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ABSTRACT:

This paper presents a simple yet efficient apprdaclautomatic blur detection in aerial images jded by a multi-channel digital
camera system. The blur in consideration is dubéairplane motion and causes anisotropy in thai€oTransform of the image.
This anisotropy can be detected and estimatedcmvee the characteristics of the motion blur, boé @annot disambiguate the
anisotropy produced by a motion blur from the passspectral anisotropy of the underlying sharpgenarhe proposed approach
uses a camera with channel-dependent exposure tiinaeklress this issue. Under this multi-exposetiéng), the motion blur kernel
is scaled proportionally to the exposure-time, wherthe phase differences between the underlyiagp stolour channels are
assumedly negligible. We show that consideringpghase of the ratio of the Fourier Transforms of thannels enhances blur

detection. Results obtained on 2000 images corifimoperational efficiency of our method.

1. INTRODUCTION

For more than fifteen years, mapping agencies amotop
grammetric companies have been working on digiitdloane

image acquisition, phasing out traditional silvémf This

important change brought many improvements, esiheaiathe

radiometric quality of images where each pixel doog given a
physical value after a radiometric calibration &k tcamera,
which was not the case with silver film. The cheahjgrocess of
film development cannot be entirely under contwl.good

radiometric quality is often required in order tmguce ortho-
images (i.e. mosaics of images that can be gearalyri
superposed with a map) without visible boundarléaséer &
Egels, 2002).

To provide high quality images, the flights oftexkeé place in
summer, when the brightness is optimal. Howeveindlyin

summer has one drawback: the significant tree delieauses
problematic occlusions when studying the charasties of the
ground level (topography, path, rivers, etc.). Tmy way to
have leafless trees is to fly the mission betwegturan and
spring when the luminosity is weak. Thus, the expesime
should be increased, at the risk of causing motidbur.

Fortunately, the images in which the blur is siigpaifit (more
than 2 pixels) represent a very small proportiothefmission.

In preparation for photogrammetric and remote senstudies,
aerial acquisitions are planned with an importaneriap
between two images. The strong overlaps generdiysen
ensure that a ground point appears on at leaspiotures. This
redundancy is the reason why it can be chosenrplgiremove
blurred images without trying any restoration. Thi®ice is
justified by the fact that it is almost impossiliéehave all the
images seeing the same ground point blurred. Wt the
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removal of blurred images was done manually by perator.
We propose in this article an automatic method Htur
detection that makes this long and tedious worieeas

First, we will describe the channel-dependent edpogime
camera for which our method is designed. Then werawiew
the state of the art, which will show that blur etgion is less
discussed than blur correction. Our method of ldetection
will then be presented in two parts: first, a siemphd mono-
channel approach based on the module of the Folnagsform
of the image, then an improvement based on a rhidtinel
approach. A test on 2000 images eventually illtstrathe
reliability of the method.

2. DATA ACQUISITION

The images are provided by a multi-channel camgstes
(Figure 1). This multi-sensor system has been pexleto a
classical Bayer sensor for many reasons. Among tteenack
of coloured artefacts, a better dynamic range & shadowed
areas and the possibility of using a fourth chanmehe near
infra-red wavelengths for remote sensing applicetidn our
study, only the visible wavelengths (between 386 a80 nm)
are considered.

The relative response of the three channels (R, GarB)
influenced by the KAF-16801LE sensor performan&es{man
Kodak Company, 2002) and by the colour filter traission

(CAMNU, 2005) as illustrated on Figure 2. In partay the
response in the blue channel is very low relativeother
channels. There are two solutions to deal with phidlem. The
first idea is to simply multiply the blue signal layconstant to
enhance the blue channel, but its noise will betiplidd



accordingly. This is the solution used in most Bagensors,
because their exposure time is the same for althlaenels. But
the designers of the system that we present caesidthe
possibility of physically separating the three eolechannels on
three independent sensors (Thom et al., 2001). Thace

yields the possibility of enhancing the blue signay

augmenting the exposure time which ensures a gigpalisto

noise ratio (SNR) along with a better dynamic raimgéne blue
channel. This is for instance useful in the shadbareas.

Conversely, for highly luminous scenes, the respamsie red
channel is very high, such that it may cause sesaturation,
even for small exposure times (Figure 2). To athid, another
correction, has been brought to the red camerathycing its
aperture. The following table summarises the sjpitiifs of the
airborne camera system that provided the data iegdlin this
study:

Channel Red Green Blue
Aperture 18,0 f/5,6 /5,6
Exposure time 8,0 ms 15,2 mg 28,0 ms

Table 1. Aperture and exposure time for each cdlann

Figure 1. Four channels digital camera used instuay
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Figure 2. Cameras response for constant exposdragrture

All the cameras are linked together by BNC connectolss
system provides a good synchronisation of the adtpn for
the three R G B images that are superimposed to farm
coloured image (Thom et al., 2001). In additior, thotion blur
produced by the movement of the airplane (whichinsfirst
order approximation, rectilinear and uniform) isrrested by
Time Delayed Integration: the charge on each piast
physically shifted in the sensor matrix in ordercmmpensate
the airplane’s uniform movement knowing its elewatiand
speed. The device reaches a precision of halfel [BAMNU,
2005) and allows long exposure time acquisitionsweler, it
has some limits: the compensation is only madeafonotion
blur induced by the principal movement of the ard and
doesn’t take into account perturbations such agtsdior
rotations. They may cause a motion blur ranginghfome to ten
pixels in some images. Until now, an operator washarge of
visualising all the pictures one by one to sort the blurred
ones. In this production context, a tool automating sorting
would be highly beneficial.

3. STATE OF THE ART

Developments in Computer Science and the arrivadigital
photography brought new hopes in the domain of emag
restoration. Even if blur kernel determination arudur
correction appear as major topics in image prongssiery few
papers focus on blur detection.

A first description of blur can be done by considgrthe image
edges. Such an approach is proposed by Tong wis Hsar
wavelets to discriminate between blurred and shiarages
(Tong et al., 2004). The method is independent fthenblur
kernel and the tests on our data have shown gaadtsesven
on images with a small blur extension. Nevertheléss very
sensitive to hot pixels (hardware flaw), which nmause too
many false detections.

Another solution has been developed for partiallyrried
images (Liu et al., 2008) where different metrios defined by
considering some pieces of local information incsfze, spatial
and colorimetric domain. Image regions are segnieiéo
sharp, focus blurred and motion blurred classetht®sholding
the different metrics. The parameters are chosdngua
machine learning process. This method is local tm$ not
optimal for uniformly blurred images.

Other studies (Krahmer et al., 2006) suggest ta¢hesaotion of
“cepstrum” defined byC(s) = FTY(log(FT(s)|)) whereFT(s) is
the Fourier Transform of the signal s. In the aafs@otion blur
that follows a rectangular function, its cepstruhows two
peaks, which distance and orientation gives inféionaon the
characteristics of the motion blur kernel. It paré acceptable
results on images with a motion blur of large sgrgaore than
10 pixels), but is not at all adapted for our cabere we want
to sort out images with a motion blur of only orrédweo pixels.

The estimation of the blur kernel is often the mdjottleneck

in image restoration. This estimation may be pentat through

a probabilistic approach (Shan et al., 2008) andtemtive
optimisation. This kind of method returns intenegtresults but
its complexity makes it quite time consuming, whlmbcomes
somehow incompatible with the large number of insage
acquired during a single aerial mission. In additiove are
merely looking for a simple detector.



Contrary to the previous examples, other approagheset al.
2008, Yuan et al. 2007) do not limit themselvesatsingle
image but exploit information from two images: @st®t with a
short exposure time (which provides a noisy image) one
with a long exposure time (which provides a mothdarred
image). Even if this method is applied to imageardion, its
concern is close to ours as motion blur estimatan be a
means to achieve blur detection. During an aerigkion, a
same spot is always seen on several pictures (@venage of
four pictures), but the parallax resulting from tbleange of
point of view makes this method inappropriate to @ntext.

Eventually, Raskar proposes a hardware solution @grastkal.,

2006) using a coded exposure camera. The exposurm i
longer a rectangular function but a succession rofllgr

rectangular functions of different temporal width3his

technique cannot be applied to the digital camesgelbped by (E2). Binarization
the IGN because time exposure cannot currentlydogralled

below a certain threshold.

4. MONO-CHANNEL APPROACH

As the camera acquiring the blue channel has tingekst
exposure time, the images provided by this camezan@ore
sensitive to motion blur than the ones providedtlsy other
channels. Consequently, in this part, we focus @sehblue
channel images.

In the first place, some simplifying hypothesesudtidoe stated
in order to justify some choices made in our work:

(E3). Smoothing l
(H1). The blur kernel is a rectangular function centradzero
along a single direction. The exposure time is sspg

to be short enough not to integrate non-uniform

movements from the airplane. The fact that thereeuwit l (E4). Edge detection l

mass of the airplane does not correspond to theram
centre allows us to neglect rotation blurs thathcarbe
represented by a convolution (1).

(H2). The cameras have a very good SNR, such that tlse noi
may be neglected in our images.

(H3). A sharp image can be considered as roughly isatropi
such that its Fourier Transform is also roughlyrizpic:
it has no preferred direction. The module of therier (ES5). Fitting an ellipse
Transform then also follows such a radial distriduit

The best way to represent a linear blur followingdtheses
(H1) and (H2) is to consider the blurred imaljg, as a
convolution of the sharp imadg.r, by a blur kernef:

Iqur = Isharp Df (1) ..
(E6). Decision

Applying a Fourier TransfornT to the previous equation

yields: a/b > 60% a/b < 60%
SHARP BLURRED

FT(Ibmr):FT(I sharp)xFT(f) 2

Figure 3. Our first approach for blur detectioragrial images



Figure 4. The sharp image (A) has an anisotromarier
Transform (B) which causes bad sorting with ouriahimono-
channel approach. Conversely, the difference ofe@k@pis an
isotropic signal (C) which will allow for a propefassification
as not blurred.

In the case of images with motion blur, the higigfrencies are
cut down in a given direction and therefore the niedf the
Fourier Transform is not isotropic anymore. The pmsed
method to discriminate between sharp and blurregiges is
somehow intuitive and consist on looking whether th
coefficients with high value module are concentfate
preferentially in a circle (isotropic case) or im allipse
(anisotropic case). This method could be dividad Bix steps
that are summarized on Figure 3:

(E1). Apply a Fourier Transform to the blue channel image

(E2). Binarize the module image by keeping only the 10%
highest values. This statistic criterion is indegemt of
the dynamic range of the image.

(E3). Smooth this binary image by convolving it with a
median filter to get rid of some artefacts suchtlas
spikes caused by the periodic structures of thgirai
image.

(E4). Compute the edges of this binary image.

(E5). Fit an ellipse to the edges by estimating its patansd

(orientation), a (major axis) and b (minor axis).

(H3).

(E6). Sort between blurred and sharp images by thresimldi
the ratio a/b. We determined empirically that a&stold
of 60% achieves the best compromise between under

and over-detection.

This approach returns mostly good results but kadimits,
especially when hypothesis (H3) is not respected.eixample,
images of ploughed fields are often detected agdiibut can
be detected as sharp if they have a motion blyygreticular to
the furrows (Figure 4).

In order make our method more robust and in pdaicio get
rid of hypothesis (H3), we propose the followingagach that
takes into account the channel-dependent spegifiit our
imaging system.

5. MULTI-CHANNELSAPPROACH

Beforehand, let us replace hypothesis (H3) by:

The Fourier Transforms of the intensities of thee¢h
channels "¢ |9¢""®d composing a sharp natural colour
image have similar phases. According to (Oppentatim
al., 1981), the structure of an image is mostlydHay
the phase of its Fourier transform. This justifibss
hypothesis as the three channels of a natural irhage

a common structure (in particular the same conjolfrs
we call ¢ the phase of the Fourier Transform, this
hypothesis writes:

p1)=p(o=)=00") @

Our idea is now to get rid of the possible natargkotropy of
our images (due to periodic structures presentham areas or
on ploughed fields) based on this property of redtimages. It
is somehow related to the idea of (Lim et al., 200Bhe
exposure time table shows that the red channetheashortest
exposure and therefore is the least affected byiomdblur.
Conversely, the blue channel has the longest exp@sut is the
most affected (Table 1). Thus we will now consittex red and
blue channels separately:

red _ | red red

I blur =1 sharp Df (4)
blue _ | blue blue

I blur I sharp Df

If we take the difference of the phase of the Feuriansform of
these two equations, we get:

)-8(15)

-4l 312?5 ot =) - () (5)

Finally by applying (H'3) to the sharp image, wevba

)- (i

red

¢(I blur
(0

sharp

blue
blur

£p(1y, )= o1 )=t )-g(1"=) ()



This indicates thatne (I,y) depends much more on the blur original 4096x4096 images where the optical quality

characteristics than on the actual content of thages. Based
on this remark, we propose a new multi-channel @ggr based
by replacing steps (E2) of the mono-channel apprdacthe
new steps (E'2):

(E'2).
coefficients overn/4. The empirical choice afl4 seems

considered the best.

Even if Table 2 cannot be rigorously considered asnfusion
matrix, it emphasizes the reliability of this methdnly one
sharp image has been sorted as blurred by the ¢emgnd all

Binarize the A¢ (lnw)| image by thresholding the the other blurred images have been well detected.

to make a good delimitation between the two area§his method is semi automatic because the images the

where the frequencies are correlated or not (Figuren
case the phase is not defined, the pixel can lssifiled
indifferently as these rare outliers will be removey
the smoothing (E3)

We also propose to modify the hard classificatiBf)(into the
following three way classification (E’6):

(E'6).
the same ratio a/b: if it is over 50%, the imagé be
classified as “sharp”, if it is less than 35%, iheage
will be classified as “blurred”, and if the rati® between

“dubious” class should still be sorted by an opmtatowever,
the computer has already made 95% of the work whéskes a
significant amount of time in production.

The whole validation process took around 11 hothe ¢ode
was not optimized). We also validated the choiceuofing the
algorithm on centre crops by comparing the reswith full

size images on a smaller subset of 38 images. rekidted in

Sort between blurred and sharp images by consgleringe exact same classification for a division of firecessing

time by 16 between full images and crops, whichifjes this
choice operationally.

those two values, the image will be classified as

“dubious”.

The third class “dubious” releases the classificaprocess and
provides a good confidence to “sharp” and
classification (Section 6). These thresholds hasenbchosen
empirically on a representative set of 38 images.

6. VALIDATION OF THE MULTI-CHANNELS
APPROACH

For the validation phase, the algorithm has bestedeon a
mission from April 2007, in rather poor conditior{fow

illumination). This mission is composed of 6271tpies with
various typologies (compact urban area, countrysitiustrial
area, forest...).

HUMAN OPERATOR
Sharp Blurred Unclassi TOTAL
Shar 1280 0 514 1797
Pl 6400% | 000% | 2570% | 89.85%
. 25 10 48 83
2| bubious | 1550, | 050% | 240% | 415%
S| Bured 1 81 32 114
S 005% | 405% | 1.60% | 570%
2 Unclassif 0 6 0 6
< | 000% | 030% 0% 0,30 %
1309 97 594 2000
TOTAL | 65450 | 485% | 29.70% | 100,00%

Table 2. Validation by a human operator

To validate our approach, a manual sorting has besmpleted
by a human operator. The operator has sorted thgesinto
two classes “sharp” and “blurred”. Some images wiefe

“unclassified” by the operator. For instance, for@sages are
usually neglected to focus on inhabited areas, eviiez needs
of ortho-images are stronger. For practical reasaine

validation concerned only a subset of 2000
representative of the aerial mission. The images der this
validation were 1024x1024 crops taken at the cenfr¢he

“blurred”

Figure 5. The images A and A’ are crops of twocsssive
images of an aerial mission focusing on the saree.afheir
respective Fourier Transforms are given by B and Bie
absolute value of the difference of phases (6)spldyed in C
and C’ with bright colours for low values and daaur for

value near. The frequency peaks generated by urban structures
imagediave vanished.



7. CONCLUSIONS

This paper presents a simple method for motion B&tection
in channel-dependent exposure time images, expdpiti
efficiently this specificity.

The main contribution of this paper is to leverabge multi-
exposure sensing of the motion blur kernel, whicHargoes an
exposure-time linear scaling, whereas the phaskerelifces
between the underlying sharp colour channels asenasdly
negligible.

The successful validation on 2000 aerial images allibw the
use this technique in the operational context gfr@duction
chain.

In the future, the possibility of using the infortio& provided
by the difference (6) to estimate the blur kerdelracteristics is
a foreseeable lead. Eventually, this informationldde used in
order to restore the images detected as blurred.
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