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ABSTRACT: 
 
This paper presents a simple yet efficient approach for automatic blur detection in aerial images provided by a multi-channel digital 
camera system. The blur in consideration is due to the airplane motion and causes anisotropy in the Fourier Transform of the image. 
This anisotropy can be detected and estimated to recover the characteristics of the motion blur, but one cannot disambiguate the 
anisotropy produced by a motion blur from the possible spectral anisotropy of the underlying sharp image. The proposed approach 
uses a camera with channel-dependent exposure times to address this issue. Under this multi-exposure setting, the motion blur kernel 
is scaled proportionally to the exposure-time, whereas the phase differences between the underlying sharp colour channels are 
assumedly negligible. We show that considering the phase of the ratio of the Fourier Transforms of two channels enhances blur 
detection. Results obtained on 2000 images confirm the operational efficiency of our method. 
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1. INTRODUCTION 

For more than fifteen years, mapping agencies and photo-
grammetric companies have been working on digital airborne 
image acquisition, phasing out traditional silver film. This 
important change brought many improvements, especially in the 
radiometric quality of images where each pixel could be given a 
physical value after a radiometric calibration of the camera, 
which was not the case with silver film. The chemical process of 
film development cannot be entirely under control. A good 
radiometric quality is often required in order to produce ortho-
images (i.e. mosaics of images that can be geometrically 
superposed with a map) without visible boundaries (Kasser & 
Egels, 2002). 
 
To provide high quality images, the flights often take place in 
summer, when the brightness is optimal. However flying in 
summer has one drawback: the significant tree foliage causes 
problematic occlusions when studying the characteristics of the 
ground level (topography, path, rivers, etc.). The only way to 
have leafless trees is to fly the mission between autumn and 
spring when the luminosity is weak. Thus, the exposure time 
should be increased, at the risk of causing motion blur. 
Fortunately, the images in which the blur is significant (more 
than 2 pixels) represent a very small proportion of the mission. 
 
In preparation for photogrammetric and remote sensing studies, 
aerial acquisitions are planned with an important overlap 
between two images. The strong overlaps generally chosen 
ensure that a ground point appears on at least four pictures. This 
redundancy is the reason why it can be chosen to simply remove 
blurred images without trying any restoration. This choice is 
justified by the fact that it is almost impossible to have all the 
images seeing the same ground point blurred. Until now the 

removal of blurred images was done manually by an operator. 
We propose in this article an automatic method for blur 
detection that makes this long and tedious work easier. 
 
First, we will describe the channel-dependent exposure time 
camera for which our method is designed. Then we will review 
the state of the art, which will show that blur detection is less 
discussed than blur correction. Our method of blur detection 
will then be presented in two parts: first, a simple and mono-
channel approach based on the module of the Fourier Transform 
of the image, then an improvement based on a multi-channel 
approach. A test on 2000 images eventually illustrates the 
reliability of the method. 
 
 

2. DATA ACQUISITION 

The images are provided by a multi-channel camera system 
(Figure 1). This multi-sensor system has been preferred to a 
classical Bayer sensor for many reasons. Among them, the lack 
of coloured artefacts, a better dynamic range in the shadowed 
areas and the possibility of using a fourth channel in the near 
infra-red wavelengths for remote sensing applications. In our 
study, only the visible wavelengths (between 380 and 780 nm) 
are considered. 
 
The relative response of the three channels (R, G, B) are 
influenced by the KAF-16801LE sensor performances (Eastman 
Kodak Company, 2002) and by the colour filter transmission 
(CAMNU, 2005) as illustrated on Figure 2. In particular, the 
response in the blue channel is very low relative to other 
channels. There are two solutions to deal with this problem. The 
first idea is to simply multiply the blue signal by a constant to 
enhance the blue channel, but its noise will be multiplied 



 

accordingly. This is the solution used in most Bayer sensors, 
because their exposure time is the same for all the channels. But 
the designers of the system that we present considered the 
possibility of physically separating the three colour channels on 
three independent sensors (Thom et al., 2001). This choice 
yields the possibility of enhancing the blue signal by 
augmenting the exposure time which ensures a good signal to 
noise ratio (SNR) along with a better dynamic range in the blue 
channel. This is for instance useful in the shadowed areas. 
 
Conversely, for highly luminous scenes, the response in the red 
channel is very high, such that it may cause sensor saturation, 
even for small exposure times (Figure 2). To avoid this, another 
correction, has been brought to the red camera by reducing its 
aperture. The following table summarises the specificities of the 
airborne camera system that provided the data exploited in this 
study: 
 
 

Channel Red Green Blue 
Aperture f/8,0 f/5,6 f/5,6 

Exposure time 8,0 ms 15,2 ms 28,0 ms 
 

Table 1.  Aperture and exposure time for each channel 
 
 

 
 

Figure 1.  Four channels digital camera used in our study 
 
 

 
 
Figure 2.  Cameras response for constant exposure and aperture 

All the cameras are linked together by BNC connectors. This 
system provides a good synchronisation of the acquisition for 
the three R G B images that are superimposed to form a 
coloured image (Thom et al., 2001). In addition, the motion blur 
produced by the movement of the airplane (which is, in first 
order approximation, rectilinear and uniform) is corrected by 
Time Delayed Integration: the charge on each pixel are 
physically shifted in the sensor matrix in order to compensate 
the airplane’s uniform movement knowing its elevation and 
speed. The device reaches a precision of half a pixel (CAMNU, 
2005) and allows long exposure time acquisitions. However, it 
has some limits: the compensation is only made for a motion 
blur induced by the principal movement of the airplane and 
doesn’t take into account perturbations such as drifts or 
rotations. They may cause a motion blur ranging from one to ten 
pixels in some images. Until now, an operator was in charge of 
visualising all the pictures one by one to sort out the blurred 
ones. In this production context, a tool automating this sorting 
would be highly beneficial. 
 
 

3. STATE OF THE ART 

Developments in Computer Science and the arrival of digital 
photography brought new hopes in the domain of image 
restoration. Even if blur kernel determination and blur 
correction appear as major topics in image processing, very few 
papers focus on blur detection. 
 
A first description of blur can be done by considering the image 
edges. Such an approach is proposed by Tong who uses Haar 
wavelets to discriminate between blurred and sharp images 
(Tong et al., 2004). The method is independent from the blur 
kernel and the tests on our data have shown good results even 
on images with a small blur extension. Nevertheless, it is very 
sensitive to hot pixels (hardware flaw), which may cause too 
many false detections. 
 
Another solution has been developed for partially blurred 
images (Liu et al., 2008) where different metrics are defined by 
considering some pieces of local information in spectral, spatial 
and colorimetric domain. Image regions are segmented into 
sharp, focus blurred and motion blurred classes by thresholding 
the different metrics. The parameters are chosen using a 
machine learning process. This method is local and thus not 
optimal for uniformly blurred images. 
 
Other studies (Krahmer et al., 2006) suggest to use the notion of 
“cepstrum” defined by C(s) = FT-1(log(|FT(s)|)) where FT(s) is 
the Fourier Transform of the signal s. In the case of motion blur 
that follows a rectangular function, its cepstrum shows two 
peaks, which distance and orientation gives information on the 
characteristics of the motion blur kernel. It provides acceptable 
results on images with a motion blur of large spread (more than 
10 pixels), but is not at all adapted for our case where we want 
to sort out images with a motion blur of only one or two pixels. 
 
The estimation of the blur kernel is often the major bottleneck 
in image restoration. This estimation may be performed through 
a probabilistic approach (Shan et al., 2008) and an iterative 
optimisation. This kind of method returns interesting results but 
its complexity makes it quite time consuming, which becomes 
somehow incompatible with the large number of images 
acquired during a single aerial mission. In addition, we are 
merely looking for a simple detector. 
 



 

Contrary to the previous examples, other approaches (Lim et al. 
2008, Yuan et al. 2007) do not limit themselves to a single 
image but exploit information from two images: one shot with a 
short exposure time (which provides a noisy image) and one 
with a long exposure time (which provides a motion blurred 
image). Even if this method is applied to image restoration, its 
concern is close to ours as motion blur estimation can be a 
means to achieve blur detection. During an aerial mission, a 
same spot is always seen on several pictures (on an average of 
four pictures), but the parallax resulting from the change of 
point of view makes this method inappropriate to our context. 
 
Eventually, Raskar proposes a hardware solution (Raskar et al., 
2006) using a coded exposure camera. The exposure is no 
longer a rectangular function but a succession of smaller 
rectangular functions of different temporal widths. This 
technique cannot be applied to the digital camera developed by 
the IGN because time exposure cannot currently be controlled 
below a certain threshold. 
 
 

4. MONO-CHANNEL APPROACH 

As the camera acquiring the blue channel has the longest 
exposure time, the images provided by this camera are more 
sensitive to motion blur than the ones provided by the other 
channels. Consequently, in this part, we focus on these blue 
channel images. 
 
In the first place, some simplifying hypotheses should be stated 
in order to justify some choices made in our work: 
 
(H1). The blur kernel is a rectangular function centred on zero 

along a single direction. The exposure time is supposed 
to be short enough not to integrate non-uniform 
movements from the airplane. The fact that the centre of 
mass of the airplane does not correspond to the camera 
centre allows us to neglect rotation blurs that cannot be 
represented by a convolution (1). 

(H2). The cameras have a very good SNR, such that the noise 
may be neglected in our images. 

(H3). A sharp image can be considered as roughly isotropic, 
such that its Fourier Transform is also roughly isotropic: 
it has no preferred direction. The module of the Fourier 
Transform then also follows such a radial distribution. 

The best way to represent a linear blur following hypotheses 
(H1) and (H2) is to consider the blurred image Iblur as a 
convolution of the sharp image Isharp by a blur kernel f: 
 
 

 fII sharpblur ∗=      (1) 

 
 
Applying a Fourier Transform FT to the previous equation 
yields: 
 
 

 ( ) ( ) ( )fFTIFTIFT sharpblur ×=      (2) 

 

 
 
Figure 3. Our first approach for blur detection in aerial images 

 



 

 
 
Figure 4.  The sharp image (A) has an anisotropic Fourier 
Transform (B) which causes bad sorting with our initial mono-
channel approach. Conversely, the difference of phase (6) is an 
isotropic signal (C) which will allow for a proper classification 
as not blurred. 
 
 
In the case of images with motion blur, the high frequencies are 
cut down in a given direction and therefore the module of the 
Fourier Transform is not isotropic anymore. The proposed 
method to discriminate between sharp and blurred images is 
somehow intuitive and consist on looking whether the 
coefficients with high value module are concentrated 
preferentially in a circle (isotropic case) or in an ellipse 
(anisotropic case). This method could be divided into six steps 
that are summarized on Figure 3: 
 
(E1). Apply a Fourier Transform to the blue channel image. 

(E2). Binarize the module image by keeping only the 10% 
highest values. This statistic criterion is independent of 
the dynamic range of the image. 

(E3). Smooth this binary image by convolving it with a 
median filter to get rid of some artefacts such as the 
spikes caused by the periodic structures of the original 
image. 

(E4). Compute the edges of this binary image. 

(E5). Fit an ellipse to the edges by estimating its parameters θ 
(orientation), a (major axis) and b (minor axis). 

(E6). Sort between blurred and sharp images by thresholding 
the ratio a/b. We determined empirically that a threshold 
of 60% achieves the best compromise between under 
and over-detection. 

This approach returns mostly good results but has its limits, 
especially when hypothesis (H3) is not respected. For example, 
images of ploughed fields are often detected as blurred but can 
be detected as sharp if they have a motion blur perpendicular to 
the furrows (Figure 4). 
 
In order make our method more robust and in particular to get 
rid of hypothesis (H3), we propose the following approach that 
takes into account the channel-dependent specificity of our 
imaging system. 
 
 

5. MULTI-CHANNELS APPROACH 

Beforehand, let us replace hypothesis (H3) by: 
 

(H'3). The Fourier Transforms of the intensities of the three 
channels Iblue,Igreen,Ired composing a sharp natural colour 
image have similar phases. According to (Oppenheim et 
al., 1981), the structure of an image is mostly held by 
the phase of its Fourier transform. This justifies this 
hypothesis as the three channels of a natural image have 
a common structure (in particular the same contours). If 
we call φ the phase of the Fourier Transform, this 
hypothesis writes: 

 
 

 ( ) ( ) ( )bluegreenred III ϕϕϕ ≈≈    (3) 

 
 
Our idea is now to get rid of the possible natural anisotropy of 
our images (due to periodic structures present in urban areas or 
on ploughed fields) based on this property of natural images. It 
is somehow related to the idea of (Lim et al., 2008). The 
exposure time table shows that the red channel has the shortest 
exposure and therefore is the least affected by motion blur. 
Conversely, the blue channel has the longest exposure and is the 
most affected (Table 1). Thus we will now consider the red and 
blue channels separately: 
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If we take the difference of the phase of the Fourier transform of 
these two equations, we get: 
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Finally by applying (H’3) to the sharp image, we have: 
 
 

( ) ( ) ( ) ( ) ( )blueredblue
blur

red
blurblur ffIII ϕϕϕϕϕ −≈−=∆    (6) 

 



 

This indicates that ∆φ (Iblur) depends much more on the blur 
characteristics than on the actual content of the images. Based 
on this remark, we propose a new multi-channel approach based 
by replacing steps (E2) of the mono-channel approach by the 
new steps (E’2): 
 
(E'2). Binarize the |∆φ (Iblur)| image by thresholding the 

coefficients over π/4. The empirical choice of π/4  seems 
to make a good delimitation between the two areas 
where the frequencies are correlated or not (Figure 5). In 
case the phase is not defined, the pixel can be classified 
indifferently as these rare outliers will be removed by 
the smoothing (E3) 

We also propose to modify the hard classification (E6) into the 
following three way classification (E’6): 

(E'6). Sort between blurred and sharp images by considering 
the same ratio a/b: if it is over 50%, the image will be 
classified as “sharp”, if it is less than 35%, the image 
will be classified as “blurred”, and if the ratio is between 
those two values, the image will be classified as 
“dubious”. 

The third class “dubious” releases the classification process and 
provides a good confidence to “sharp” and “blurred” 
classification (Section 6). These thresholds have been chosen 
empirically on a representative set of 38 images. 
 
 

6. VALIDATION OF THE MULTI-CHANNELS 
APPROACH 

For the validation phase, the algorithm has been tested on a 
mission from April 2007, in rather poor conditions (low 
illumination). This mission is composed of 6271 pictures with 
various typologies (compact urban area, countryside, industrial 
area, forest…). 
 
 

HUMAN OPERATOR 
 

Sharp Blurred Unclassif TOTAL 

Sharp 
1280 

64,00 % 
0 

0,00 % 
514 

25,70 % 
1797 

89,85 % 

Dubious 
25 

1,25 % 
10 

0,50 % 
48 

2,40 % 
83 

4,15 % 

Blurred 
1 

0,05 % 
81 

4,05 % 
32 

1,60 % 
114 

5,70 % 

Unclassif. 
0 

0,00 % 
6 

0,30 % 
0 

0 % 
6 

0,30 % A
U

T
O

M
A

T
IC

 

TOTAL 
1309 

65,45 % 
97 

4,85 % 
594 

29,70 % 
2000 

100,00 % 
 

Table 2.  Validation by a human operator 
 
 
To validate our approach, a manual sorting has been completed 
by a human operator. The operator has sorted the images into 
two classes “sharp” and “blurred”. Some images were left 
“unclassified” by the operator. For instance, forest images are 
usually neglected to focus on inhabited areas, where the needs 
of ortho-images are stronger. For practical reasons, the 
validation concerned only a subset of 2000 images 
representative of the aerial mission. The images used for this 
validation were 1024x1024 crops taken at the centre of the 

original 4096x4096 images where the optical quality is 
considered the best. 
 
Even if Table 2 cannot be rigorously considered as a confusion 
matrix, it emphasizes the reliability of this method. Only one 
sharp image has been sorted as blurred by the computer and all 
the other blurred images have been well detected. 
 
This method is semi automatic because the images from the 
“dubious” class should still be sorted by an operator. However, 
the computer has already made 95% of the work which saves a 
significant amount of time in production. 
 
The whole validation process took around 11 hours (the code 
was not optimized). We also validated the choice of running the 
algorithm on centre crops by comparing the results with full 
size images on a smaller subset of 38 images. This resulted in 
the exact same classification for a division of the processing 
time by 16 between full images and crops, which justifies this 
choice operationally. 
 
 

 
 
Figure 5.  The images A and A’ are crops of two successive 
images of an aerial mission focusing on the same area. Their 
respective Fourier Transforms are given by B and B’. The 
absolute value of the difference of phases (6) is displayed in C 
and C’ with bright colours for low values and dark colour for 
value near π. The frequency peaks generated by urban structures 
have vanished. 
 
 



 

7. CONCLUSIONS 

This paper presents a simple method for motion blur detection 
in channel-dependent exposure time images, exploiting 
efficiently this specificity. 
 
The main contribution of this paper is to leverage the multi-
exposure sensing of the motion blur kernel, which undergoes an 
exposure-time linear scaling, whereas the phase differences 
between the underlying sharp colour channels are assumedly 
negligible. 
 
The successful validation on 2000 aerial images will allow the 
use this technique in the operational context of a production 
chain. 
 
In the future, the possibility of using the information provided 
by the difference (6) to estimate the blur kernel characteristics is 
a foreseeable lead. Eventually, this information could be used in 
order to restore the images detected as blurred. 
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