
HAL Id: hal-01883173
https://hal.science/hal-01883173

Submitted on 27 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spectral clustering and dimensionality reduction applied
to Content based image retrieval with hybrid

Descriptors
K Houari, M K Kholladi, Youssef Chahir

To cite this version:
K Houari, M K Kholladi, Youssef Chahir. Spectral clustering and dimensionality reduction applied
to Content based image retrieval with hybrid Descriptors. International Review on Computers and
Software (IRECOS), 2010, International Review on Computers and Software, 5 (1), pp.14-21. �hal-
01883173�

https://hal.science/hal-01883173
https://hal.archives-ouvertes.fr


 

1 
 

Spectral clustering and dimensionality reduction applied to Content 
based image retrieval with hybrid Descriptors. 

 
 

K. Houari  
University Larbi Ben M’hidi, 

 Oum El Bouaghi, Algéria 
hk_houari@yahoo.fr 

 
M. K. Kholladi   

University Mentouri of Constantine, Algeria, 
Director of MISC Laboratory 

kholladi@yahoo.fr 
 

Y. Chahir 
University of Caen, France, 
 Team of research on Image 

Processing, GREYC, 
URA CNRS 6072, campus II 

chahir@info.unicaen.fr 
 
 

Abstract – The topic of research exposed in this paper concerns Content Based image retrieval in a heterogeneous high 
database. The increase of storage capacities and the evolution of compression techniques have generated an explosion of the 
digital information quantity. Their computerization opens a vast field of applications. In this setting we are interested more 
especially in the problem of the dimensionality reduction and spectral clustering of a heterogeneous database of images in order to 
image retrieval by the content. Our new gait described in this paper consists to: 
 
x In first phase the description of the database images by a hybrid descriptor which are Interest SIFT points combined with texture 

descriptor given by the application of Wavelet transform. The descriptor is   multi-dimensional, robust and invariant to changes 
and scales.   

x In second phase the representation of the database images as a convex graph.   
x In third phase the reduction of the space of representation by the application of an unsupervised spectral classification (The 

Spectral training uses information contained in the eigenvectors of the normalized matrix of transition to detect structures in 
data.) That will provide us classes of images that has shortcoming the Eigen-values calculated on the matrix of symmetry.   

As last phase, we use the Nyström theory that will permit us, not to recalculate the all Eigen-values, but only the lasts 
one.  

 
Keywords: image retrieval, Sift, clustering, texture, Nyström.  
 

 

I. Introduction 
Algorithms of spectral classification for the 

unsupervised analysis of data offer a very effective tool 
for the exploration of the data structure.   
Methods of Clustering [1, 2] have been used in various 
contexts and such disciplines 'dated mining', research of 
documents, image segmentation and classification of 
objects. The objective of clustering methods is the 
classification of objects on the basis of the criteria of 
similarity or chosen dissimilarity where groups (or 
classes) are a set of similar objects. 

The Crucial aspect in the classification is the 
representation of models and the distance of similarity. 
Every model is usually represented by a set of descriptors 
of the studied system. It is important to note that a good 
choice of model representation can increase 
performances of the classification. The choice of the set 
of descriptors depends on the system. The system of 
representation being fixed, it is possible to choose the 
suitable similarity measure between models or objects.  
The most popular measure of dissimilarity for a metric 
representation is the distance, as Euclidian distance. [3].   
 
Techniques of Clustering can be divided globally in two 
categories:   
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x Hierarchical,   
x Partitioning.   

Hierarchical Techniques of clustering [1,4,5] are capable 
to find the structure that is then divided in substructure 
and so forth recursively .the result is a hierarchical 
structure of groups that is called 'dendrogram'.   
Methods of clustering 'Partitioning' try to get a unique 
partition of data without the other under-partitions as in 
hierarchical algorithm processes and are based always on 
the optimization of an appropriated objective function. 
The result is the creation of a hyper-surface separation 
between classes. The Standard methods of partitioning 
(ex., K-means, fuzzy c-means, SOM and neural gas) that 
use two centroides are unable to separate in the desired 
manner the two sets.  The use of several centroides can 
solve the problem but by generating a complex 
description of a simple whole of data. For all these 
reasons modifications and a new approach were 
introduced.   
 
Among the range of modifications we can mention the 
varieties of fuzzy c-means [6], but the major problem is 
that information on the forms of the clusters must be 
introduced as a preliminary.  Recently, some methods of 
clustering which produce a nonlinear separation of hyper 
surfaces between the clusters were proposed. Theses 
algorithms can be divided into two great families: 
Several methods of clustering were modified by 
incorporating the concept of kernels (ex:  k-means, fuzzy 
c-means, SOM and neural gas).  The use of the kernels 
makes it possible to implicitly represent the data in a 
space of great dimension called space of description; 
while carrying out a linear partitioning of this space of 
descriptors, the result of the partitioning of the space of 
input will be non-linear  
 
Methods of Spectral clustering are based on concepts of 
the spectral theory of graphs. The basic idea is to 
construct a graph either weighted from data in entries. 
Each vertices or nodes represents a pattern (object) and 
every weighted edges or lines holds only in account the 
similarity between two patterns. In this case the problem 
of clustering amounts to a problem of graph portioning, 
what is treated by the spectral graphs theory. The heat of 
this theory is the calculation of the eigen values of the 
Laplace matrix of the weighted graph obtained from data. 
There is a narrow relation in fact between the second 
smaller value of Laplace and the partitioning of graph [7-
8].   
 
Lately, the interest for the reduction and the treatment of 
high dimension data turned toward the spectral clustering 
methods, because of numerous successes [34]. These 
methods use the spectral content of a similarity matrix 
(distance between each pair of data) to achieve the 
reduction and the partition of a data. More specifically, 
the eigenvectors are seen like a tool providing a 
representation of data in a space where it is well 
separated and can be grouped easily, and the eigen values 

having the possibility to capture the conceptual features 
and perceptual of a set of data. This last mathematical 
property has not been taken practically ever in account 
for the assessment of performances of algorithms of the 
clustering spectral   
In this article the first section describes the SIFT 
descriptor as well as the texture ones and in the second 
section we describe the spectral method of global 
diffusion applied for reducing the space representation. 
Conclusions and recommendations for the future works 
are presented in the last section.    

II. Extraction of SIFT points. 
 
During these last years, the invariant descriptor to the 
Scale transformations "Invariant Features Transform 
(SIFT) feature" [16] received a lot of attention. It has 
been demonstrated in a recent survey [17] that he gives 
better results than other descriptors. Some minor 
modifications on the descriptor initial SIFT have been 
brought (PCA-SIFT [12], however Gloh-Sift [17], but the 
gain is not always obvious in all experimentations. Thus, 
in our present survey, we are interesting to the initial 
SIFT.    
The SIFT method is used to extract the invariant interest 
points to transformations and scale from image in order 
to matching it with another image with different point of 
view of an object or a stage. The Descriptor is invariant 
to scale and rotation and he has been shown that he 
procures a robust matching through a certain degree of 
refine distortions, of changes of view in 3D, addition of 
noises, and of illumination changes. Descriptors are 
highly distinctive; in the sense that only one descriptor 
can be matched correctly with a big probability with a 
big database of several other image descriptors.     
 
  The algorithm consists in four main stages:    

1. Scale-space extrema detection 
(Search all scales/locations for interest points); 
2. Keypoint localization 
(Determine stable interest point location and 
scale) 
3. Orientation assignment 
(Determine orientation of feature at key point) 
4. Key point descriptor 
(Generate 128 dimension vector representing 
feature) 

 
The first stage identifies the localizations and the scales 
which can be assigned under various points of sights of 
the same object. 
The Detection of the localizations which are invariant 
with the scaling of the image can be achieved by the 
search of the points which are stable through all the 
scales, by using a continuous function of the space of 
scales.  The only possible core of spaces of scales is the 
Gaussian function.   
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Of that, the space of the scales of images is defined like 
the function:  L(x, y, σ), which are produced from the 
convolution of the variable scale-Gaussian G(x, y, σ), 
with the image of Input I(x; y), i.e.:  
  

                         
 
Where * is the operation of convolution and    
   
 

         
 

     
             

 
The points of interests are detected by using the extreme 
in the space of scales in the function of Gaussian 
difference D convoluted with the image:  I(x; y):   
 
 
 

                                    
                    

 
Where k is a constant factor multiplying which separates 
two close spaces. With an aim of detecting the local 
maxima and the minima of:        , each point is 
compared has its eight neighbors in the current image 
and has its new neighbors of the image of scale to the top 
and below.  It is selected so only it is higher or lower 
than all its neighbors.   
Once the point of interest candidate was found by 
comparing the pixel has its neighbors; the following 
stage consists to make a filtering detailed in the vicinity 
of the point to detect the localization, the scale, and the 
ratio of curve.   
This information makes it possible to reject the points 
which have a weak contrast (and which is sensitive to the 
noise) or are located on edges.  A quadratic function 3D 
is applied to the local points 
 
 

       
   

    
 
      

     
  
Where D and its derivatives are evaluated at the simple 
point           .  The localization of the extrema is 
obtained by considering the derivatives compared to X, 
which gives us:   
 
 

    
     

   
  
   

 
Who is a linear system 3x3, easy to solve.   
 
The value of the function at the extrema is:   
 
 

        
 
 
   

     
 

Who is very useful for the unstable rejection of the 
extreme with a weak contrast? 
At this stage, the algorithm rejects also the interest points 
which have slightly defined nodes, i.e.:  the points which 
have in the function of Gaussian Difference a broad 
curve around an edge with low curve in the perpendicular 
direction.   
By assigning a consistent orientation, based on the 
properties of the local image, the descriptor of the 
interest point can be represented relative with this 
orientation by ensuring however invariance to the 
rotation of the image.   
For each simple image,        on this scale, the 
magnitude of the gradient,        and the orientation, 
       are pre-calculated by using the differences of 
pixel:   
 
   
 

      
                                            

             
                 
                   

The histogram of orientation is formed starting from the 
orientations of gradients of the simple points inside the 
area around the key point (interest).   
Finally the description of the point of interest SIFT is 
made by calculation magnitude of the gradient and the 
orientation of each simple point of image in an area 
around the localization of the point of interest.  These 
points are balanced by a Gaussian window and then 
accumulated in a histogram of orientation of 8 elements 
(directions) which synthesizes contained 4x4 under areas, 
with like length of each column, the sum magnitudes of 
gradient close to this orientation inside the area.  The size 
of the final descriptor is of 4x4x8=128 and the procedure 
of standardization is applied to the descriptor to allow   
Invariance with the changes of illumination 

III. Texture description 
 
Each image is treated to extract the descriptors of texture  
by employing the most popular methods of extraction of 
texture descriptors  , which are 1) spectral filtering of 
Gabor [ 3 ], 2) laws  of energy filtering [ 4.5 ], and the 3) 
' Wavelet transform'.  These methods were largely used 
by researchers and are carried out very well for various 
tasks of segmentation and classification of image.  The 
‘Wavelet transform' used in this study offer space 
information, of frequency and very rich scale for the 
descriptors of texture and is a robust and effective 
method for the image processing.  
 
 

IV. Dimension Reduction Techniques. 
 
We present in this section a panorama on the traditional 
methods for dimension reduction, and synthetically the 
global methods based on the spectral decomposition.  We 
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conclude by an evaluation of the contributions of these 
approaches within the meaning of the metric properties. 
Reducing a dimension means to find a configuration ), 
which draws up the maps of data of the starting space X 
with their original description such as:   
 

  ^ `mxxxX ...,,, 21 , Where
n

ix �� . 
 
To a new space Y where their description is considered 
simplest.   

^ ` .,;:,...,,, 21 ndandRywithyyyY d
im %%�   

 
Thus, the configuration )  will be mentioned like a 
fixing of the space of high dimension X in another lower 
space of dimension and more expressive Y:   

      
 
Among these configurations, we distinguish the linear 
methods and the nonlinear methods.   
 
   
IV.1. The Linear methods. 
 
  For the linear methods, we find the algorithm of 
analysis in principal components (ACP), consisting in 
projecting the samples on the axes of maximum variance 
of the data.  In other words, the ACP aims at identifying 
the linear dependences subjacent with a stochastic 
observation (random) in order to obtain a description of 
lower dimension.  The use of this algorithm is legitimate 
if the data observed are roughly located on a linear 
variety.   
In the same method, one finds the algorithm of 
multidimensional positioning (MDS) which carries out a 
linear reduction of dimension indirectly, starting from 
square distances.  Clearly, multidimensional positioning 
(MDS) makes it possible to build a configuration of m 
not in      starting from the distances between m objects 
with which these points are associated.  In this context, 
one does not observe any more the points directly in 
space of origin but rather the m (m-1)/2 distances 
corresponding to these points.  The distances provided to 
MDS should not necessarily be Euclidean and can 
consequently be to represent by the other metric ones.   
 
Unfortunately, conflicts of these methods resident in the 
fundamental character of spaces of data observed in 
nature which very often exhibit highly nonlinear 
characteristics.  If it is supposed that the data have an 
intrinsic dimension ‘d’ weaker than the dimension of 
observations (n) and if the data are rather drawn from a 
nonlinear variety, the ACP will be unable to express the 
characteristics of this variety and consequently will not 
be able to create a representation in lower dimension 
respecting the properties of the variety.   
In the same order of idea, if the distances provided to 
MDS are the Euclidean distances, this algorithm will not 

be able to either generate a positioning of the adequate 
points to the nature of the variety.  
 
IV.2. The Nonlinear methods.  
 
Deficiencies of the linear methods involved the 
development of the configurations being able to 
approximate the data by nonlinear varieties.  The kernels 
provide nonlinear measurements of similarity easily 
being able to be incorporated in already existing linear 
algorithms.  Due to this, spectral methods of estimation 
of nonlinear varieties where introduced.   
These algorithms are based, for a set of vectors of entry 
                          on a matrix of similarity 
      , and drive to calculate its principal’s eigen 
vectors and eigen values. The representation in small 
dimension of every vector xi in entry is gotten while 
using the     first eigenvectors of  . (Isomap, LLE 
‘Locally Linear Embedding Algorithm)).   
The ISOMAP method builds a graph from the K nearest 
neighbors and then performs Multi-Dimensional Scaling 
MDS (Michael Lee). 
 

V. Spectral Clustering. 
V.1. Notations.  
The notation for spectral graph theory foots on graph 
theory and appeals to intuition. 
Except for minor differences in the names of matrices, 
variables, and counters, this notation seems pretty 
standard. 
 

 
Fig.1: Example of graph 
 
In This section we present briefly the mathematical 
notations of the algorithms that will be presented. 
 
A graph or undirected graph G can be written as an 
ordered pair G := (V, E), where V is a set of vertices or 
nodes, and E is a set of pairs (unordered) of distinct 
vertices, called edges or lines. The vertices belonging to 
an edge are called the ends, endpoints, or end vertices of 
the edge. [21] 
The adjacency matrix (also similarity matrix or weight 
matrix) of a finite directed or undirected graph G on n 
vertices is the n*n matrix where the no diagonal entry   
    is the number of edges from vertex i to vertex j, and 
the diagonal entry       is either twice the number of 
loops at vertex i or just the number of loops (usages 
differ, depending on the mathematical needs; this report 
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is not concerned with reflexive connections). The 
adjacency matrix is symmetric for undirected graphs.[18]  
 
In the following, we assume wij = wji >= 0. 
 
Given A € V, its complement, V \ A will be denoted as A.  
i € A shall be shorthand for indices of              will 
denote the number of vertices in A. 
vol (A) measures the size of A by the weights of its 
edges, i.e.               
The degree (or valency) of a vertex is the number of edge 
endpoints to the vertex. Loops are counted twice. The 
degree matrix D for G is a n × n matrix defined as [21]. 
 

                           
                        

  
   
Intuitively, a subset A € V is connected, if paths between 
any two points in A need only points in A. A is called 
connected component with respect to    , if A is 
connected, and there are no edges between vertices in A 
and A. Subsets A1, A2,…. Ak represent a partitioning of V, 
if, for all 1<= j, x >= k, Ai ∩ Aj =Ф. And       

    
 (Usually also defined nonempty). 
 
V.2. Clustering.    
 
  Generally speaking, clustering means partitioning of a 
graph, so that the edges between different groups have 
low similarity (low distance) and the edges within groups 
have high weight (low distance). The first requirement 
for the partitioning can be stated as the minicut criterion, 
which has to be minimized: 
    

                     

 

   

                           

     
             

 

Or following the minicut requirement, often only a little 
group of points is isolated. 
For this reason, tweaks have been introduced: 
    

x                                
    

 
    

x                            
       

 
    

  
As for the second requirement, within-cluster similarity 
means optimizing 
 
   
           

 
      

  
Within-cluster similarity is maximized if           is 
small and vol (A) is big. 
 

Therefore, Ncut implements the second criterion. Ncut 
can be interpreted as cutting through edges rarely 
transitions by a random walk. RadioCut, by maximizing 
|Ai|, as within-cluster similarity is not related to the 
number of vertices in A, does not implement this 
requirement.[5] 
  
V.3. Laplacians and their properties 
 The spectral algorithms presented here foot on 
eigenvectors of Laplacians, which are a combination of 
the weight and the degree matrix. For a more thorough 
and broader discussion of mathematical properties of 
Laplacians refer to [10] and [1]. 
The (unnormalized) graph Laplacian is defined as  
        
For a graph G and its admittance matrix L with eigen 
values λ0≤ λ1≤ …. ≤ λn-1, these properties are important, in 
the context of spectral clustering. [20]. 
• L is always positive-semi definite (∀ i   λ i ≥ 0).  
• The multiplicity of ‘0’ as an eigen values of L is the 
number of connected components of G. 
• λ1 is called the algebraic connectivity. 
• The smallest non-trivial eigen values of L is called the 
spectral gap. 
 
Noteworthy is furthermore, that matrices with identical 
non-diagonal elements have the same unnormalized 
Laplacians. 
The normalized graph Laplacian is defined in two 
distinct ways: 

x         
     

  

     
     

                        
x          

                        

 
Some properties are: 
• Lrw and Lsym are positive semi-definite and have n non-
negative real-valued eigen values 
  0= λ1≤ …. ≤ λn   
• The multiplicity k of the eigen values 0 of both Lrw and 
Lsym equals the number of connected components A1, . .. , 
Ak in the graph. 
 
Refer to [1] for an in-depth discussion of normalized 
Laplacians. 
 
V.4. Clustering algorithms 
 
  Spectral clustering became popular with, among others, 
[15] and [13]. Its efficiency is mainly based on the fact 
that it does not make any assumptions on the form of the 
clusters. This property comes from the mapping of the 
original space to an Eigen space. Algorithms differ 
basically in the number of eigenvectors they use for 
partitioning. 
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Algorithms can be categorized based on the number of 
eigenvectors they use: [16] 
 
• One eigenvector – recursively uses a single eigenvector 
on partitions (recursive). 
• Many eigenvectors – Directly computes a multi-way 
partition of the data. 
• Non spectral – Grouping algorithms that can be used in 
conjunction with multi-way spectral algorithms.  
 
V.5. Spectral clustering algorithms 
 
  For the algorithms we assume data points x1, . . . , xn and 
their similarities 
                                     
S is symmetric and non-negative. They are rather similar, 
except for the different Laplacians they use. The change 
of representation from x to u with the help of the 
Laplacians enhances the cluster properties of the data. 
[5]. 
Algorithms introduced here are unnormalized spectral 
clustering, ([15], [4], [8] . 
 
Unnormalized spectral clustering proceeds as in the 
following: 
 
Inputs: k, the number of desired clusters, X, and S. 
• Following the steps in section “similarity graph” 
construct W (graph matrix), 
• then calculate ‘admittance matrix) L, 
• then the first k eigenvectors               
• Let        contain         as columns and 
                  correspond to the i-th row of V. 
Cluster the points    with the k-means algorithm into 
clusters           
Output: Clusters                            . 
 
Note that similar to RadioCut, unnormalized spectral 
clustering does not optimize within-cluster similarity. [6] 
 
 
Algorithm of Unnormalized Spectral Clustering: 
 
Input: Similarity matrix         , number k of clusters 
to construct 

- Construct a similarity graph by one the way 
described in section 5. 

- Let W be its weighted adjacency matrix. 
- Compute the unnormalized Laplacian L. 
- Compute the first k eigenvectors 

                 
- Let        be the matrix containing the 

vectors            as columns. 
- For i=1,…..,n, let       be the vector 

corresponding to the i-th row of V. 
- Cluster the points                   with the k-

means algorithm into clusters C1,….,Ck. 

Output: clusters A1,….,Ak with               
 
Algorithm of  Normalized Spectral Clustering: 
 
 Input: Similarity matrix S € Rnxn , number k of clusters 
to construct 

- Construct a similarity graph by one the way 
described in section 5. 

Let W be its weighted adjacency matrix. 
- Compute the unnormalized Laplacian L. 

- Compute the first k eigenvectors v1;……,vk of the 
generalized eigenproblem        . 
- Let         be the matrix containing the 

vectors         as columns. 
- For i=1,…..,n, let yi S € Rk be the vector 

corresponding to the i-th row of V. 
- Cluster the points                   with the k-

means algorithm into clusters C1,….,Ck. 

Output: : clusters A1,….,Ak with               
 
Algorithm of Normalized Spectral Clustering:  
 
Input: Similarity matrix       , number k of clusters 
to construct. 

- Construct a similarity graph by one the way 
described in section 5. 

- Let W be its weighted adjacency matrix. 
- Compute the unnormalized Laplacian Lsym. 
- Compute the first k eigenvectors v1;……,vk of 

Lsym. 
- Let        be the matrix containing the 

vectors            as columns. 
- Form the matrix         from V normalizing the 

row sums to have norm 1, that is 

             
 

 

 
   

 

- For i=1,…..,n, let       be the vector 
corresponding to the i-th row of V. 

- Cluster the points                    with the k-
means algorithm into clusters C1,….,Ck. 

Output: clusters A1,….,Ak with               
 
 

VI. SIMILARITY GRAPHS. 
    
  Given a set of points, x1… xn, and their distances 
        not related to the degree), there are several 
constructions to obtain a graph (i.e. construct W), which 
are regularly used in spectral clustering. 
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The  -neighborhood graph is the simplest possibility. All 
connections with distances below a threshold are set to 
‘1’.  
 
 i.e. 
 
   

    
    

                            

 
 
 k-nearest neighbor graphs lead to a directed graph. The 
k-shortest distances from i are connected. In order to 
make the graph undirected, directions can be ignored, 
e.g. constructing a k-nearest neighbor graph, then doing 
either:      . 
      
(Usually this is called k-nearest neighbor graph) or   
    (mutual k-nearest neighbor graph). 
A fully connected graph results from connecting all 
points with positive similarity with each other. 
 
 

VII. CONCLUSION 
                                                                         
The spectral algorithms are simple methods simple and 
efficient for the classification.    
The preprocessing is an important stage and can help 
meaningfully to raise results of classification.    
The choice of a likeness graph can be non trivial and can 
require   preprocessing   more extended. However, there 
is a graph of likeness once, the problem is linear and the 
spectral methods don't endure the local optimum problem 
intrinsically. [16], [15]. 
Besides, the objective of this paper is the automatic 
classification of the input image in a database image , so 
the determination of the number of k classes, and 
selections / weight of the different measurements of the 
weight matrix that permits to refine to the maximum the 
classification on the robust and invariant descriptors to 
changes of scales and noises, of this survey, we  
disqualify RadioCuts because they don't optimize intra - 
classes likeness, and according to the study of the state of 
the art as well as advantages and inconveniences of 
several other algorithms we conclude that algorithms of 
spectral clustering give some superior results has those of 
the no - spectral methods, particularly their properties of 
non restriction to the convex regions of likeness and the 
hardiness to noises make them more attractive.   
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