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3D BUILDING RECONSTRUCTION WITH PARAMETRIC ROOF SUPERSTRUCTURES

M. Brédif 2, D. Boldo ', M. Pierrot-Deseilligny *

! French Mapping Agency (IGN)
2/4, avenue Pasteur
94165 Saint-Mandé, Cedex, France

ABSTRACT

This paper describes an automatic method for the detection and de-
tailed reconstruction of 3D building models that include roof super-
structures such as dormer windows or chimneys from a very high
resolution Digital Elevation Model. Buildings are reconstructed as
a set of roof planes with a set of parametric shapes that model roof
superstructures. The proposed model-based approach minimizes a
Minimum Description Length energy.

Index Terms— 3D Modeling, Building superstructure, Para-
metric approach, Minimum Description Length, Digital Elevation
Model.

1. INTRODUCTION

3D city models that include buildings with roof superstructures (de-
tailed volumes present on the roofs) achieve a level of detail that
finds applications in virtual or augmented reality and urban planning.
This level of precision impacts directly on the degree of immersion
of the visualization and on the user confidence in the model qual-
ity. Current 3D city modeling algorithms consider the roof super-
structures as outliers or noise that will inevitably bias their results.
Carefully taking into account their presence and characteristics will
benefit in more robust reconstructions. Some applications, like nat-
ural hazard management or electromagnetic wave propagation may
not require such a level of detail. Nevertheless, they would benefit
from the increased robustness and accuracy of taking into account
those superstructures, even if they are discarded in the end to keep
only the main roof planes.

Generic methods have been introduced to produce free-form poly-
hedral building models from aerial imagery[1][2] but satellite data
requires model-based approaches[3][4] due to their inferior resolu-
tion. The context of this paper is new because the 3D-reconstruction
of buildings with superstructures using very high resolution aerial
images presents two different subproblems. The data of the main
roof planes is good enough to use a generic approach, but super-
structures are much smaller features and their data quality can be
compared to the one of entire buildings in satellite images.

Fig. 1. Image and DEM crops featuring chimneys and glass roofs.
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The proposed approach requires an initial building reconstruc-
tion algorithm such as [1][2], a collection of superstructure types
(figure 2), and a Digital Elevation Model (DEM). The DEM (fig-
ure 1-right) is a height-map generated by the correlation [5] from
multiple very high resolution (10cm) aerial images (figure 1-left).
We aim at refining the geometry of the initial building, while adding
a set of parametric superstructure objects to the roof planes.

First, the search space will be defined in Section 2 as the set
of buildings modeled by a polyhedral roof base structure with a set
of parametric superstructure objects. Then, the objective function
is described in Section 3 as a Minimum Description Length (MDL)
energy[6]. Finally, Section 4 presents the proposed algorithm along
with results and analysis in Section 5.

2. HYBRID POLYHEDRAL/PARAMETRIC MODEL

The proposed hybrid model, similar to the architectural model in
[7], allows the generic modeling of the main planes of the building
with 3D-polygons, while parametric objects are used to model the
smaller features that are the roof superstructures, where the DEM
presents reconstruction artefacts that are incompatible with a generic
polyhedral reconstruction.

The support supp(m) of a 3D-model m is defined as the 2D-
domain formed by its orthogonal projection on the horizontal plane,
as illustrated in figure 3. We will assume that the roof planes do
not overlap, that the superstructures do not overlap and that each
superstructure is contained in a single roof plane, using the following
definitions on 3D-models m; and mo:

- my is contained in my if supp(m1) C supp(mz)
- my and my overlap if the area A(supp(m1) N supp(mz)) > 0

A building model is a collection of roof planes defined by a
3D-polygon and a set of contained volumetric primitives correspond-
ing to various roof superstructures such as chimneys or dormer win-
dows. A building model is defined by B = (R, S) where the roof
plane set R = {R;}1<i<n defines the geometry of the 3D-polygon
that models each of the n roof planes, and the superstructure set
S = {S”}E;EZI defines, for each roof plane R, its n; contained
superstructures S; = {Si; 1<j<n,;-

A superstructure is the parametric object Si; = (ti5, 0ij, Pij)
where :

- t;; s one of the superstructure types that are illustrated in figure 2.
- ¢;j is the set of parameters that are specific to the superstructure
type, documented as the A values in figure 2.

-60:; = (zo0, Yo, 1, y1) is a parameterization of the minimum gutter-
aligned rectangle that contains supp(S;;), where the gutter of roof
is defined as the segment of the 3D-polygon of R; that contains the
lowest point and has the smallest slope. Note that the support and the
rectangle defined by 6;; are identical except for the dormer window.



Fig. 2. The superstructure types : a chimney (4+1 parameters), a
roof terrace (4+1), a glass roof (4+1) and a dormer window (4+2).
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Fig. 3. A building model (top), its supports (middle) and the supports
of its effective roof planes (bottom).

These 4 parameters 6;;, common to all superstructure types, define
the position and the horizontal extents of the superstructure.

A superstructure type t;; defines hard constraints on the pos-
sible parameter values (0;;, ¢;;) of its instances. This introduces
loose priors that guarantee that, for instance, dormer windows are
convex (ho < hl) and leave enough space for a window on their
front facet. The only tight hard constraint is the alignment of every
superstructure with the gutter of its containing roof plane. This con-
straint does not seem to be restrictive and introduces robustness in
the orientation of the superstructures. Finally, a description length
constant[6] L; encodes the complexity of each model type t.

The effective roof plane R; \ S; is the subset of the roof plane
Ri, whose support supp(Ri \ Si) = supp(Ri) \ U,cs, supp(s)
is cut out by the supports of its superstructures S; in the final build-
ing model B, as illustrated in figure 3. Similarly, the effective roof
R\ S is defined as {R; \ Si},,<,,. Note that, given our assump-
tions, P; = {supp(Ri \ Si)} Us;Si {supp(s)} forms a partition
of supp(R:) and that P = |J, P; is a partition of the support
supp(B) of the entire building. This partition P is used to decom-
pose the DEM into regions of homogeneous geometry.

3. ENERGY FORMULATION

The energy E (B) of a building model 5 uses the MDL formulation:

E\x(B) = ds(B)+ AL (B) 1)

do(ma) = [ epen(@y) -~z @
supp(my)

AL(B) = A L(Si|R:) ©)

ij

The data term dg(B) is evaluated with the Z-error distance de-
fined in equation 2 where ||.|| is a chosen metric, and m1 and mo
are 3D-models of superstructures or roof planes. Simpler models
are favored using the additive description length term \.L(B) of
equation 3, where the description length L(S;;|R:) = Lu,;;. As-
suming that L(R;) is constant for evey hypothesis, it is not taken
into account. The A factor may be set to zero when the data is of
good quality, yielding a parameter-less error-driven reconstruc-
tion. Nevertheless, setting A > 0 becomes useful to prevent over-fit
with noisier data.

From the definition of Ex (B) in equation 1, the reformulation in
equation 4 separates the Z-error of the effective roof R \ S from the
rest of the energy, whereas equation 5 exhibits the benefit e (S;;|R;)
of adding each superstructure S;; to the building reconstruction com-
pared to the background hypothesis of the building B° = (R, () that
has the roof planes R of the building B but no superstructures.

Ex(B) = dr\s(R)+ds(S)+\L(B) @
= dr\s(R)+ds(R)
= ds,; (Ri) = ds,; (Sij) = ML(Si;|Rs)
e ex(SijIR:)

= E,\(BO) - Ze/\(Sij|Ri) (5)
i

4. OPTIMIZATION

The MDL solution of this problem is the building that minimizes the
energy Ex(B).

Bmin = argmin Ex\(B) 6)

hard constraints(S)
P (B) is a partition

We will assume that the exact topology and an approximate ini-
tial geometry of the building main roof planes R have been com-
puted using algorithms such as [2]. The optimal minimization of the
roof planes geometry and of the superstructures is a difficult problem
that is not tackled in this paper. Therefore, we have chosen a subop-
timal method : the roof plane geometry and the set of superstructures
are optimized alternatively.

Algorithm 1 Optimization algorithm overview
Require: a DEM, A > 0 and a number of iteration n.
R <= InitialReconstruction(DEM)
repeat n times
for all Roof plane R; do
S; < Superstructures(Ri, \,DEM) «— section 4.2
R <= RefineRoofPlaneGeometry(R, S,DEM) «— section 4.1
return the optimized building B = (R, S)




4.1. Roof plane geometry refinement

Given a building model B = (R, S), this optimization step mini-
mizes the dr\s (R) term of equation 4. This is a minimization of
E\(B) while fixing the geometries and supports of superstructures
S and the number of roof planes. For each roof plane R, its plane
parameters are optimized according to the metric of E over their
effective support supp(R; \ S;). Then, using the new plane pa-
rameters and the fixed topology, the 3D-polygons of R are updated.
This step refines the geometry of the roof planes by taking out of the
optimization the areas that are currently labeled as superstructures.

4.2. Superstructure detection and reconstruction

This complementary optimization step detects and reconstructs the
superstructures with constant background roof planes R. Using the
reformulation of equation 5, the minimization of Ex (B) requires, if
E(B°) is held constant, the maximization of 3" ;5 €x(Sij|R). This
amounts to compute the Maximum Weighted Clique in the compat-
ibility graph where each superstructure candidate S;; that satisfies
the hard constraints corresponds to a node with a weight e (Si;|R.).
The compatibility graph edges link superstructures that do not over-
lap, guaranteeing the property that P (3) is a partition.

This discrete optimization requires a finite set of superstructure
candidates. This discretization is achieved, for each roof plane sep-
arately, by sampling the DEM on a regular 2D-grid that is aligned
with the gutter of this roof. The parameters 0 = (xo, Yo, 1, Y1)
(figure 2) that are common to all superstructure types are then quan-
tized on this grid to yield, for each superstructure type, the finite set
of plausible containing rectangles according to the hard constraints
of its superstructure type.

Given the DEM, a roof plane R; and the 6 parameters, a max-
imization of ey (s|R;) constrained by the hard constraints of its su-
perstructure type allows the continuous computation of the best spe-
cific parameters ¢ of a superstructure s for each superstructure type
with a given minimum containing rectangle parameterized by 6 .
This means, for instance, computing the best height of a chimney of
a given support, or the best roof angles of a dormer window. The
supports are constrained, so the number of possible discrete rectan-
gles 6 is not proportional to the square of the roof plane area, but
only to the area of the roof plane times the number of possible dis-
crete extents (1 — xo, Y1 — yo) allowed by the superstructure type.
To sum-up, for each discrete rectangle of each roof plane, each su-
perstructure type presents its best candidate, if one satisfies the type
constraints.

The list of superstructure candidates must be filtered for the
Maximum Weighted Clique problem to become tractable. Firstly,
candidates s with a negative contribution ey (s|R;) can safely be
discarded. Then, the candidates that are not a local maximum of ey
for the adjacency relation ~¢ are discarded, where S;; ~¢ Si is
defined by [|6;; — 0k || < 1 quantization step.

The filtered set of superstructure candidates C; is finally opti-
mized without approximation using a Branch and Bound method
that will prevent the brute force exploration of the 2% leaves of the
search tree. The specific structure of the graph with weighted nodes
that is produced by this problem allows the design of an algorithm
that performs far better than a generic NP-Hard Maximum Weighted
Clique solver. The energy attainable with a non-overlapping subset
S; of a given set of candidate superstructures C; can be bounded be-
tween 0 and the maximum energy of a simpler relaxed problem. The
score of the initial problem (equation 7-left), can be upper-bounded
by the optimization of the same objective function with a less restric-

tive condition on the support areas (equation 7-right) :

argmax Z ex(Sij|Rq) <
S;c; &
P;is a partition

argmax ex(Si;i|Rq
sgcci ; A(Si5|Ri)

25 Alsupp(Sij)) SA(Ucec,; supp(c))
@)

This condition on the areas is verified by sets of disjoint super-
structures and is easy to upper-bound by sorting the candidates by ef-
ficiency ex(Si;|R:)/A(supp(Si;)) and selecting greedily the most
efficient compatible candidates. This bound will let us use back-
tracking to prevent the exploration of entire subtrees that provably
do not contribute to the optimal solution.

The connected components of the union of the supports supp(C;)
are treated separately, because they are independent of each other.
The order of the nodes is defined as the decreasing order of scores
e of the superstructures that are compatible with those already cho-
sen. Thus, the solution that is evaluated first, is the solution of the
greedy algorithm that uses a best-in approach. Its approximate solu-
tion is close enough to the optimal solution to speed-up greatly the
optimization process. The order in which the presence of a node is
tested in the search tree impacts the computing time because it will
affect the order in which the search tree is explored. The algorithm
could be further improved by examining earlier, nodes that are artic-
ulation points of the incompatibility graph.

5. RESULTS

The £ and £? metrics have been implemented. The £ metric is
more adapted than the £? metric to the correlated, non-Gaussian
noise typically present in correlation DEMs, but the computation
and optimization of the latter is much faster. The computing time
is dominated by the optimizations of the specific parameters ¢. The
typical roof plane of figure 4 contains 300 000 superstructure candi-
dates with ey > 0 and 100 locally minimum superstructures accord-
ing to ~. Computing times range from a few seconds with the £>
metric to a few minutes with the £* metric. Furthermore, setting the
number of iterations n > 2 does not improve the reconstruction.

Fig. 4. A DEM (left) and its reconstruction with a 3D-triangulation
that represents the DEM (right).

Fig. 5. The input model (left), the reconstructed building (center)
and its textured version (right) where each polygon is textured by
the most front facing aerial image.



Fig. 6. The input model, the ground truth reconstructed manually, the reconstructed building and its textured version.

A ground truth has been generated by an operator using the im-
ages of the building of figure 6. This ground truth contains 46 chim-
neys and 40 glass roofs. The false alarm rate is of 11% (9 overde-
tected glass roofs) and the detection rate is of 85% (1 underdetected
chimney and 12 glass roofs) without taking into account the label-
ing errors : 5 chimneys and 7 glass roofs have been assigned the
wrong superstructure type. The true negative (TN) chimney is due
to 2 true glass roofs and a true chimney that are detected as a sin-
gle larger glass roof. The false positive (FP) glass roofs are due to
the small volume of this object type and to the regularization of the
DEM : small glass roofs may be detected near chimneys to take into
account the smoothed discontinuities of the DEM. The false positive
(FP) regions in figure 7 illustrate the general overestimation of the
support, whereas the true negative (TN) regions are mainly caused
by under-detection of superstructures. The under-detection is due
to the difficulty to separate the imperfections of the DEM from the
glass roof models which are allowed to have only a small height h.
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Fig. 7. Evaluation of the classification of the DEM pixels as pixels
of the superstructure supports.

With a DEM resolution of 25cm, medium-sized and large super-
structures are reconstructed correctly such as the 3 dormer windows
of figure 8. But smaller structures are altered and hard to distinguish
from noise. Coherent regions due to the regularization of the DEM
are spuriously reconstructed as small superstructures. At these res-
olutions, the small superstructures should be disabled in the super-
structure library or the MDL parameter A has to be tuned up, because
their signal is comparable to the imperfections of the DEM.

6. CONCLUSION

The proposed method achieves a reasonably fast detection and re-
construction of buildings with roof superstructures using only a
DEM, an initial building model without superstructures and an eas-
ily extensible collection of parametric models defining the available
superstructure types. This approach gives convincing results and is
fully automatic with 10cm data using the parameters n = 2 and
A = 0. This method could be extended to laser scanned point clouds.

Improving the geometric accuracy would require the direct use
of the images rather than processing only the DEM. Such algo-
rithms could either fit DEM-produced models to the images as a

post-process as in [8] or produce those models directly from the
images. The energy could be reformulated as a Bayesian energy
that handle interactions between the superstructures and the roof
planes, to introduce stronger priors such as alignments or to model
the imperfections of the DEM. Finally, the simultaneous optimiza-
tion of the whole building model may be explored. It would require a
broader framework, of which Reversible Jump Monte Carlo Markov
Chain[4] seems to be a good candidate.

Fig. 8. An image with 25cm resolution, its shaded DEM (same res-
olution), and the reconstructed building with a DEM triangulation.
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