(j)(Yσi(j))


}
,

(28)

where σi counts from 1 to S avoiding i:{
σi(j) = j if j < i,

σi(j) = j + 1 if j ≥ i.
(29)

As Yi is a focal element of expert/source i, we have m(Yi) >
0. Then

mi(X) +

S−1∑
j=1

mσi(j)

(
Yσi(j)

)
6= 0.

In Eq. (28), mconj is the conjunctive rule given by Eq. (19).
Here again, the Fast Möbius Transform method to program the
belief functions is not generally the best way. If the implemen-
tation is made like that in Ref. [46], the time consumption is
very high.

III. A COMBINATION RULE FOR A LARGE NUMBER OF
MASS FUNCTIONS

The main idea of the conjunctive combination rule is to
reinforce the belief on the focal elements with which most of
the sources agree. Martin et al. [10] showed that the mass on
the empty set, which is an absorbing element, tends quickly
to 1 with the number of sources when combining inconsistent
bbas. Consequently, when using Dempster rule (Eq. (20)), the
gap between κ and 1 may rapidly exceed machine precision,
even if the combination is valid theoretically. In that case the
fused bba by the conjunctive rules (normalized or not) and the
pignistic probability are inefficient. Moreover, the assumption
that all the sources are reliable for the conjunctive combination
rule is difficult to reach in real applications. The more sources
there are, the less chance that this assumption is valid.

The principle of the conjunctive rule with the reinforcement
of belief and the role of the empty set as an alarm are essential
in the theory of belief functions. In order to propose a rule
which can be adapted to the combination of a large number of
mass functions and keep the previous behavior, the following
assumptions are made:
• The majority of sources are reliable;
• The larger extent one source is consistent with others,

the more reliable the source is;
• The sources are cognitively independent [43].

These assumptions seem reasonable if we consider combing
mass functions as some kind of group decision making prob-
lems. As a result, the proposed rule will give more importance
to the groups of mass functions that are in a domain, and
it is without auto-conflict [13, 14]. In order to take into
account this effect, this rule will discount the mass functions
according to the number of sources giving bbas with the same
focal elements. The discounting factor is directly given by the
proportion of mass functions with the same focal elements.
This procedure is for the elicitation of the majority opinion.

The simple support mass functions are considered here. In
this case, the mass functions can be grouped in the light of
their focal elements (except the frame Θ). To make the rule
applicable on separable mass functions, the decomposition
process should be performed to decompose each bba into
simple support mass functions. In most of applications, the
basic belief can be defined using separable mass functions,
such as simple support functions [2] and consonant mass
functions [51, 52].

Hereafter we describe the proposed LNS-CR rule for sim-
ple support functions, and then an approximation calculation
method of LNS-CR rule is suggested.

A. LNS-CR rule for simple support functions

Suppose that each evidence is represented by a SSF. Then
all the bbas can be divided into at most 2n groups (where
n = |Θ|). It is easy to see that there is no conflict at all
in each group because of consistency. The focal elements of
the SSF are singletons and Θ itself. For the combination of
bbas inside each group, the conjunctive rule can be employed
directly. Then the fused bbas are discounted according to the
number of mass functions in each group. Finally, the global
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combination of the bbas of different groups is preformed also
using the conjunctive rule. Suppose that all bbas are defined on
the frame of discernment Θ = {θ1, θ2, · · · , θn}, and denoted
by mj = (Ai)

wj , j = 1, · · · , S and i = 1, 2, · · · , c, where
c ≤ 2n. The detailed process of the combination is listed as
follows. Our proposed rule called LNS-CR for Large Number
of Sources rule is composed of the four following steps:

1) Cluster the simple bbas into c groups based on their focal
element Ai. For the convenience, each class is labeled
by its corresponding focal element.

2) Combine the bbas in the same group. Denote the com-
bined bba in group Ak by SSF

m̂k = (Ak)ŵk , k = 1, 2, · · · , c.

Let the number of bbas in group Ak is sk. If the
conjunctive rule is adopted, we have

m̂k = ∩©
j=1,··· ,sk

mj = (Ak)

sk∏
j=1

wj

. (30)

3) Reliability-based discounting. Suppose the fused bba of
all the mass functions in Ak is m̂k. At this time, each
group can be regarded as a source, and there are c
sources in total. The reliability of one source can be
estimated as compared to a group of sources. In our
opinion, the reliability of source Ak is related to the
proportion of bbas in this group. The larger the number
of bbas in group Ak is, the more reliable Ak is. Then
the reliability discounting factor of m̂k can be defined
as:

αk =
sk
c∑
i=1

si

. (31)

In order to keep the mass function representing total
ignorance as a neutral element of the rule, in Eq. (31) we
let ak = 0 for the group with Ak = Θ. Another version
of the discounting can be given by a factor taking into
account the precision of the group by:

αk =
βηksk
c∑
i=1

βηi si

, (32)

where
βk =

|Θ|
|Ak|

. (33)

Parameter η can be used to adjust the precision of the
combination results. The larger the value of η is, the
less imprecise the resulting bba is. The discounted bba
of m̂k can be denoted by SSF m̂

′

k = (Ak)ŵ
′
k with ŵ

′

k =
1−αk+αkŵk. As we can see, when the number of bbas
in one group is larger, α is closer to 1. That is to say,
the fused mass in this group is more reliable.

4) Global combine the fused bbas in different groups using
the conjunctive rule:

mLNS-CR = ∩©
k=1,··· ,c

m̂′k = ∩©
k=1,··· ,c

(Ak)ŵ
′
k . (34)

Remarks:
• The reliability estimation method proposed here is very

simple compared with the previous mentioned methods
in Section II-C, where usually the distance between bbas
should be calculated or a special learning process is
required. In the LNS-CR rule, to evaluate the reliability
discounting factor, we only need to count the number of
SSFs in each group. Note that other reliability estimation
methods can also be used here.

• In the last step of combination, as the number of mass
functions that take part in the global combination is
small (at most 2n), other combination rules such as DP
rule and PCR rules are also possible in practice instead
of Eq. (34).

B. LNSa-CR rule for the approximated combination

If there is a large number of mass functions in each group,
an approximation method is suggested here to calculate the
combined mass in the given group. Suppose the mass functions
in group with focal element Ak (k = 1, 2, · · · , c) are:

mj(A) =


1− wj A = Ak,

wj A = Θ,

0 otherwise,
0 ≤ wj < 1, j = 1, 2, · · · , sk.

(35)
The combination of the masses in this group using the con-
junctive rule is

m̂k(A) =


1−

sk∏
j=1

wj A = Ak,

sk∏
j=1

wj A = Θ,

0 otherwise.

(36)

It is easy to get

lim
sk→∞

m̂k(A) =


1 A = Ak,

0 A = Θ,

0 otherwise.
(37)

This is an illustration of the conjunctive property. After the
discounting with factor αk, the fused bba using for the global
combination is

lim
nk→∞

m̂
′

k(A) =


αk A = Ak,

1− αk A = Θ,

0 otherwise.
(38)

It can be represented by SSF

m̂
′

k = (Ak)1−αk , (39)

where αk is shown in Eq. (31) or (32). If the conjunctive rule
is adopted for the global combination at step 4, the final bba
we get is

mLNSa-CR = ∩©(Ak)1−αk . (40)

In this approximate rule for the large number of sources,
the initial mass functions is no longer considered, and the
combination process of the bbas inside each group is not
required any more. This can accelerate the algorithm to a
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large extent. The LNS-CR and LNSa-CR rule provide different
results when the number of sources is small. However, when
the number of sources is large enough, they can be regarded
as equivalent.
C. Properties

The proposed rule is commutative, but not associative. The
rule is not idempotent, but there is no absorbing element. The
vacuous mass function is a neutral element of the LNS-CR
rule.

There are four steps when applying LNS-CR rule†: decom-
position (not necessary for simple support mass functions),
inner-group combination, discounting and global combination.
The LNS-CR rule has the same memory complexity as some
other rules such as conjunctive, Dempster and cautious rules
if all the rules are combined globally using FMT method. Only
DP and PCR6 rules have higher memory complexity because
of the partial conflict to manage. Suppose the number of mass
functions to combine is S, and the number of elements in the
frame of discernment is n. The complexity for decomposing‡

mass functions to SSFs is O(Sn2n). For combining the
mass functions in each group, due to the structure of the
simple support mass functions, we only need to calculate the
product of the masses on only one focal element Θ. Thus
the complexity is O(S). The complexity of the discounting
is O(2n). In the process of global combination, the bbas
are all SSFs. If we use the Fast Möbius Transform method,
the complexity is O(n2n). And there are at most 2n mass
functions participating the following discounting and global
conjunctive combination processes. Since in most application
cases with a large number of mass functions, we have 2n � S,
the last two steps are not very time-consuming. The total
complexity of LNS-CR is O(Sn2n + S + 2n + n2n) and so
is approximately equivalent to O(Sn2n).

For the approximate method, we can also save the time for
inner combination and the discounting. The fused mass in each
group is calculated by the proportions, and the complexity is
also O(S). Although the approximate method does not reduce
the complexity, in the experimental part, we will show that it
will save some running time in applications when S is quite
large.

We remark here that one of the assumptions of LNS-CR
rule is that the majority of sources are reliable. However, this
condition is not always satisfied in every applicative context.
Consider here an example with two sensor technologies: TA
and TB. The system has two TA-sensors (S1 and S2), and
one TB-sensor S3. Suppose also a parasite signal causes TA
sensors to malfunction. In this situation, the majority of sen-
sors are unreliable. And we could not get a good result if the
LNS-CR rule is used directly as LNS-CR(S1, S2, S3) at this
time. Actually there is an underlying hierarchy in the sources
of information, LNS-CR rule could be evoked according to
the hierarchy, such as LNS-CR(LNS-CR(S1, S2), S3). We will
study that more in the future work.

†The source code for LNS-CR rule can be found in R package ibelief [53].
‡In the decomposing process, the Fast Möbius Transform method is used.

IV. EXPERIMENTS

In this section, several experiments will be conducted
to illustrate the behavior of the proposed combination rule
LNS-CR and to compare with other classical rules. Some
different types of randomly generated mass functions will be
used. The function RandomMass in R package ibelief [53] is
adopted to generate random mass functions [54].
Experiment 1 (Elicitation of the majority opinion). In some
applications, the elicitation of the majority opinion is very
important. In this experiment, it is assumed that reliable
sources can provide some imprecise and uncertain information,
which is assumed to be in the form of the mass functions
mj (j = 1, 2, · · · , 6) over the same discernment frame
Θ = {θ1, θ2, θ3}:

m1 : m1({θ1}) = 0.12, m1(Θ) = 0.88,

m2 : m2({θ1}) = 0.16, m2(Θ) = 0.84,

m3 : m3({θ1}) = 0.15, m3(Θ) = 0.85,

m4 : m4({θ1}) = 0.11, m4(Θ) = 0.89,

m5 : m5({θ1}) = 0.14, m5(Θ) = 0.86,

m6 : m6({θ2}) = 0.95, m6(Θ) = 0.05.

As can be seen, the first five sources share similar belief
(supporting {θ1}) whereas the sixth one delivers a mass func-
tion strongly committed to another solution (supporting {θ2}).
These six mass functions cannot be regarded as conflicting,
because the majority of evidence shows the preference of {θ1}.
Here, source 6, is assumed not reliable since it contradicts with
all the other sources.

The combination results by conjunctive rule, Dempster
rule, disjunctive rule, DP rule, PCR6 rule, cautious rule,
average rule and the proposed LNS-CR rule§ are depicted
in Table I. As can be observed, the conjunctive rule assigns
most of the belief to the empty set, regarding the sources
as highly conflictual. Dempster rule, DP rule, PCR6 rule
and average rule redistribute all the global conflict to other
focal elements. The disjunctive rule gives the total ignorance
mass functions. The cautious rule and the proposed LNS-CR
rule keep some of the conflict and redistribute the remaining.
But the belief given to {θ2} is more than that to {θ1} when
using Dempster, DP, PCR6, cautious and the average rules,
which indicates that these rules are not robust to the unreliable
evidence. The obtained fused bba by the proposed rule assigns
the largest mass to focal element {θ1}, which is consistent with
the intuition. It keeps a certain level of global conflict, and at
the same time reflects the superiority of {θ1} compared with
{θ2}. From the results we can see that only the LNS-CR rule
can correctly elicit the major opinion.

The LNS-CR rule is a conjunctive based combination rule
for mass functions with different reliability degrees. As men-
tioned before, the principle of the LNS-CR rule is similar
that of Schubert’s method [32]. Table II lists the results by
Schubert’s combination method with different values of k. As
can be seen, the result by the use of the LNS-CR rule is
similar to that by Schubert’s method with a small value of

§As the focal elements are singletons except Θ, parameter η has no effects
on the final results when using LNS-CR rule.
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TABLE I
THE COMBINATION OF SIX MASSES. FOR THE NAMES OF COLUMNS, θij IS USED TO DENOTE {θi, θj}.

Conjunctive Dempster Disjunctive DP PCR6 Cautious Average LNS-CR
∅ 0.49313 0.00000 0.00000 0.00000 0.00000 0.15200 0.00000 0.06849
{θ1} 0.02595 0.05120 0.00000 0.02595 0.04783 0.00800 0.11333 0.36408
{θ2} 0.45687 0.90136 0.00000 0.45687 0.56639 0.79800 0.15833 0.08984
{θ1, θ2} 0.00000 0.00000 0.00004 0.49313 0.00000 0.00000 0.00000 0.00000
{θ3} 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
{θ1, θ3} 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
{θ2, θ3} 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Θ 0.02405 0.04744 0.99996 0.02405 0.38578 0.04200 0.72833 0.47759

threshold k. When k is set small, the discounting process in
Schubert’s method needs more steps. And in each step, the
conjunctive rule should be evoked to calculate the falsity. It is
more complex compared with the reliability estimation process
of the LNS-CR rule in that sense.

TABLE II
THE COMBINATION OF SIX MASSES BY SCHUBERT’S METHOD WITH

DIFFERENT VALUES OF k.

k 0.1 0.2 0.3 0.4 0.5
∅ 0.09776 0.19471 0.28680 0.37803 0.46444
{θ1} 0.32187 0.26219 0.19350 0.12081 0.04980
{θ2} 0.13521 0.23145 0.31033 0.37979 0.43871
{θ1, θ2} 0.00000 0.00000 0.00000 0.00000 0.00000
{θ3} 0.00000 0.00000 0.00000 0.00000 0.00000
{θ1, θ3} 0.00000 0.00000 0.00000 0.00000 0.00000
{θ2, θ3} 0.00000 0.00000 0.00000 0.00000 0.00000
Θ 0.44516 0.31165 0.20937 0.12137 0.04704

We also compare with another reliability discounting based
combination method proposed by Martin et al. [10]. Same
as Schubert’s method, after the reliability degree of each
source is estimated, the bbas are discounted following with
a conjunctive combination. There is a parameter λ in the
method to adjust the discounting factor. The results varying
with different values of λ are shown in Table III. We can see
this rule is similar to LNS-CR rule when λ is set to be around
1. When λ is not well set, the results are not good. Moreover,
in this method, the distance between bbas should be calculated
first. Consequently, it increases the complexity and makes the
method not feasible for combining a large number of sources.

TABLE III
THE COMBINATION OF SIX MASSES BY MARTIN’S METHOD WITH

DIFFERENT VALUES OF λ.

λ 0.1 0.5 1 1.5 2
∅ 0.00000 0.00350 0.10485 0.23330 0.31956
{θ1} 0.00000 0.21206 0.34700 0.26789 0.19410
{θ2} 0.00000 0.01272 0.12719 0.23219 0.30256
{θ1, θ2} 0.00000 0.00000 0.00000 0.00000 0.00000
{θ3} 0.00000 0.00000 0.00000 0.00000 0.00000
{θ1, θ3} 0.00000 0.00000 0.00000 0.00000 0.00000
{θ2, θ3} 0.00000 0.00000 0.00000 0.00000 0.00000
Θ 1.00000 0.77172 0.42096 0.26661 0.18378

Experiment 2 (The discounting mechanism). In this experi-
ment, we will discuss the reliability discounting mechanism
of the LNS-CR rule. Two reliability discounting methods
proposed by Schubert [32] and Martin et al. [10] will be used

to compare. Same as the LNS-CR rule, after the discounting
process by these two methods, the conjunctive rule is adopted
to combine the new mass functions. For simplicity, here we
call the combination rule, where the Schubert’s discounting
method (or Martin’s discounting method) is first evoked and
then the conjunctive combination rule is used, “Schubert’s
method” (Martin’s method, correspondingly). A set of 3 ∗ x
bbas on a frame of discernment Θ = {θ1, θ2} are generated,
x of them are unreliable while 2 ∗ x are reliable. The reliable
sources assign a large mass to the singleton {θ1}. The unre-
liable sources assign a large mass to the singleton {θ2}. The
gain factor for sequential discounting in Schubert’s method is
set to be 0.1 here. Schubert and Martin’s methods are evoked
with different values of k and λ respectively. Let x = 10, the
fused bbas by the use of different rules are listed in Table IV.

From the table we can see, the behavior of Martin’s dis-
counting method is similar to that of LNS-CR rule when
λ is set around 0.4. The conjunctive combination based on
Schubert’s discounting does not give any belief to {θ2} and
Θ = {θ1, θ2} at all although there are 1/3 of sources
supporting {θ2}. Moreover, when k is larger, most of the
mass is assigned to the empty set in this rule. From these
results we can see that only LNS-CR rule can give more belief
on {θ1} which can be regarded as the major opinion. The
time elapsed for Schubert’s method with different values of
threshold k is listed in Table V. The smaller the value of
k is, the more discounting steps are required in Schubert’s
method. Consequently, the time consumption becomes larger.
The running time for both LNS-CR rule and Martin’s method
is less than one second. Schubert’s method is much more time-
consuming.

We have also tested the combination methods based on the
discounting factors proposed by Schubert [32] and Martin et al.
[10] on some simple support mass functions with arbitrary
focal elements. The results are not shown here as we can get
similar conclusions from the results: The reliability estimation
process of these methods takes more time compared with
that of LNS-CR rule. The behavior of these two methods is
similar to that of LNS-CR rule when the parameter k or λ
is set to be in a fixed range. But they are much more time-
consuming compared with LNS-CR rule. This confirms that
the reliability discounting method in LNS-CR rule is effective
for the following conjunctive combination.
Experiment 3 (The influence of parameter η). We test here the
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TABLE IV
THE COMBINATION RESULTS BY DIFFERENT RULES.

Schubert’s method Martin’s method LNS-CR
k = 0.2 k = 0.3 k = 0.5 k = 0.7 λ = 0.3 λ = 0.4 λ = 0.6 λ = 1

∅ 0.19949 0.29860 0.49704 0.69306 0.00248 0.10019 0.60681 0.98649 0.15060
{θ1} 0.80051 0.70140 0.50296 0.30694 0.16901 0.56713 0.38729 0.01351 0.48612
{θ2} 0.00000 0.00000 0.00000 0.00000 0.01200 0.04995 0.00360 0.00000 0.08593
Θ 0.00000 0.00000 0.00000 0.00000 0.81650 0.28274 0.00230 0.00000 0.27735

TABLE V
TIME ELAPSED FOR SCHUBERT’S METHOD WITH DIFFERENT VALUES OF k.

1 2 3 4 5 6 7 8 9
k 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Time Elapsed (s) 46.81 21.64 13.46 9.28 6.64 4.88 3.67 2.73 1.79

influence of parameter η in the LNS-CR rule. Simple support
mass functions are utilized in this experiment. Suppose that the
discernment frame under consideration is Θ = {θ1, θ2, θ3}.
Three types of SSFs are adopted. First s1 = 60 and s2 = 50
SSFs with focal elements {θ1} and {θ2} respectively (the other
focal element is Θ) are uniformly generated, and then s3 = 50
SSFs with focal element θ23 , {θ2, θ3} are generated. The
value of masses are randomly generated. Different values of
η (see Eq. (32)) ranging from 0 to 6 are used to test. The
mass values in the fused bba by LNS-CR varying with η
are displayed in Figure 1.a, and the corresponding pignistic
probabilities are shown in Figure 1.b.

From these figures, we can see that η can have some
effects on the final decision. Figure 1.a shows that with the
increasing of η, the mass assigned to the singleton focal
elements increases. On the contrary, the mass given to the focal
element whose cardinality is bigger than one decreases. In
fact parameter η in LNS-CR aims at weakening the imprecise
evidence which gives only positive mass to focal elements
with high cardinality, and the exponent η allows to control
the degree of discounting. If η is larger, more weight is given
to the sources of evidence whose focal elements are more
specific, and more discount will be committed to the imprecise
evidence. As a result, in the experiment when η is larger than
1.2, BetP(θ1) > BetP(θ2) (Figure 1.b). At this time the mass
functions with focal element {θ2, θ3} make little contribution
to the fusion process, while the final decision mainly depends
on the other two types of simple support mass functions with
singletons as focal elements.

In real applications, η could be determined based on specific
requirement. This work is not specially focusing on how to
determine η, thus in the following experiment we will set
η = 1 as default.
Experiment 4 (The principle for the global conflict). The
goal of this experiment is to show how Dempster’s degree
of conflict is dealt with by most of rules when combining a
large number of conflicting sources.

In this experiment, the frame of discernment is set to
Θ = {θ1, θ2}. Assume that there are only 2 focal elements
on each bba. One is the whole frame Θ, and the other is any
of the singletons ({θ1} or {θ2}). The number of bbas which
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Fig. 1. Combination results for three types of SSFs using LNS-CR rule.
The mass functions are generated randomly, and LNS-CR rule is evoked with
different values of η ranging from 0 to 6.



10

have the focal element {θ1} is denoted by s1, while that with
{θ2} is s2. We first fix the value of s2, and let s1 = t ∗ s2,
with t a positive integer. We generate S = s1 + s2 such kind
of bbas randomly, but only withholding the bbas for which the
mass value assigned to {θ1} or {θ2} is greater than 0.5.

Four values of t are considered here: t = 1, 2, 3, 4. If t = 1,
s1 = s2 = S/2. If t = 2, the number of mass functions
supporting {θ1} is two times of that supporting {θ2}, and so
on. The global conflict (mass given to the empty set) after the
combination with different values of s2 for the four cases is
displayed in Figures 2– 5 respectively. The mass assigned to
the focal element {θ1} with different combination approaches
is shown in Figures 6 – 9.
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Fig. 2. The global conflict after the combination with s2 ranging from [0,100]
and s1 = s2.
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Fig. 3. The global conflict after the combination with s2 ranging from [0,100]
and s1 = 2 ∗ s2.
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Fig. 4. The global conflict after the combination with s2 ranging from [0,100]
and s1 = 3 ∗ s2.
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Fig. 5. The global conflict after the combination with s2 ranging from [0,100]
and s1 = 4 ∗ s2.
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Fig. 7. The mass on {θ1} after the combination with s2 ranging from [0,100]
and s1 = 2 ∗ s2.
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Fig. 8. The mass on {θ1} after the combination with s2 ranging from [0,100]
and s1 = 3 ∗ s2.

It is intuitive that when t becomes larger, the global conflict
should be smaller and we should give more belief to the focal
element {θ1}. From Figures 2 – 9 we can see that only the
results by LNS-CR rule are in accordance with this common
sense. The simple average rule assigns larger bba to {θ1},
but it does not keep any conflict. In Figures 6 – 9, the mass
given to {θ1} by Dempster rule cannot be displayed when S
is large (and also for some small S), because in these cases
the global conflict is 1 and the normalization could not be
processed. As we can see, Dempster rule could not work at
all when s2 is larger than 20. Although the conjunctive rule and
cautious rule could work when combining a larger number of
mass functions, the obtained fused mass function is m(∅) ≈ 1,
which is useless for decision in practical situations.
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and s1 = 4 ∗ s2.

The results also confirm the equivalent of the LNS-CR
rule and LNSa-CR rule when the number of sources is large,
although the results provided by the two rules are not the same
when there are not many mass functions to combine. From
Figures 2 – 5 we can see a kind of limit of the global conflict
for the LNS-CR rule. In fact, the mass on the empty set for
this rule depends on the size of the frame of discernment and
more directly on the number of groups created in the first step
of the rule. The limit value of the global conflict will tend to 1
with the increase of the size of discernment when considering
only categorical bbas on different singletons.
Experiment 5 (The complexity). In this experiment, the
complexity of LNS-CR rule will be compared with other
combination rules in terms of time consumption. Simple
support mass functions defined on a frame of discernment with
eight elements are considered first. The focal elements of each
bba are set to be a random subset of Θ and Θ itself. The time
elapsed (and also the log value of the time elapsed) with the
number of sources S varying from 10,000 to 100,000 is shown
in Figure 10¶. We can see that the running time of LNS-CR is
much smaller than that of the conjunctive rule. LNSa-CR rule
takes almost the same time as cautious rule. Average rule is
the best among the five rules. As S increases, the application
of LNSa-CR rule can save more time compared with the use
of LNS-CR rule. The increment of time consumption with
respect to S is moderate. This tends to show that LNS-CR rule
is suitable for combining a large number of SSFs. Remark that
the decomposition process is not required when the cautious
rule or LNS-CR(a) rule is adopted for combining SSFs.

As mentioned before, for the combination of general separa-
ble mass functions (not SSFs), LNS-CR needs four steps: de-
composition, inner-group combination, discounting and global
combination. The difference between the combination of any
kind of separable bbas and of SSFs is the decomposition
process, which is not necessary for the latter. We have designed
another experiment on consonant bbas‖ over a frame of

¶The result of Dempster rule is the same as that of conjunctive rule.
‖All consonant bbas are separable.
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Fig. 10. Time lapse for combining SSFs.

discernment with eight elements, and the number of focal
elements is set to 5. The focal elements are randomly set to
five nested subsets of Θ, and the mass values are generated
uniformly. The average running time (and the log value of the
running time) of 10 trials by the use of different combination
rules with different number of sources S is displayed in Figure
11.a (and Figure 11.b)∗∗. In order to show the complexity of
LNS-CR rule more clearly, the elapsed time in each of the
four steps is shown in Figure 12.

As we can see from these figures, the time consumption
of LNS-CR is significantly smaller than the cautious rule,
but a little worse than the conjunctive rule and the average
rule. Although the complexity of cautious rule is the same
as LNS-CR rule and both of them require a decomposition
process, it takes more running time than LNS-CR rule. The
reason may be the different combination approach for the
mass functions in the same group. The complexity of that
process by cautious rule is O(S2n) (The calculation is to find

∗∗The result of cautious rule is not displayed for large S, as it has been
already shown that cautious rule is significantly worse than the other rules in
terms of time consumption when S is small.

2000 4000 6000 8000 10000

0
20

40
60

S

Lo
g 

va
lu

e 
of

 T
im

e 
E

la
ps

ed
(s

)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● Conjunctive
Cautious
Average
LNS−CR
LNSa−CR

a. Time lapse by five different rules

2000 4000 6000 8000 10000

−
4

−
2

0
2

4

S

Lo
g 

va
lu

e 
of

 T
im

e 
E

la
ps

ed
(s

)

●

●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

● Conjunctive
Cautious
Average
LNS−CR
LNSa−CR

b. The log value of Time lapse by five different rules

Fig. 11. Time lapse for combining consonant bbas.

2e+04 4e+04 6e+04 8e+04 1e+05

0
1

0
2

0
3

0
4

0
5

0

S

T
im

e
 E

la
p

s
e

d
(s

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● Decomposition

Inner−group combination

Discount

Global combinaiton

Fig. 12. Time lapse of each step using LNS combination rule with S varying
from 10,000 to 100,000.

the minimum of each row in a S × 2n matrix), while for
LNS-CR is O(S). LNSa-CR is faster than LNS-CR when S
is large. Figure 12 shows that the most time-consuming step in
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LNS-CR rule is the decomposition. Moreover as S increases,
the increase of time lapse for the inner-group combination,
discount, and global combination is limited. This is compliant
with the complexity analysis of each step for LNS-CR rule
in Section III-C. In many applications the mass functions are
directly SSFs in which case there is no need to perform the
decomposition, and LNS-CR is the best choice to fuse a large
number of bbas.

V. PERSPECTIVE ON APPLICATIONS

Pattern recognition is a class of problems where the theory
of belief functions has proved to allow increased performances
[2]. In such problems we can be facing many bbas to combine.
Denœux [2] proposed Evidential KNN method (EKNN) as an
extension of KNN in the framework of the theory of belief
functions to better model the uncertainty in neighbor point
interactions. The Dempster rule is adopted to combine the
mass evidence from K neighbors in EKNN.

The problem considered here is to classify an input pattern x
into n categories or classes, denoted by Θ = {θ1, θ2, · · · , θn}.
The available information is assumed to consist of a training
set L =

{
(x(1), θ(1)), (x(2), θ(2)), · · · , (x(N), θ(N))

}
of N

patterns x(i) i = 1, 2, · · · , N with known class labels θ(i) ∈
Θ. To classify pattern x, each pair (x(i), θ(i)) constitutes a
distinct item of evidence regarding the class membership of x.
If the K nearest neighbors according to the distance measure
are considered, K items of evidence can be obtained. These
bbas can be constructed according to a relevant metric between
pattern x and its jth neighbor x(i)

mi({θq}) = αφ(d(i)),

mi(Θ) = 1− αφ(d(i)),

mi(A) = 0 ∀A ∈ 2Θ \ {{θq},Θ}, (41)

where d(i) is the (Euclidean) distance between x and its jth

neighbor x(i) with class label θ(i) = θq , α is a discounting
parameter and φ(·) is a decreasing function on R+ defined as

φ(d(i)) = exp

(
−γq

(
d(i)
)2
)

(42)

with γq being a positive parameter associated to class θq . It
can be heuristically set to the inverse of the mean Euclidean
distance between training data belonging to class θq . In EKNN,
the K bbas for each neighbor are aggregated using the
Dempster rule to form a resulting bba. A decision has to be
made regarding the assignment of sample x to one individual
class. The maximum of pignistic probability can be used for
decision-making.

A. A small data set with noisy training sample

Figure 13 illustrates a simple two-class (red circle and green
triangle) data set, where there are seven objects in each class.
The pattern x marked by blue star is the sample data to be
classified. The K bbas using the distance to its neighbor could
be constructed by Eq. (41), and the five nearest neighbors are
denoted by Ni orderly in the figure. Set α = 0.95 and γi is
the inverse of the average distance between the points in class

θi, i = 1, 2. The fused mass function by different combination
rules with K = 4 and K = 5 are listed in Table VI and VII
respectively.
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As we can see from Figure 13, pattern x is closer to class θ2.
Among pattern x’s five nearest neighbor Nj , j = 1, 2, · · · , 5,
four belong to class θ2 while only 1 to class θ1. The real
class of object N1 is θ1, but it is located in the boundary
of the class and far from the other data points in the class.
It may be a noisy item of θ1. The standard KNN rule can
correctly classify object x to θ2 when K > 3. However, if the
evidential KNN model is applied, due to the existence of a
such neighbor, the behavior of the combination rules has been
affected. From Table VI we can see, when K = 4, the fused
bbas by all combination rules all assign more mass to θ1 than
to θ2. Consequently, pattern x will be classified into class θ1

if the pignistic probability is considered for making decision.
The same phenomenon also occurs when K is smaller than 4
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(see Figure 14). When K = 5 (Table VII), only the LNS-CR
rule could partition pattern x into class θ2, which seems
more reasonable. The pignistic probabilities (Figure 14) by the
Dempster, conjunctive, cautious and average rules for class
θ1 are significantly higher than those for class θ2, even when
K is large. These rules are not robust to the noisy training
data. Pattern x could be correctly classified to θ2 by LNS-CR
rule when K is between 5 and 10.

It is indicated that when there are some noisy data in the
training data set, the performance of the combination rule
may become worse with small K. We should increase K
moderately to improve the performance of the classifier. But
as we analyzed before, the existing combination rules do not
work well for aggregating a large number of mass functions.
This is a limit of the use of evidential classifier.

TABLE VI
THE FUSED BBA BY DIFFERENT COMBINATION RULES (K = 4).

Conjunctive Dempster Cautious Average LNS-CR
∅ 0.2009 0.0000 0.1473 0.0000 0.0377
{θ1} 0.6771 0.8473 0.7307 0.2195 0.1818
{θ2} 0.0279 0.0349 0.0205 0.0606 0.1339
Θ 0.0941 0.1177 0.1015 0.7199 0.6466

TABLE VII
THE FUSED BBA BY DIFFERENT COMBINATION RULES (K = 5).

Conjunctive Dempster Cautious Average LNS-CR
∅ 0.2198 0.0000 0.1473 0.0000 0.0352
{θ1} 0.6582 0.8436 0.7307 0.1756 0.1404
{θ2} 0.0305 0.0391 0.0205 0.0541 0.1651
Θ 0.0915 0.1172 0.1015 0.7703 0.6593

B. Real data sets

In this section, we consider some well known real data
sets from the UCI repository†† summarized in Table VIII.
The classification rates by using different combination rules
in evidential KNN model are displayed in Figure 15. Note
that the “leave-one-out” method is adopted here to test the
classifier.

TABLE VIII
A SUMMARY OF UCI DATA SETS.

Data set No. of objects No. of cluster No. of attributes
Iris 150 3 4
Yeast 1484 10 8
Digits 5620 10 64

As we can see from Figure 15, for all the three data sets,
the performance is almost the same for the two combination
rules, LNS-CR and DS, in terms of classification rates. But
there is a little improvement by the use of LNS-CR rule when
K is large. To make it clear, we specially depict the results on
Digits data set in Figure 16. It is shown that when K > 12,
the classification rates by the use LNS-CR rule are a little
larger than those through DS rule. We show the mass given
to the empty set (global conflict) after the combination using

††http://archive.ics.uci.edu/ml/datasets.html

conjunctive rule and LNS-CR rule with different values of
K in Figure 17. The y-axis is the maximal assignment to ∅
among all the mass functions for the test data. As we can see,
the global conflict tends to 1 quickly as K increases, while
LNS-CR rule keeps a moderate degree of global conflict. As
DS rule is a normalized conjunctive rule, there is not sense to
normalize a mass assignment with high global conflict.

0 5 10 15 20

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

K
C

la
ss

ifi
ca

tio
n 

R
at

e

Iris−DS
Iris−LNS
Yeast−DS
Yeast−LNS
Digits−DS
Digits−LNS

Iris−DS
Iris−LNS
Yeast−DS
Yeast−LNS
Digits−DS
Digits−LNS

Fig. 15. Classification results with different values of K on UCI data set.
In the figure, the legend “Iris-DS” means it is the classification rates on Iris
data set using DS combination rule. Same as the other legends.

0 5 10 15 20

0
.9

7
0

0
.9

7
2

0
.9

7
4

0
.9

7
6

0
.9

7
8

0
.9

8
0

K

C
la

s
s
if
ic

a
ti
o

n
 R

a
te

Digits−DS

Digits-LNS-CR

Fig. 16. Classification rates on Digits data set.

C. Perspective

The above two examples are just two perspectives on the
application of LNS-CR rule. In the first example, there are
some special noisy data in the training data set. At this time,
the sources should not be considered with equal reliability.
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In this situation, using the DS rule or the conjunctive rule
in EKNN model could not get good results. In the second
example, it is shown that the global conflict may tend to one
quickly as K increases. Sometimes we even could not do the
normalization process for DS rule because of the machine
precision.

In real world social networks, the available information can
be uncertain, or even noisy. At this time, if we want to do a
classification task such as for recommendation, the conjunctive
rule could not be applied as the sources are not all reliable.
Even if the sources are reliable, the global conflict may tend to
1 quickly if the bbas are not consistent. At this time, LNS-CR
rule can be an alternative choice. In the future work, we will
study how Dempster’s degree of conflict is distributed in the
feature space, and to study what special information contained
in the moderate degree of global conflict kept by LNS-CR rule.

VI. CONCLUSION

Uncertainty in big data applications has attracted more
and more attention. The theory of belief functions is one
of the uncertainty theories allowing a model to deal with
imprecise and uncertain information. This theory is also well
designed for information fusion. However, despite that a lot of
combination rules have been proposed in recent years in this
framework, they are not able to combine a large number of
sources because of the complexity or the absorbing element.

In this paper, a new combination rule, named LNS-CR rule,
preserving the principle of the conjunctive rule is proposed.
This rule considers the mass functions given by the sources
and groups them according to their set of focal elements
(without auto-conflict). The mass functions of each group can
be summarized by one mass function after combination. The
reliability of the source is estimated by the proportion of bbas
in one group. Therefore, after discounting the mass function of
each group by the reliability factor, the final combination can
be proceeded by the conjunctive rule (or another rule according

to the application). If the number of sources in each group is
high enough, an approximation method is presented.

The LNS-CR rule is able to combine a large number of
sources. The only existing method allowing to combine a large
number of mass functions is the average rule. However, that
rule may give more importance to few sources with a high
belief (even if the source is not reliable) and cannot capture
the conflict between the sources. The proposed rule with a
reasonable complexity (lower than the DP and PCR6 rules)
can provide good combination results.

Overall, this work provides a perspective for the applica-
tion of belief functions on big data. We will study how to
apply LNS-CR rule on the problems of social network and
crowdsourcing in the future research work.
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