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ASYNCHRONOUS EXPONENTIAL GROWTH OF THE

GROWTH-FRAGMENTATION EQUATION

WITH UNBOUNDED FRAGMENTATION RATE

ÉTIENNE BERNARD AND PIERRE GABRIEL

Abstract. The objective is to prove the asynchronous exponential growth
of the growth-fragmentation equation in large weighted L

1 spaces and under
general assumptions on the coefficients. The key argument is the creation
of moments for the solutions to the Cauchy problem, resulting from the un-
boundedness of the total fragmentation rate. It allows us to prove the quasi-
compactness of the associated (rescaled) semigroup, which in turn provides the
exponential convergence toward the projector on the Perron eigenfunction.

1. Introduction and main results

In this article, we study the asymptotic behavior of the growth-fragmentation
equation







∂tf(t, x) + ∂x (τ(x)f(t, x)) = Ff(t, x), t, x > 0,

f(t, 0) = 0 t > 0,

f(0, x) = f in(x) x > 0.

(1)

This equation appears in the modeling of various physical or biological phenom-
ena [29, 37, 3, 40] as well as in telecommunication. The unknown f(t, x) represents
the concentration at time t of some “particles” with “size” x > 0, which can be for
instance the volume of a cell [17], the length of a fibrillar polymer [22], the window
size in data transmission over the Internet [5], or the time elapsed since the last
discharge of a neuron [35]. Each particle grows with a rate τ(x) and splits according
to the fragmentation operator F which acts on a function f(x) through

Ff(x) := F+f(x) −B(x)f(x).

The positive part F+ is an integral operator given by

F+f(x) :=

∫ 1

0
B

(x

z

)

f
(x

z

)℘(dz)

z
. (2)

When a particle of size x breaks with rate B(x), it produces smaller particles of
sizes zx with 0 < z < 1 distributed with respect to the fragmentation kernel ℘.

All along the paper except in Section 4, the coefficients of the model are supposed
to verify the following hypotheses:

The second author was supported by the ANR project KIBORD, ANR-13-BS01-0004, funded
by the French Ministry of Research.
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(Hτ) The growth rate τ : (0,∞) → (0,∞) is a C1 function which satisfies

1

τ
∈ L1(0, 1), (3)

and there exist ν0 ≤ 1 and τ1 ≥ τ0 > 0 such that

∀x > 0, τ01x≥1x
ν0 ≤ τ(x) ≤ τ1 max(1, x). (4)

(HB) The total fragmentation rate B : (0,∞) → [0,∞) is a continuous function
with a connected support and there exist γ1 ≥ γ0 > 0, B1 ≥ B0 > 0 and
x0 > 0 such that

∀x > 0, B01x≥x0x
γ0 ≤ B(x) ≤ B1 max(1, xγ1 ). (5)

(H℘) The fragmentation kernel ℘ is a finite positive measure on the open interval
(0, 1) such that

∫ 1

0
z ℘(dz) = 1. (6)

For any α ∈ R we will use the following notation for the (possibly infinite)
α-moment of the fragmentation kernel

℘α :=

∫ 1

0
zα℘(dz),

and we define

α := inf{α ∈ R, ℘α < +∞}.

Hypothesis (H℘) ensures that 1 = ℘1 < ℘0 < +∞, so that α ∈ [−∞, 0], and
α 7→ ℘α is strictly decreasing on (α,+∞). The zero-moment ℘0 represents the
mean number of fragments, and the first moment is related to their mean size: if a
particle of size x breaks, the mean size of the fragments is ℘1

℘0
x. Condition (6) thus

guarantees that the fragmentation operator preserves the total size, i.e. the sum of
all the sizes of the daughter particles is equal to the size of the mother particle (at
the statistical level).

Classical examples of fragmentation kernels are the mitosis kernel ℘ = 2δ1/2,
the asymmetrical division kernels ℘ = δθ + δ1−θ with θ ∈ (0, 1/2), and the power
law kernels ℘(dz) = (ν + 2)zνdz with ν > −1. Notice that the power law kernels
are physically relevant only for ν ≤ 0 (see discussion in [3, Section 8.2.1]), which
includes the uniform kernel ℘(dz) = 2 dz.

The long time behavior of the solutions is strongly related to the existence of
(λ,G, φ) solution to the following Perron eigenvalue problem:

(τG)′ + λG+BG = F+G, G ≥ 0,

∫ ∞

0
G(x) dx = 1, (7)

and the dual problem:

−τφ′ + λφ+Bφ = F∗
+φ, φ ≥ 0,

∫ ∞

0
G(x)φ(x) dx = 1, (8)

where

F∗
+φ(x) := B(x)

∫ 1

0
φ(zx)℘(dz).
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When (λ,G, φ) exists and for initial distributions which satisfy

〈f in, φ〉 :=

∫ ∞

0
f in(y)φ(y) dy < +∞,

the solutions to Equation (1) are expected to behave like

f(t, x) ∼ 〈f in, φ〉G(x)eλt when t → +∞.

This property is sometimes called asynchronous exponential growth since it ensures
that the shape of the initial distribution is forgotten for large times. Asymptotically
the population grows exponentially fast with a Malthus parameter λ and is aligned
to the stable size distribution G.

Asynchronous exponential growth for growth-fragmentation was first proved by
Diekmann, Heijmans and Thieme [17]. In this pioneer paper the size state space
is supposed to be bounded, an assumption also made in [24, 39, 4]. When the size
variable lies in (0,∞) the General Relative Entropy introduced in [30] allows to
prove the asynchronous exponential growth in weighted Lp spaces for fairly general
coefficients, but without rate of convergence. Obtaining an exponential rate of
convergence in the case of an unbounded state space produced a large literature
since the result of Perthame and Ryzhik [38]. Let us review here these existing
results, some of which deal with the (slightly simpler) conservative form of the
equation when the condition ℘1 = 1 is replaced by ℘0 = 1 (in this case λ = 0 and
φ = 1).

The exponential decay of the L1 norm was obtained by analytical methods
(functional inequalities) in [38, 27, 35] and probabilistic methods (coupling ar-
guments) in [5]. However the convergence is controlled by a distance between
the initial distribution and the asymptotic profile which is stronger than the L1

norm. A spectral gap was proved by means of Poincaré type inequalities in Hilbert
spaces [15, 2, 23, 33], and in weighted L1 spaces by semigroup techniques [14, 31]
and probabilistic methods [10, 8, 12]. Different types of convergence than in norm
were also considered: convergence in probability for the associated branching pro-
cess [16], pointwise convergence with higher order asymptotic expansion [47].

Convergence in weighted L1 spaces is of particular interest. First, weighted L1

norms have physical interpretation: for instance the L1 norm represents the total
number of particles and the norm with weight x corresponds to the “total mass” of
the population. Second, the definition of asynchronous exponential growth involves
the bracket 〈f, φ〉 which is implicitly assumed to be finite, and the largest Lebesgue
space in which it can take place is then L1 with the weight φ. The aim of the present
paper is to obtain, under general conditions on the coefficients, uniform exponential
convergence in L1 spaces with weights as close as possible to φ. We extend in this
sense some of the results of [31] (see the comments below Theorem 1.2).

For any positive weight function ψ we denote by L1(ψ) the Lebesgue space
L1((0,∞);ψ dx) endowed with the norm ‖f‖L1(ψ) := ‖fψ‖L1, and we simply use

the shorthand L1
α for the choice ψ(x) = (1 + x)α with α ∈ R.

We start by recalling an existence and uniqueness result for the Perron eigen-
value problem, obtained from [20, Theorem 1], [2, Theorems 1.9 and 1.10] and [7,
Theorem 2.1]. It ensures in particular that under our assumptions L1(φ) ≃ L1

1.
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Theorem 1.1. Assume that Hypotheses (Hτ-HB-H℘) are satisfied. There exist
a unique solution (in the distributional sense) (λ,G) ∈ R×L1

0 to the Perron eigen-
value problem (7) and a unique dual eigenfunction φ ∈ C1(0,∞) such that (λ, φ)
satisfies (8). Moreover λ > 0, G ∈ L1

α for all α > 0, and there exists a constant
C > 0 such that for all x > 0

1

C
(1 + x) ≤ φ(x) ≤ C(1 + x).

We are now in position to state the main results of the present paper, summarized
in the following theorem.

Theorem 1.2. For any α ≥ 1 and any f in ∈ L1
α there exists a unique mild solution

f ∈ C([0,∞), L1
α) to Equation (1). If we assume additionally that

(i) either ℘ is absolutely continuous with respect to the Lebesgue measure,
(ii) or supp℘ ⊂ [ǫ, 1 − ǫ] for some ǫ > 0, and τ = const,

then for any α > max(1, α+ γ1 − γ0) there exist two constants M,σ > 0 such that
for all f in ∈ L1

α and all t ≥ 0
∥
∥f(t, ·)e−λt − 〈f in, φ〉G

∥
∥
L1

α

≤ Me−σt
∥
∥f in

∥
∥
L1

α

.

Let us make some comments about the above results:

(1) When α + γ1 − γ0 ≤ 1 (for instance under condition (ii) since in this
case α = −∞, or under condition (i) with γ1 − γ0 ≤ 1, as α is always
nonpositive) the convergence holds for any α > 1. In that event we get a
close to optimal result since the L1

α space can be chosen arbitrarily close
to L1

1 = L1(φ). The question whether it can be extended to L1(φ) is still
open. A negative answer is given by [7] when B is bounded (notice that in
this case φ(x) ≃ (1 + x)k with k < 1).

(2) In [31] the exponential convergence is proved for τ = const, γ0 = γ1 ≥ 0
and ℘ ∈ W 1,1(0, 1) or ℘ = δ 1

2
, in the spaces L1

α for all α > α∗, where

α∗ ≥ 1 is uniquely determined by ℘α∗ = B0/B1. We have generalized these
assumptions, excepting the case γ0 = γ1 = 0 which is not covered by (HB).
Moreover we have strengthened the conclusion by extending the functional
spaces for which it is valid. Indeed, except for B0 = B1 (implying that B
is exactly a power function for large sizes), we have α∗ > 1.

(3) For τ not satisfying (3) we prove in Section 4 that the exponential con-
vergence does not hold in L1(φ). This ensures some kind of optimality for
another result of [31] which states that for τ(x) = x, B(x) = xγ>0 and
℘ ∈ W 1,1(0, 1), exponential convergence occurs in L1(xα1 + xα2 ) for any
0 ≤ α1 < 1 < α2. Indeed these spaces are arbitrarily close to L1(x), which
is equal to L1(φ) when τ is linear.

(4) We cannot expect a convergence result for τ(x) = x and ℘ general since
it is known that for τ(x) = x and ℘ = δ 1

2
the long time asymptotics of

Equation (1) consists in a periodic behavior [6, 43, 19].
(5) Hypotheses (Hτ) and (HB) exclude the case B = const and τ(x) = x,

for which there is no Perron eigenfunction G in L1(R+) and the behavior
of the solutions to Equation (1) is radically different from asynchronous
exponential growth (see [18, 9]).
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The paper is structured as follows: in Section 2 we prove the well-posedness
of the growth-fragmentation equation and give some important properties of the
associated semigroup, in Section 3 we establish the property of asynchronous ex-
ponential growth, and in Section 4 we comment on the case when condition (3) is
not satisfied.

2. Well-posedness of the Cauchy problem

2.1. Functional analytic setting. First we look at the positive part F+ of the
fragmentation operator. Since B is a continuous function, the definition (2) has a
classical sense for f continuous and compactly supported. The continuous extension
theorem ensures that it extends uniquely to a bounded positive operator from L1(ψ)
to L1

α, where ψ(x) = (1 +B(x))(1 + x)α and α ∈ R is such that ℘α is finite. From
now on when talking about the operator F+ we mean this extension.

Lemma 2.1. Let α > α and define ψ(x) = (1+B(x))(1+x)α. There exists a unique
bounded operator F+ : L1(ψ) → L1

α such that (2) holds for any f ∈ Cc(0,∞).
Additionally for all f ∈ L1(ψ)

‖F+f‖L1
α

≤ max(℘0, ℘α)‖f‖L1(ψ).

Proof. It suffices to check that the claimed inequality is valid for all f ∈ Cc(0,∞).
Let f ∈ Cc(0,∞) and α as in the lemma. If α ≥ 0 we have

∥
∥
∥
∥

∫ 1

0
B

( ·

z

)

f
( ·

z

)℘(dz)

z

∥
∥
∥
∥
L1

α

≤

∫ ∞

0

∫ 1

0
B

(x

z

)∣
∣
∣f

(x

z

)∣
∣
∣
℘(dz)

z
(1 + x)αdx

≤

∫ ∞

0
B(y)|f(y)|

∫ 1

0
(1 + zy)α℘(dz) dy

≤ ℘0

∫ ∞

0
B(y)|f(y)|(1 + y)α dy = ℘0‖Bf‖L1

α
,

and if α < 0
∥
∥
∥
∥

∫ 1

0
B

( ·

z

)

f
( ·

z

)℘(dz)

z

∥
∥
∥
∥
L1

α

≤

∫ ∞

0
B(y)|f(y)|

∫ 1

0
(1 + zy)α℘(dz) dy

≤ ℘α

∫ ∞

0
B(y)|f(y)|(1 + y)α dy = ℘α‖Bf‖L1

α
.

The fact that max(℘0, ℘α) = ℘0 if and only if α ≥ 0 yields the conclusion. �

Now we define on L1(φ) the unbounded operator

A0f := −(τf)′ − λf −Bf,

with domain

D (A0) :=
{
f ∈ L1(φ) : (τf)′ ∈ L1(φ), (τf)(0) = 0, and Bf ∈ L1(φ)

}
.

Lemma 2.1 ensures that F+ is well defined on D(A0) since L1(φ) ≃ L1
1 and α < 1.

It will be considered as a perturbation of A0, with the same domain.

With these definitions, the abstract Cauchy problem






d

dt
g = A0g + F+g

g(0) = f in

(9)
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corresponds to Equation (1) rescaled by the exponential growth of parameter λ.
In other words g is solution to (9) if and only if f = g eλt is solution to (1). We
will first prove that (A0, D(A0)) generates a strongly continuous semigroup, also
called C0-semigroup, (St)t≥0 which admits a useful explicit formulation. Then we
will prove that the closure of (A0 + F+, D(A0)) generates a C0-semigroup (Tt)t≥0,
which satisfies a Duhamel formula. Finally we check that (Tt)t≥0 is also a C0-
semigroup on L1

α for any α ≥ 1. The semigroup (Tt)t≥0 yields the unique (mild)
solution g(t) = Ttf

in to the abstract Cauchy problem (9).

2.2. A C0-semigroup for A0.

Proposition 2.2. The transport operator (A0, D(A0)) generates a positive con-
traction semigroup (St)t≥0 on L1(φ).

Proof. We prove that A0 is dissipative and that µ− A0 is surjective for all µ > 0.
Then the Lumer-Philipps theorem (see [21, Theorem II.3.15] for instance) gives the
result, since the density of D(A0) in L1(φ) is clear.

The dissipativity is due to the definition of φ,

A∗
0φ := τφ′ − λφ−Bφ = −F∗

+φ,

which ensures that for all f ∈ D(A0)

〈A0f, (sgn f)φ〉 = 〈A0|f |, φ〉 = 〈|f |,A∗
0φ〉 = −〈|f |,F∗

+φ〉 ≤ 0.

For the surjectivity, let µ > 0 and h ∈ L1(φ). The equation (µ − A0)f = h is
equivalent to solving the ordinary differential equation

(τf)′(x) + (λ+ µ)f(x) +B(x)f(x) = h(x), x > 0, (10)

with the initial condition (τf)(0) = 0. We obtain

τ(x)f(x) =

∫ x

0
e

−
∫

x

y

µ+λ+B(z)
τ(z)

dz
h(y) dy. (11)

We need to verify that f thus defined belongs to D(A0). Let’s introduce

Λ(x) :=

∫ x

1

λ+B(y)

τ(y)
dy.

Since µ > 0 we get from (11)
∫ ∞

0
(λ+B(x))|f(x)|φ(x) dx ≤

∫ ∞

0
Λ′(x)e−Λ(x)φ(x)

∫ x

0
|h(y)|eΛ(y)dydx

≤

∫ ∞

0
|h(y)|φ(y)

[
eΛ(y)

φ(y)

∫ ∞

y

Λ′(x)e−Λ(x)φ(x) dx

︸ ︷︷ ︸

:=Ψ(y)

]

dy.

We are going to prove that Ψ(y) is bounded on (0,∞). As it is a continuous function
which is bounded at y = 0, it suffices to check that it is bounded at +∞. Using

that yΛ′(y) = y(λ+B(y))
τ(y) → +∞ when y → +∞ we have

d

dy

(
ye−Λ(y)) =

(
1 − yΛ′(y)

)
e−Λ(y) ∼y→+∞ −yΛ′(y)e−Λ(y)
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and we deduce from the l’Hôpital’s rule that
∫ ∞

y

Λ′(x)e−Λ(x)xdx ∼y→+∞ ye−Λ(y).

Using the estimate on φ in Theorem 1.1 we get for y ≥ 1

Ψ(y) ≤ 2C2y−1eΛ(y)
∫ ∞

y

Λ′(x)e−Λ(x)xdx −−−−−→
y→+∞

2C2.

So Ψ is bounded on (0,∞) and this ensures that f and Bf belong to L1(φ). By
Equation (10) we deduce that (τf)′ ∈ L1(φ) too, and ultimately f ∈ D(A0).

The positivity of the semigroup results from the positivity of the resolvent (µ−
A0)−1, which is clear in (11). �

Remark 1. In the above proof, we have shown that B is A0-bounded

∀f ∈ D(A0), ‖Bf‖L1(φ) ≤ ‖Ψ‖∞ ‖A0f‖L1(φ)

and as a consequence

D(A0) =
{
f ∈ L1(φ) : A0f ∈ L1(φ) and (τf)(0) = 0

}
.

The semigroup (St)t≥0 generated by A0 yields the solutions of the abstract
Cauchy problem







d

dt
u = A0u

u(0) = f.

(12)

Using the method of characteristics for transport equations, we can give another
writing of the solution which provides, by identification, an explicit expression of
the semigroup (St)t≥0. As under Hypothesis (Hτ) the growth rate τ is globally
Lipschitz, the Cauchy-Lipschitz Theorem ensures that for any x ≥ 0 the ordinary
differential equation

{
∂tX (t, x) = τ (X (t, x))

X (0, x) = x

has a unique maximal solution defined on the interval [t∗(x),+∞), where t∗(x) ∈
(−∞, 0] is the time needed to reach the boundary x = 0, i.e. X(t∗(x), x) = 0,

given by t∗(x) = −
∫ x

0
dy
τ(y) . Notice that we have used Assumption (3) to get that

t∗(x) > −∞. It is a standard result about the flow of an ordinary differential
equation with a C1 vector field that for any t ≥ 0 the mapping

X(t, ·) : (0,∞) → (X(t, 0),∞)

is a diffeomorphism and that

X−1(t, ·) = X(−t, ·).

Additionally we have for all x ≥ 0

x ≤ X(t, x) ≤ (1 + x)eτ1t − 1. (13)

We can define for any t ≥ 0 and any x > X(t, 0)

J(t, x) := ∂xX(−t, x)

which is useful to compute explicitly the solutions of (12).
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Proposition 2.3. The semigroup (St)t≥0 is explicitly given by

Stf(x) =

{

0 if 0 < x ≤ X(t, 0),

f (X(−t, x))J(t, x) e
−

∫
t

0
B(X(−s,x))ds

e−λt if x > X(t, 0).

Proof. For any t ≥ 0, the operator S̃t defined by

S̃tf(x) =

{

0 if 0 < x ≤ X(t, 0),

f (X(−t, x))J(t, x) e
−

∫
t

0
B(X(−s,x))ds

e−λt if x > X(t, 0).

is bounded on L1(φ) since using Theorem 1.1 and (13) we have

‖S̃tf‖L1(φ) ≤

∫ ∞

0
|f(X(−t, x))|J(t, x)φ(x) dx

≤

∫ ∞

0
|f(y)|φ(X(t, y)) dy ≤ C2eτ1t

∫ ∞

0
|u(y)|φ(y) dy.

Additionally Stf = S̃tf for all f ∈ C1
c (0,∞) ⊂ D(A0), because they are both the

unique (classical) solution to the transport equation (12). Indeed for f ∈ C1
c (0,∞)

it is a classical result obtained via the method of characteristics for transport equa-
tions that S̃tf is the solution to equation (12). Yet it can also be checked by direct
computations. First remark that if we define

F (x) :=

∫ x

0

dy

τ(y)
,

which has a sense because of (3), we have the explicit formula

X(t, x) = F−1(F (x) + t).

From this we deduce

J(t, x) =
τ(X(−t, x))

τ(x)
and

∫ t

0
B(X(−s, x)) ds =

∫ x

X(−t,x)

B(y)

τ(y)
dy.

It is easy to check that t 7→ S̃tf given by

S̃tf(x) =







0 if 0 < x ≤ X(t, 0),

f(X(−t, x))
τ(X(−t, x))

τ(x)
e

−
∫

x

X(−t,x)

B(y)

τ(y)
dy

e−λt if x > X(t, 0).

lies in C1
c (0,∞) ⊂ D(A0), is continuously differentiable in L1(φ), and that its

derivative is equal to A0S̃tf.
We conclude by density of C1

c (0,∞) in L1(φ) that St = S̃t. �

The operator St has been defined in L1(φ) ≃ L1
1. But due to the explicit for-

mulation in Proposition 2.3 we easily see that L1
α with α > 1 is invariant under

St. Additionally the following lemma ensures that it extends uniquely to a linear
operator in L1

α for any α < 1, and that when t > 0 it has a regularizing property
(creation of moments).

Lemma 2.4. For any α < 1 the operator St extends uniquely to a bounded positive
operator in L1

α. Moreover if t > 0 then for any α ∈ R and any β > α the operator
St (or its extension) maps L1

α into L1
β . More precisley there exists C = C(α, β) > 0

such that for all t > 0 and all f ∈ L1
α

‖Stf‖L1
β

≤ Ct−(β−α)/γ0 eβτ1t‖f‖L1
α
.
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Proof. We use that X(s, x) ≥ x for x ≥ 0 and Assumption (5) to obtain for
f ∈ Cc(0,∞)

‖Stf‖L1
β

≤

∫ ∞

X(t,0)
|f(X(−t, x))|J(t, x)e

−
∫

t

0
B(X(−s,x))ds

e−λt(1 + x)β dx

≤ e−λt

∫ ∞

0
|f(x)|e

−
∫

t

0
B(X(t−s,x))ds

(1 +X(t, x))β dx

≤ e(βτ1−λ)t
[ ∫ x0

0
|f(x)|(1 + x)β dx+

∫ ∞

x0

|f(x)|e−B0x
γ0 t(1 + x)β dx

]

. e(βτ1−λ)t
[ ∫ x0

0
|f(x)|(1 + x)α dx+

∫ ∞

x0

|f(x)|e−B0x
γ0 txβ−α(1 + x)α dx

]

,

where the symbol . is used to mean: ≤ const × . The first part of the lemma
(extension to L1

α, α < 1) is obtained by taking β = α and using the density of
Cc(0,∞) in L1

α. The second part follows from the fact that for t > 0 and β > α

sup
x≥0

(
e−B0x

γ0 txβ−α
)

= e(β−α)/γ0

(β − α

γ0B0t

)(β−α)/γ0

.

�

2.3. The perturbed semigroup. We consider F+, with domain D(A0), as a
perturbation of A0. Unfortunately, as noticed in [22], the operator (A0+F+, D(A0))
is not closed. Yet it is dissipative. Indeed the definition of φ yields for all f ∈ D(A0)

〈(A0 + F+)f, (sgn f)φ〉 = 〈A0|f | + (F+f) sgn f, φ〉

≤ 〈(A0 + F+)|f |, φ〉 = 〈|f |, (A∗
0 + F∗

+)φ〉 = 0.

This ensures that (A0 + F+, D(A0)) is closable and its closure A0 + F+ is again
dissipative (see for instance [21, Proposition II.3.14]). We set A := A0 + F+ which
is defined by

D(A) =
{
f ∈ L1(φ) : ∃(fn)n∈N ⊂ D(A0), ∃h ∈ L1(φ),

‖fn − f‖L1(φ) → 0 and ‖(A0 + F+)fn − h‖L1(φ) → 0
}

and Af = h for all f ∈ D(A). The fact that A0 + F+ is not closed means that
D(A0)  D(A) and it is due to the unboundedness of B. The reason, well illustrated
in [22], is the existence of functions f ∈ L1(φ) with (τf)′ ∈ L1(φ) and (τf)(0) = 0
such that Bf and F+f do not belong to L1(φ), but due to compensation Ff =
F+f−Bf ∈ L1(φ). Such functions belonging to D(A)\D(A0) cannot be compactly
supported. More precisely if we denote by D(A)c (resp. D(A0)c) the subspace of
D(A) (resp. D(A0)) composed of functions with a compact support in [0,+∞), we
have D(A)c = D(A0)c and Af = A0f+F+f for all f ∈ D(A)c. Indeed if f ∈ D(A)
is such that supp f ⊂ [0, R] for some R > 0, we can find a sequence (fn) ⊂ C1

c (0, R+
1) and h ∈ L1(0, R+1) such that ‖fn−f‖L1(φ) → 0 and ‖(A0+F+)fn−h‖L1(φ) → 0.
We obtain from ‖fn−f‖L1(φ) → 0 and the local boundedness of B that Bfn → Bf

and F+fn → F+f in L1(φ). Then using ‖(A0 + F+)fn − h‖L1(φ) → 0 we deduce

that (τfn)′ = F+fn −Bfn − λfn − (A0 + F+)fn → F+f −Bf − λf − h in L1(φ),
guaranteeing that (τf)′ ∈ L1(φ) and (τf)(0) = 0. So f ∈ D(A0)c.
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We start by proving that A generates a C0-semigroup in L1(φ). Then we verify
that it is also a C0-semigroup in L1

α for all α > 1. Finally we give some useful
properties of this semigroup.

Theorem 2.5. The unbounded operator (A, D(A)) generates a positive C0-semigroup
(Tt)t≥0 on L1(φ), which is conservative in the sense that if f ≥ 0 then for any t ≥ 0

‖Ttf‖L1(φ) = ‖f‖L1(φ). (14)

Proof. Again we use the Lumer-Philipps theorem. We have already seen that
(A, D(A)) is dissipative, so it remains to check that the range of µ− A is dense in
L1(φ) for some µ > 0. To do so we generalize the proof in [22]. Let define the set
of fast decreasing functions

S := {f ∈ L1(φ) : ∀k ≥ 0, f(x) = O(x−k) when x → +∞}

and denote by S+ its positive cone. We will prove that S, which is dense in L1(φ),
is included in the range of µ − A for µ large enough. First we need an invariance
property of S+.

Step 1: The set S+ is invariant under F+ and (µ− A0)−1 for any µ > 0.
Let f ∈ S+, k ≥ 0 and µ > 0. The positivity of f is clearly preserved by F+ and
(µ− A0)−1 which are positive operators. Let x1 > max(1, x0) and c1 > 0 such that
∀x ≥ x1, f(x) ≤ c1x

−k. If k ≥ γ1 + 2 we have for all x > x1

F+f(x) =

∫ 1

0
B

(x

z

)
f

(x

z

)℘(dz)

z
≤ B1c1x

γ1−k

∫ 1

0
zk−γ1−1℘(dz) ≤ B1c1x

γ1−k

and this ensures that F+f ∈ S. For (µ− A0)−1 we start from (11) and similarly as
in the proof of Proposition 2.2 we write that for all x > x1

(µ− A0)−1f(x) ≤
e−Λ(x)

τ(x)

∫ x1

0
eΛ(y)f(y) dy + c1

e−Λ(x)

τ(x)

∫ x

x1

eΛ(y)y−k dy

≤
e−Λ(x)

τ(x)

∫ x1

0
eΛ(y)f(y) dy +

c1τ1

λ+B0

e−Λ(x)

τ(x)

∫ x

x1

Λ′(y)eΛ0(y)y1−γ0−k dy.

To estimate the last term we use the L’Hôpital’s rule which gives
∫ x

x1

Λ′(y)eΛ(y)y1−γ0−k dy ∼x→+∞ x1−γ0−keΛ(x).

Finally we get for all k ≥ 0

(µ− A0)−1f(x) = O
(e−Λ(x) + x1−γ0−k

τ(x)

)

when x → +∞

and we deduce that (µ− A0)−1f ∈ S+.

Step 2: Density of the range.
Define kB := ⌊γ1⌋ + 2 and let h ∈ S+. For µ > 0 (large) to be chosen later, set
f0 = (µ− A0)−1h and define the sequence fn inductively by

fn+1 = f0 + (µ− A0)−1F+fn.

Using that F+ and (µ − A0)−1 are positive we have f0 ≥ 0, f1 − f0 = (µ −
A0)−1F+f0 ≥ 0, and by induction fn+1 − fn = (µ − A0)−1F+(fn − fn−1) ≥ 0.
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Hence fn+1 ≥ fn pointwise. Due to the step 1 we also have (fn)n∈N ⊂ S+ and for
any k ∈ N and any n ≥ 1 we can integrate the equation

xk(µ− A0)fn(x) = xkh(x) + xkF+fn−1(x).

on (0,∞). We get

−

∫ ∞

0
kxk−1τfn + (µ+ λ)

∫ ∞

0
xkfn +

∫ ∞

0
xkBfn =

∫ ∞

0
xkh+ ℘k

∫ ∞

0
xkBfn−1

≤

∫ ∞

0
xkh+ ℘k

∫ ∞

0
xkBfn,

which gives

(µ+ λ)

∫ ∞

0
xkfn ≤

∫ ∞

0
xkh+ k

∫ ∞

0
xk−1τfn + (℘k − 1)

∫ ∞

0
xkBfn.

Considering k = 0 and k = 1 we obtain

(µ+ λ− τ1)

∫ ∞

0
(1 + x)fn ≤

∫ ∞

0
(1 + x)h+ (℘0 − 1)

∫ ∞

0
Bfn (15)

and for k ≥ 2, since ℘k < ℘1 = 1,

(µ+ λ− kτ1)

∫ ∞

0
xkfn ≤

∫ ∞

0
xkh+ kτ1

∫ ∞

0
xk−1fn.

If µ > 1 + 2kBτ1 − λ it yields for any 2 ≤ k ≤ kB
∫ ∞

0
xkfn ≤

∫ ∞

0
xkh+

∫ ∞

0
xk−1fn

which gives by induction

∫ ∞

0
xkBfn ≤

kB∑

k=2

∫ ∞

0
xkh+

∫ ∞

0
xfn

and then
∫ ∞

0
Bfn ≤ B1

∫ ∞

0
(1 + xkB )fn ≤ B1

kB∑

k=2

∫ ∞

0
xkh+B1

∫ ∞

0
(1 + x)fn.

Coming back to (15) we get

(µ+ λ− τ1 − (℘0 − 1)B1)

∫ ∞

0
(1 + x)fn ≤

∫ ∞

0
(1 + x)h+ (℘0 − 1)B1

kB∑

k=2

∫ ∞

0
xkh.

Finally if we choose µ > max
(
1 + 2kBτ1 − λ, τ1 + (℘0 − 1)B1 − λ

)
we obtain that

xkfn is bounded in L1
1 ≃ L1(φ) for any 0 ≤ k ≤ kB − 1. In particular fn and F+fn

are bounded in L1(φ). By the monotone convergence theorem we may deduce that
fn → f∞ and (µ− A0 − F+)fn = h+ F+(fn−1 − fn) → h in L1(φ) when n → ∞.
Hence f∞ ∈ D(A) and (µ− A)f∞ = h. Since S = S+ − S+ we may conclude that
the range of µ−A is dense in L1(φ), and this completes the proof of the generation
of (Tt)t≥0.

Step 3: Positivity and conservation.
The positivity of the semigroup follows from the positivity of the resolvent of A,
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which is a consequence of the non-negativity of f∞. The conservation property is
guaranteed by the identity

〈(A0 + F+)f, φ〉 = 0

which is valid for any nonnegative f ∈ D(A0).
�

Remark 2. A positive contraction semigroup is sometimes called substochastic
semigroup. If it additionally satisfies the mass-preservation ‖Ttf‖ = ‖f‖ for any f ≥
0 it is called stochastic semigroup. Notice that the condition 〈(A0 + F+)f, φ〉 = 0
is not sufficient to guarantee the stochasticity of (Tt)t≥0 in general. In our case it is
true because the semigroup (Tt)t≥0 is generated by the closure of A0 +F+. Mention
also that the stochasticity of a semigroup is related to the notion of honesty. We
refer to [1, 3, 42] for more details on these notions.

Another useful property of the semigroup (Tt)t≥0 is that, as for the semigroup
(St)t≥0, if supp f ⊂ [0, R] for some R > 0 then suppTtf ⊂ [0, X(t, R)]. This
can be seen for instance by means of the Dyson-Phillips expansion. The pertur-
bated operator A0 + F+ verifies the assumptions of the Kato’s theorem (see for
instance [1] for a recent development). It ensures the existence of an extension of
(A0 + F+, D(A0)) generating a C0-semigroup of contractions which is additionally
given by the Dyson-Phillips expansion series. Since we have proved that the closure
of (A0 + F+, D(A0)) generates a C0-semigroup, the Kato extension is necessarily
(A, D(A)) (see [3, Proposition 3.8]) and the Dyson-Phillips series which is strongly
convergent in L1(φ) reads for any t ≥ 0

Tt =

∞∑

n=0

T
(n)
t ,

where T
(0)
t = St and T

(n+1)
t =

∫ t

0 T
(n)
t−sF+Ss ds. We easily check by induction

that if supp f ⊂ [0, R] then suppT
(n)
t f ⊂ [0, X(t, R)] for all n ∈ N. The ini-

tialization follows from the explicit formulation of St, and the heredity results
from the implication supp f ⊂ [0, R] =⇒ supp F+f ⊂ [0, R] and the identity
X(t− s,X(s,R)) = X(t, R).

We have proved the well-posedness of Equation (1) in L1(φ) ≃ L1
1. Now we

consider α > 1 and we establish that the semigroup (Tt)t≥0 defined in Theorem 2.5
is also a C0-semigroup on L1

α.

Lemma 2.6. For any α > 1 the space L1
α is invariant under the semigroup (Tt)t≥0,

and there exists C > 0 such that for all t ≥ 0

‖Tt‖L (L1
α) ≤ C (1 + t).

Additionally (Tt)t≥0 is a C0-semigroup on L1
α.

Proof. Let α > 1 and let f be an integrable function with compact support. By
definition of a mild solution of the abstract Cauchy problem (9) with initial data

|f | we have
∫ t

0 Ts|f | ds ∈ D(A) for any t > 0 and

Tt|f | = |f | + A

∫ t

0
Ts|f | ds.
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Additionally, due to what we explained just before the lemma, the integral
∫ t

0 Ts|f | ds
has a compact support so it belongs to D(A)c = D(A0). It allows to get by inte-
gration against xα

〈Tt|f |, xα〉 = 〈|f |, xα〉 +

∫ t

0
〈Ts|f |, (A∗

0 + F∗
+)xα〉 ds.

Since ℘α > 1 and because of the assumptions on τ and B, there exists R > 0 such
that

∀x ≥ R, ατ(x)/x − λ+ (℘α − 1)B(x) ≤ 0.

This ensures that for all t ≥ 0

〈Tt|f |, (A∗
0 + F∗

+)xα〉 =

∫ ∞

0
Tt|f |(x)

[
ατ(x)/x − λ+ (℘α − 1)B(x)

]
xα dx

≤

∫ R

0
Tt|f |(x)

[
ατ(x)/x − λ+ (℘α − 1)B(x)

]
xα dx

.

∫ ∞

0
Tt|f |(x)φ(x) dx = ‖f‖L1(φ) . ‖f‖L1

α
.

Using that |Ttf | ≤ Tt|f | by positivity of Tt, we deduce that

〈|Ttf |, xα〉 ≤ 〈Tt|f |, xα〉 . 〈|f |, xα〉 + t‖f‖L1
α

≤ (1 + t)‖f‖L1
α

and then, since (1 + x)α . φ(x) + xα and Tt is a contraction in L1(φ),

‖Ttf‖L1
α
. ‖Ttf‖L1(φ) + 〈|Ttf |, xα〉 . (1 + t)‖f‖L1

α
.

We conclude with the density of the compactly supported functions in L1
α.

It remains to prove the strong continuity of (Tt)t≥0 in L1
α. The convergence

Ttf → f in L1
α readily follows from the convergence in L1(φ) if f is compactly

supported. Then it can be extended to any f ∈ L1
α by a density argument.

�

Now we prove a key lemma of creation of moments.

Lemma 2.7. For all t > 0 and all β > α > 1, Tt is a bounded linear operator
from L1

α into L1
β . More precisely for all δ < α there exist two positive constants

a = a(α, β) and C = C(α, β, δ) such that for all f ∈ L1
α and all t > 0

‖Ttf‖L1
β

≤ Ct−(β−δ)/γ0 eat‖f‖L1
α
.

Proof. Fix β > α > δ > 1 and denote ψ(x) = 1 + xβ and ϕ(x) = 1 + xδ. We have

(A∗
0 + F∗

+)ψ(x) = βτ(x)xβ−1 − λψ(x) + (℘0 − 1)B(x) + (℘β − 1)B(x)xβ

≤ (βτ1 − λ)ψ(x) +
(
(℘0 − 1) − (1 − ℘β)xβ

)
B(x).

Setting cβ := 1
2 (1 − ℘β)B0 we can find Rβ ≥ max(1, x0) such that for all R ≥ Rβ,

(℘0 − 1) − (1 − ℘β)Rβ ≤ 0 and ατ1 − λ− (1 − ℘β)B0R
γ0 ≤ −cβR

γ0 . Choose such a

Rβ and consider R ≥ Rβ . For x ≥ R we have (℘0 − 1) − (1 − ℘β)xβ ≤ 0 and then

(A∗
0 + F∗

+)ψ(x) ≤ (βτ1 − λ)ψ(x) +
(
(℘0 − 1) − (1 − ℘β)xβ

)
B0R

γ0

= (βτ1 − λ− (1 − ℘β)B0R
γ0)ψ(x) + (℘0 − ℘β)B0R

γ0

≤ −cβR
γ0ψ(x) +

(℘0 − ℘β)B0

ϕ(Rβ)
Rγ0ϕ(x).
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For x ≤ R we have, since (℘0 − 1) − (1 − ℘β)xβ ≤ 0 for x between Rβ and R,

(A∗
0 + F∗

+)ψ(x) ≤ βτ1ψ(x) + (℘0 − 1)B1R
γ1

β

= −cβR
γ0ψ(x) + (βτ1 + cβR

γ0)ψ(x) + (℘0 − 1)B1R
γ1

β

≤ −cβR
γ0ψ(x) +

[

(βτ1 + cβR
γ0)

ψ(x)

ϕ(x)
+ (℘0 − 1)B1R

γ1

β

]

ϕ(x)

≤ −cβR
γ0ψ(x) +

[

2(βτ1 + cβR
γ0)(1 +R)β−δ + (℘0 − 1)B1R

γ1

β

]

ϕ(x).

Finally there exists a constant Cβ > 0, independent of R, such that for all x ≥ 0

(A∗
0 + F∗

+)ψ(x) ≤ −cβR
γ0ψ(x) + CβR

γ0+β−δϕ(x).

Let f ∈ D(A)c be nonnegative. Injecting the above inequality in

d

dt
〈Ttf, ψ〉 = 〈ATtf, ψ〉 = 〈Ttf, (A

∗
0 + F∗

+)ψ〉

we get for all R ≥ Rβ

d

dt
〈Ttf, ψ〉 ≤ CβR

γ0+β−δ〈Ttf, ϕ〉 − cβR
γ0〈Ttf, ψ〉.

Lemma 2.6 providing the existence of Cδ > 0 such that 〈Ttf, ϕ〉 ≤ Cδ(1 + t)〈f, ϕ〉,
we deduce by a Grönwall type argument that

〈Ttf, ψ〉 ≤ e−cβR
γ0 t〈f, ψ〉 +

CβCδ
cβ

Rβ−δ(1 + t)〈f, ϕ〉.

Since this inequality is valid for all nonnegative f ∈ D(A)c, it is equivalent to say
that for all t, x ≥ 0 and all R ≥ Rα

T ∗
t ψ(x) ≤ e−cβR

γ0 tψ(x) +
CβCδ
cβ

Rβ−δ(1 + t)ϕ(x), (16)

where T ∗
t is the dual operator of Tt,which acts on the dual space L1(ψ)′ = L∞(ψ) :=

{ϕ : (0,∞) → R measurable, |ϕ|/ψ is essentially bounded on (0,∞)}. Considering

R =
(
β−α
cβ

logx
t

)1/γ0
we get that for x ≥ exp

( cβ

β−αR
γ0

β t
)

T ∗
t ψ(x) ≤ xα−βψ(x) +

CβCδ
cβ

(β − α

cβ

)1/γ0

t(δ−β)/γ0(log x)(β−δ)/γ0ϕ(x)

≤ Cα,β,δ(1 + t(δ−β)/γ0)(1 + x)α,

where Cα,β,δ is a positive constant independent of t and x. For x < exp
( cβ

β−αR
γ0

β t
)

we use (16) with R = Rβ to get

T ∗
t ψ(x) ≤ e−cβR

γ0
β
tψ

(
e

cβ
β−α

R
γ0
β
t) +

CβCδ
cβ

Rβ−α
β ϕ

(
e

cβ
β−α

R
γ0
β
t)

≤ 1 + e
α

β−α
cβR

γ0
β
t +

CβCδ
cβ

Rβ−α
β

(
1 + e

α
β−α

cβR
γ0
β
t)

≤
(

1 +
CβCδ
cβ

Rβ−α
β

)(
1 + e

α
β−α

cβR
γ0
β
t)(1 + x)α.

Finally there exist two positive constants a = a(α, β) and C = C(α, β, δ) such that
for all t > 0 and all x ≥ 0

T ∗
t ψ(x) ≤ Ct(δ−β)/γ0eat(1 + x)α
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and as a consequence for all f ∈ L1
β

‖Ttf‖L1
β
. ‖Ttf‖L1(ψ) ≤ 〈Tt|f |, ψ〉 = 〈|f |, T ∗

t ψ〉 ≤ Ct(δ−β)/γ0eat‖f‖L1
α
.

Then we may extend this inequality to all f ∈ L1
α by a truncation argument. �

In addition to the Dyson-Phillips expansion, the Kato’s theorem guarantees the
validity of the Duhamel formula

Ttf = Stf +

∫ t

0
Tt−sF+Ssf ds

for all t ≥ 0 and f ∈ D(A0). Such an equation proves very useful for investigating
the long time behavior of the semigroup (Tt)t≥0. But in our study we need a slightly
different one. However in our study it is better to use a slightly different one,
given in Lemma 2.8 below. The reason is that the property of creation of moments
St(L

1
α) ⊂ L1

β (t > 0, β > α) is valid for any α ∈ R, while in the proof of Tt(L
1
α) ⊂ L1

β

we need that α > 1.

Lemma 2.8. Let α > max(1, α+γ1−γ0). For any t > 0 the integral
∫ t

0 St−sF+Ts ds

defines a bounded linear operator on L1
α. Moreover the following Duhamel formula

holds in L (L1
α) :

Tt = St +

∫ t

0
St−sF+Ts ds, t ≥ 0.

Proof. Fix t > 0, α > max(1, α+γ1−γ0), β ∈ (α, α+γ0−γ1), and δ ∈ (β+γ1−γ0, α).
We use Lemmas 2.1, 2.4 and 2.7 to get, uniformly in s ∈ (0, t/2) and f ∈ L1

α,

‖St−sF+Tsf‖L1
α
. ‖F+Tsf‖L1

β
. ‖Tsf‖L1

β+γ1
. s−(β+γ1−δ)/γ0 ‖f‖L1

α
.

Using Lemmas 2.1 and 2.7 we have uniformly in s ∈ (t/2, t)

‖St−sF+Tsf‖L1
α

≤ ‖F+Tsf‖L1
α
. ‖Tsf‖L1

α+γ1
. ‖f‖L1

α
.

Since δ > β+γ1−γ0 we deduce that for any f ∈ L1
α the function s 7→ ‖St−sF+Tsf‖L1

α

is integrable on (0, t) and it ensures that the function s 7→ St−sF+Tsf is (Bochner)
integrable on (0, t). We even proved that s 7→ ‖St−sF+Ts‖L (L1

α) is integrable

on (0, t) which, together with the triangular inequality ‖
∫ t

0 St−sF+Tsf ds‖L1
α

≤
∫ t

0 ‖St−sF+Tsf‖L1
α

ds, guarantees that the linear mapping f 7→
∫ t

0 St−sF+Tsf ds is

a bounded operator on L1
α.

As a consequence it suffices to verify the Duhamel formula on a dense subspace
of L1

α. We use D(A)c = D(A0)c which is invariant under both semigroups (St)t≥0

and (Tt)t≥0. For any f ∈ D(A)c = D(A0)c and t > 0 we have

d

ds
(St−sTsf) = −A0St−sTsf + St−sATsf

= −A0St−sTsf + St−s(A0 + F+)Tsf = St−sF+Tsf.

An integration between 0 and t yields the result. �
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3. Asymptotic behavior

3.1. The essential spectrum. Recall that for a closed linear operator A in a
Banach space X, the spectrum is defined by σ(A) := {λ ∈ C : A−λ is not bijective}
and the spectral bound as s(A) := sup{Reλ : λ ∈ σ(A)}. If A is bounded, then
the spectral radius r(A) := sup{|λ| : λ ∈ σ(A)} satisfies r(A) ≤ ‖A‖L (X). The
operator A − λ can be non bijective for various reasons and it is useful to define
some subsets of the spectrum. A notion which will play a key role in the proof of our
main theorem is the essential spectrum. There are several definitions of essential
spectrum in the literature (see [25]).We will use the two following ones:

σe1(A) :=
{
λ ∈ σ(A) : rg(A−λ) is not closed or ker(A−λ) is infinite dimensional

}

and

σe2(A) :=
{
λ ∈ σ(A) : either rg(A− λ) is not closed, λ is a limit point of σ(A),

or
⋃

r≥0

ker
(
(A− λ)r

)
is infinite dimensional

}
.

Accordingly we define the essential spectral radii rek(T ) = sup{|λ| : λ ∈ σek(T )}
for k = 1, 2.

The second definition is the one introduced by Browder in [13] and used by Webb
in [44] where an abstract theorem of asynchronous exponential growth is proved.
We will use the following statement which is readily deduced from Propositions 2.2,
2.3, 2.5 and Remarks 2.1 and 2.2 in [44].

Theorem 3.1 ([44]). Let (Ut)t≥0 be a positive C0-semigroup with infinitesimal
generator A in a Banach lattice X. Assume that re2(Ut) < r(Ut) for some (hence
all) t > 0, and that there exists a strictly positive ϕ ∈ X

′ such that for all f ∈ X,
〈e−s(A)tUtf, ϕ〉 is bounded in t. Then there exists a positive finite rank operator P
in X and two constants M,σ > 0 such that ‖e−s(A)tUt − P‖L (X) ≤ Me−σt.

The first definition of the essential spectrum is useful since it is proved in [26,
Theorem 2] that it is invariant under strictly singular perturbation, and it is known
from [36] that in L1 spaces weakly compact operators are strictly singulars. Com-
bining these both results we deduce if A is a closed linear operator and B a weakly
compact operator in a L1 space, then σe1(A+B) = σe1(A).

Clearly we have σe1(A) ⊂ σe2(A) but the two sets are not equal in general.
However it is proved in [28, Theorem 6.5] (see also [34]) that when A is bounded the
essential spectral radius is the same for both (and actually all standard) definitions,
i.e. re1(A) = re2(A).

3.2. Proof of the asynchronous exponential growth. This subsection is ded-
icated to the proof of the second part of Theorem 1.2 about the exponential con-
vergence of (Tt)t≥0 to the rank-one projection f 7→ 〈f, φ〉G. The idea is to apply
Theorem 3.1.

For the infinitesimal generator A of the semigroup (Tt)t≥0 we have s(A) = 0.
Indeed using Proposition 2.2 in [44] one can define the growth bound ω0(A) as
ω0(A) := limt→∞ log(‖Tt‖)/t and Lemma 2.6 guarantees that ω0(A) = 0 in L1

α for
any α > 1 (notice that by contraction of Tt in L1(φ) it is also true for α = 1).
Since s(A) ≤ ω0(A) and 0 ∈ σ(A), we deduce that s(A) = 0. Hence if we can
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apply Theorem 3.1 we obtain the exponential convergence of (Tt)t≥0 to a positive
finite rank projection P. Then we easily deduce from the uniqueness of the Perron
eigenfunction G and the conservation law (14) that this projection is given by
Pf = 〈f, φ〉G (see the proof of Corollary 5.4 in [7] for details). It only remains to
check the assumptions of Theorem 3.1.

The conservation property (14) guarantees that 〈Ttf, φ〉 is bounded in t. The
fact that the growth bound of A is zero ensures that r(Tt) = eω0(A)t = 1 for all
t > 0. The only missing assumption which has to be verified is that re2(Tt) < 1
for some t > 0, meaning that the semigroup (Tt)t≥0 is quasi-compact (see [21] for
instance). The end of the section is devoted to the proof of this property by using
the Duhamel formula in Lemma 2.8, which is recalled here

Tt = St +

∫ t

0
St−sF+Ts ds.

First we check that r(St) < 1 for all t > 0 (and any α ∈ R). Then we prove that
∫ t

0 St−sF+Ts ds is weakly compact in L1
α when α > max(1, α+ γ1 − γ0). Using the

properties of the essential spectral radius enounced in Section 3.1 we deduce that

re2 (Tt) = re1(Tt) = re1(St) ≤ r(St) < 1.

The last inequality is easily obtained from the explicit formulation of St.

Lemma 3.2. For any α ∈ R and t > 0 one has r(St) < 1.

Proof. Let α ∈ R and x1 ≥ x0 such that B0x
γ0

1 > αkτ1 −λ. Consider t1 > 0 defined
by X(t1, 0) = x1. For all t ≥ t1 we have

‖Stf‖L1
α

≤

∫ ∞

0
|f(x)|e

−
∫

t

t1
B(X(s,x))ds

e−λt(1 +X(t, x))α dx

≤ e−B0x
γ0
1 (t−t1)e−λt+ατ1t‖f‖L1

α
.

We deduce that ω0(A0) ≤ ατ1−λ−B0x
γ0

1 < 0 and consequently r(St) = eω0(A0)t < 1
when t > 0. �

Denote by W (L1
α) the space of weakly compact operators in L1

α, which is a (two-
sided) ideal of the Banach algebra L (L1

α). For proving the weak compactness of
∫ t

0 St−sF+Ts ds we iterate the Duhamel formula to get the identity
∫ t

0
St−sF+Ts ds =

∫ t

0
St−sF+Ss ds+

∫ t

0

( ∫ s

0
Ss−uF+Su du

)

F+Tt−s ds,

and we prove that
∫ t

0 St−sF+Ss ds and then
∫ t

0 (
∫ s

0 Ss−uF+Su du)F+Tt−s ds belong

to W (L1
α). To do so we use that W (L1

α) has the strong convex compactness property
(see [45, 41], or [32] for a direct proof in Lebesgue spaces). This means that if a
function U : (0, t) → W (L1

α) is

- strongly measurable, i.e. ∀f ∈ L1
α the function s 7→ U(s)f is measurable,

- and strongly bounded, i.e. sup0<s<t ‖U(s)‖L (L1
α) < ∞,

then
∫ t

0 U(s) ds ∈ W (L1
α). In our case unfortunately the strong boundedness as-

sumption is not satisfied. But it is easy to check that it can be replaced by the
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strong integrability assumption, which is that

s 7→ ‖U(s)‖L (L1
α) is integrable on (0, t).

It readily follows from the dominated convergence theorem together with the prop-
erty that W (L1

α) is closed in L (L1
α) (see for instance [46, Theorem II.C.6]). Notice

that Schlüchtermann suggested in [41] that the assumption of strong boundedness
should be replaced by the uniform integrability (which is even weaker than strong
integrability)

sup
f∈L1

α

∫ t

0
‖U(s)f‖L1

α
ds < ∞ and lim

|Ω|→0
sup
f∈L1

α

∫

Ω
‖U(s)f‖L1

α
ds = 0.

We start with a lemma.

Lemma 3.3. Let α > α + γ1 − γ0 and β ∈ R. For any t > 0 the integral
∫ t

0 St−sF+Ss ds is a bounded linear operator from L1
α to L1

β . More precisely there

exists C = C(α, β) > 0 such that for all t > 0 and all f ∈ L1
α

∥
∥
∥
∥

∫ t

0
St−sF+Ssf ds

∥
∥
∥
∥
L1

β

≤ Ct1−(β+γ1−α)/γ0eβτ1t‖f‖L1
α
.

Proof. Let α > α+γ1−γ0, β ∈ R, and choose δ ∈ (α, α+γ0−γ1). Using Lemmas 2.1
and 2.4 we have uniformly in 0 < s < t/2 and f ∈ L1

α

‖St−sF+Ssf‖L1
β
. eβτ1(t−s)(t− s)−(β−δ)/γ0‖F+Ssf‖L1

δ

. eβτ1tt−(β−δ)/γ0‖Ssf‖L1
δ+γ1

. eβτ1tt−(β−δ)/γ0s−(δ+γ1−α)/γ0 ‖f‖L1
α
,

and for s ∈ (t/2, t)

‖St−sF+Ssf‖L1
β
. eβτ1t‖F+Ssf‖L1

β
. eβτ1t‖Ssf‖L1

β+γ1
. eβτ1tt−(β+γ1−α)/γ0‖f‖L1

α
.

We deduce that for any t > 0 the function s 7→ ‖St−sF+Ss‖L (L1
α,L

1
β

) is integrable

on (0, t) and after integration we get
∫ t

0
‖St−sF+Ss‖L (L1

α,L
1
β

) ds . eβτ1t t1−(β+γ1−α)/γ0 .

�

Proposition 3.4. For each α > max(1, α + γ1 − γ0) and each t > 0 the operator
∫ t

0 St−sF+Ss ds is weakly compact in L1
α.

Proof. Let α > max(1, α + γ1 − γ0) and t > 0. We split the proof into two parts,
corresponding to the two cases in Theorem 1.2. When ℘ is absolutely continuous
we first prove that F+Ss is weakly compact for all s > 0 and then use the strong
convex compactness property. For the case τ = const and supp℘ ⊂ [ε, 1 − ε] we

prove directly the weak compactness of
∫ t

0 St−sF+Ss ds.

Case (i): ℘ absolutely continuous. From Lemmas 2.1 and 2.4 we easily get that
for any s > 0 and any β > α the operator F+Ss maps continuously L1

α in L1
β. This

guarantees the tightness of the image of the unit ball of L1
α under F+Ss for any
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s > 0. Now we look at the uniform integrability. Following the lines of the proof of
Lemma 2.4 we get for any Ω ⊂ (0,∞), s > 0, and f ∈ L1

α

∫

Ω
|F+Ssf(x)|(1 + x)α dx ≤

∫ 1

0

∫

Ω/z
B(x)|Ssf(x)|(1 + zx)αdx℘(dz)

≤ B1

∫ 1

0

∫

X(−s,Ω
z

)∩(0,∞)
|f(x)|e

−
∫

s

0
B(X(u,x))du

e−λs(1 +X(s, x))α+γ1 dx℘(dz)

. s−γ1/γ0 e(α+γ1)τ1s

∫ ∞

0

[
∫

(0,1)∩ Ω
X(s,x)

℘(dz)

]

|f(x)|(1 + x)αdx.

The term between the brackets is small uniformly in x > 0 when |Ω| is small be-

cause ℘ ∈ L1(0, 1) and
∣
∣ Ω
X(s,x)

∣
∣ = |Ω|

X(s,x) ≤ |Ω|
X(s,0) , with X(s, 0) > 0 due to Assump-

tion (3). This proves the uniform integrability condition and by the Dunford-Pettis
theorem the operator F+Ss is weakly compact in L1

α for any s > 0. Since W (L1
α) is

an ideal of L (L1
α) the operator St−sF+Ss is also weakly compact for each s ∈ (0, t].

Finally using the strong convex compactness property of W (L1
α) we get the weak

compactness of
∫ t

0 St−sF+Ss ds in L1
α. Clearly s 7→ St−sF+Ss is strongly measur-

able due to the strong continuity of (St)t≥0, and the strong integrability readily
follows from the inequality

‖St−sF+Ssf‖L1
α
. s−(δ+γ1−α)/γ0‖f‖L1

α

that we established in the proof of Lemma 3.3, with δ < α+ γ0 − γ1.

Case (ii): τ = 1 and supp℘ ⊂ [ε, 1 − ε]. Lemma 3.3 guarantees that the integral
∫ t

0 St−sF+Ss ds sends continuously L1
α into L1

β for any β > α. Consequently the im-

age of the unit ball of L1
α under this operator is tight. For the uniform integrability

we write for Ω ⊂ (0,∞) and f ∈ L1
α

∫

Ω

∣
∣
∣
∣

∫ t

0
St−sF+Ssf(x) ds

∣
∣
∣
∣
(1 + x)αdx

≤

∫

Ω

∫ t

0
|F+Ssf(x− t+ s)|e

−
∫

t−s

0
B(x−u)du

ds (1 + x)αdx

=

∫

Ω

∫ t

0

∫ 1

0
B

(x− t+ s

z

)∣
∣
∣Ssf

(x− t+ s

z

)∣
∣
∣
℘(dz)

z
e

−
∫

t−s

0
B(x−u)du

ds (1 + x)αdx

≤ B1

∫

Ω

∫ t

0

∫ 1

0

(

1 +
x

z

)γ1
∣
∣
∣f

(x− t+ s

z
− s

)∣
∣
∣

e
−

∫
s

0
B( x−t+s

z
−u)du−

∫
t−s

0
B(x−u)du ℘(dz)

z
ds (1 + x)αdx.

For s ≤ t
2 we have

e
−

∫
t−s

0
B(x−u)du

≤ e
−

∫ t
2

0
B(x−u)du

≤ 10<x<x0 + 1x≥x0e− t
2B0(x− t

2 )γ0
+

and for s ≥ t
2

e
−

∫
s

0
B( x−t+s

z
−u)du

≤ e
−

∫ t
2

0
B( x−t+s

z
−u)du

≤ 10<x<x0 + 1x≥x0e− t
2B0(x−t)γ0

+ .
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The function x 7→
(
1 + x

z

)γ1
(
10<x<x0 + 1x≥x0e− t

2B0(x−t)γ0
+

)
is clearly bounded on

(0,∞), uniformly in z ≥ ε, so we get
∫

Ω

∣
∣
∣
∣

∫ t

0
St−sF+Ssf(x) ds

∣
∣
∣
∣
(1 + x)αdx

.

∫ t

0

∫ 1

0

∫

Ω

∣
∣
∣f

(x− t+ s

z
− s

)∣
∣
∣(1 + x)αdx

℘(dz)

z
ds.

Set ϕ(s, z, x) = x−t+s
z − s and do the change of variable x → y = ϕ(s, z, x).

We obtain, since dy = dx
z and ϕ(s, z, ·)−1(y) = z(y + s) + t− s ≤ y + t,

∫

Ω

∣
∣
∣
∣

∫ t

0
St−sF+Ssf(x) ds

∣
∣
∣
∣
(1 + x)αdx

.

∫ t

0

∫ 1

0

∫

ϕ(s,z,Ω)
|f(y)|(1 + y + t)αdy ℘(dz) ds

=

∫ ∞

0

∫ t

0

∫ 1

0
1ϕ(s,z,·)−1(y)∈Ω ℘(dz) ds |f(y)|(1 + y + t)αdy

=

∫ ∞

0

∫ 1

0

∫ t

0
1s∈ 1

1−z
(t−zy−Ω) ds ℘(dz) |f(y)|(1 + y + t)αdy.

Since
∣
∣ 1

1−z (t− zy − Ω)
∣
∣ ≤ |Ω|

ε for all z ∈ supp℘ ⊂ [ε, 1 − ε] we get
∫

Ω

∣
∣
∣
∣

∫ t

0
St−sF+Ssf(x) ds

∣
∣
∣
∣
(1 + x)αdx . |Ω| ‖f‖L1

α

and the family
{ ∫ t

0 St−sF+Ssf ds : ‖f‖L1
α

≤ 1
}

is uniformly integrable. The
Dunford-Pettis theorem yields the result.

�

Corollary 3.5. For each α > max(1, α + γ1 − γ0) and each t > 0 the operator
∫ t

0

( ∫ s

0 Ss−uF+Su du
)
F+Tt−s ds is weakly compact in L1

α.

Proof. It is a consequence of Proposition 3.4 and the strong convex compactness
property. Fix α > max(1, α+ γ1 − γ0) and t > 0. Since

∫ s

0 Ss−uF+Su du ∈ W (L1
α)

and F+Tt−s ∈ L (L1
α), the operator

( ∫ s

0 Ss−uF+Su du
)
F+Tt−s is weakly com-

pact for any s ∈ (0, t). For checking the strong integrability on (0, t) we use Lem-
mas 2.1, 2.7 and 3.3. Uniformly in s ∈ (0, t/2) we have

∥
∥
∥

( ∫ s

0
Ss−uF+Su du

)

F+Tt−sf
∥
∥
∥
L1

α

. ‖F+Tt−sf‖L1
α+γ1−γ0

. ‖Tt−sf‖L1
α+2γ1−γ0

. ‖f‖L1
α
.

Uniformly in s ∈ (t/2, t) we have for any β ∈ (α, α+γ0 −γ1) and δ ∈ (β+γ1 −γ0, α)
∥
∥
∥

( ∫ s

0
Ss−uF+Su du

)

F+Tt−sf
∥
∥
∥
L1

α

. ‖F+Tt−sf‖L1
β
. ‖Tt−sf‖L1

β+γ1

. (t− s)−(β+γ1−δ)/γ0 ‖f‖L1
α
.

So s 7→
∥
∥

( ∫ s

0 Ss−uF+Su du
)
F+Tt−sf

∥
∥
L1

α

is integrable on (0, t) and we can apply

the strong convex compactness property.
�
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4. About the Osgood condition

In this section we consider the case when the Osgood condition is satisfied

lim
x→0

∫ 1

x

dx

τ(x)
= +∞, (17)

meaning that (3) is not fulfilled. Replacing Assumption (3) by

B

τ
∈ L1(0, 1), and ∃r ≥ 0, sup

0<x<1
x−r

∫ x

0
℘(dz) < +∞ and

xr

τ(x)
∈ L1(0, 1)

still guarantees the existence and uniqueness of (λ,G, φ) (see [20]), and φ still has
a linear growth at +∞ [2, Theorem 1.9] while φ(x) ∼ const× eΛ(x) when x → 0 [2,
Theorem 1.10]. Using these estimates on φ the proof of the generation of the
semigroup (Tt)t≥0 can be readily adapted to the new assumptions.

Notice that in the particular case of the self-similar fragmentation, i.e. τ(x) = x
and B(x) = xγ with γ > 0, a necessary and sufficient condition for the existence
and uniqueness of G is given in [11] (and we easily check that λ = 1 and φ(x) = φ0 x
verify (8) for φ0 > 0 a suitable normalizing constant).

The following result ensures that under the Osgood condition the convergence
of (Tt)t≥0 to the projector P : f 7→ 〈f, φ〉G cannot be uniform with respect the the
initial distribution in L1(φ).

Theorem 4.1. Under Assumption (17) we have for all t ≥ 0

‖Tt − P‖L (L1(φ)) = 2.

Proof. Fix t ≥ 0. First we have

‖Tt − P‖L (L1(φ)) ≤ ‖Tt‖L (L1(φ)) + ‖P‖L (L1(φ)) = 2.

For the other inequality we consider the initial distribution fη(x) := 1
ηφ(x) 10<x<η

for η > 0 small enough (to be determined later). For any R > 0 and any η > 0 we
have Pfη = G and

‖Ttfη −G‖L1(φ) =

∫ R

0
|Ttfη(x) −G(x)|φ(x) dx +

∫ ∞

R

|Ttfη(x) −G(x)|φ(x) dx

≥

∫ ∞

R

G(x)φ(x) dx −

∫ ∞

R

Ttfη(x)φ(x) dx

+

∫ R

0
Ttfη(x)φ(x) dx −

∫ R

0
G(x)φ(x) dx

Let ǫ > 0 and R > 0 such that
∫ ∞

R
Gφ ≥ 1 − ǫ, and then

∫ R

0 Gφ ≤ ǫ. Under
assumption (17) the characteristic curves of the transport semigroup (St)t≥0 do not
reach the boundary 0 in finite time, i.e. t∗(x) = −∞ for all x > 0. Consequently
we can find η small enough such that suppTtfη ⊂ [0, R] and then

‖Ttfη −G‖L1
α

≥ 2(1 − ǫ).

�
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