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Abstract

Virtual cities in a 3D GIS will not be complete without
the details of roofs with chimneys, dormer windows, sky-
lights. We contribute a method of extracting such details
from digital large format aerial photography. The dense
point clouds produced by a photogrammetric process pro-
duce major and minor plane surfaces of a roof and enter
into a classification of its superstructures. In real city data
with a total of 1312 superstructures the proposed automated
process finds 1024, thus achieving success at a rate of 78%.

1. Introduction
We observe the emergence of virtual cities as the 2D ge-

ographic information system GIS morphs into a 3D GIS.
This is being greatly helped along by innovations in sen-
sors, computing, storage, software so that data can be cre-
ated at low cost per building and per unit area. Innovations
in the applications infrastructure with the Internet and smart
telephony increase the applicability of 3D detail.

Advances in digital aerial cameras are the source of low-
cost very dense point clouds that are necessary to generate
3D building models. “Very dense” refers to clouds of points
at a density of 1 to 2 pixels in the source imagery. This has
become possible through new algorithms in combination
with multi-view geometry and high overlap imagery. In the
process, 3D city modeling has become a lively research area
within the photogrammetric community [5, 6, 1]. Whereas
in the past city models often have been built for visualiza-
tion purposes new applications have information needs be-
yond visual characteristics. This implies that the geomet-
ric information be augmented by semantics and topology to
help with thematic queries, analysis tasks, automatic inte-
gration, validity checking, or spatial data mining.

Buildings are the most relevant elements of a 3D GIS
and are in the focus of considerable research efforts. The
detection of buildings and of their footprints, even mapping

of the main roof faces, has become possible by automated
means [5].

The required level of detail (LOD) depends on the appli-
cation. This may range from the Lego-type parallelepipeds
denoted as LOD-1 via models with general roof shapes as
LOD-2 to building models with windows and roof details as
LOD-3 and on to LOD-4 to include the building interior [8]
(see figure 1). Figure 2 shows a French LOD-2 city model
augmented with photo texture.

Figure 1. CityGML levels of details [3]

Figure 2. 3D model of a detail of the 12th district of Paris, GSD
15cm [Courtesy: Laboratoire MATIS, IGN France]

In its most sophisticated form, each building, tree, street
detail, bridge and water body is modeled in three dimen-
sions, details such as windows, doors, façade elements,
sidewalks, manholes, parking meters, suspended wires,
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street signs etc. exist as separate objects. For LOD- 2 to
LOD-4 the roof and its extrusions and intrusions are of in-
terest.

This paper contributes a method to map a roof’s details
as they extrude from, or sometimes intrude into, the major
roof planes. The paper also addresses skylights as an addi-
tional element for the degree of development of a roof. The
novel method uses high-resolution vertical aerial photogra-
phy to segment and classify roof details, so that one obtains
the type roof architecture, the number and location of chim-
neys, dormer windows and skylights. We segment the roofs
into major roof planes, minor roof planes and planes asso-
ciated with superstructures. The major roof planes provide
information about the architectural roof style; another ap-
plication would be the examination of the roof’s suitability
for the installation of solar panels. Of particular interest in
our case are superstructures. We divide these into dormer
windows, chimneys and other structures. Especially the ex-
istence of dormers and of skylights is of great interest for
the level of use of a building’s attic.

Experiments use aerial photography of an urban core
with 186 buildings and at a GSD of 10cm. We show that
our initial approach maps dormers, chimneys and skylights
at a rate between 76% and 81%. We see significant avenues
for improvement in the source data as well as algorithms to
increase that rate of success in the future.

2. Approach
In order to analyze roofs, one will first want to separate

the given input data per building. The aerial imagery with
its derived 3D point clouds and classified land surface el-
ements is being merged with the cadastral property data.
The result consists of each individual property and the area
occupied by a building. Its outline is from the image clas-
sification and the 3D point clouds. From the building one
proceeds to the façades: building footprints become façade
baselines and they in turn serve to refine the building’s roof
outlines. This has been developed by [10] and is used for
this work.

Roofs and their superstructures now need to get mapped
using the building’s point cloud and image segments. The
process consists of five steps (Figure 3). First is the smooth-
ing of the noisy digital surface model (DSM) using total
generalized variation TGV presented in [12]. Second is the
extraction of all plane roof segments using a method intro-
duced in [14] and resembling the RANSAC algorithm for
plane detection, however with the consideration of neigh-
borhoods. Third, each plane surface patch gets labeled as
a major, minor or superstructure plane. This initially uses
the DSM point cloud and then refines the segmentation by
incorporating the RGB-image data. In a region growing ap-
proach, plane segments get merged into larger surfaces, or
are set aside for further analysis.

A fourth process element is the search for skylights in
the major and minor roof planes using a template matching
method in the form of fast directional chamfer matching in-
troduced by [9].

The fifth step is the interpretation of the data and assign-
ment of labels to the isolated data elements and collected
list of features. The roof gets an overall attribution to a spe-
cific architectural style, the “left-over” data are the basis for
a classification into dormers, chimneys and sky lights.

Figure 3. Sequence of the five major processing steps

2.1. DSM Smoothing

Photogrammetrically measured elevation data (range
data) are noisy. At a pixel to multi-pixel level, this will ob-
struct any search for plane surface patches. For this reason
the 3D point clouds need smoothing. The filtering of eleva-
tion measurements is a traditional function of photogram-
metric work in the form of an approximation and interpola-
tion of terrain elevation grids from manually measured sur-
face points. In the current application, we have very dense
data and need a filter that preserves sharp surface discon-
tinuities and small structures while producing smoothness
within the roof. A recent innovation is “total generalized
variation” TGV introduced by [12]. It satisfies the require-
ments of the roof surface analysis and is available in a GPU-
implementation for very fast throughput.

Figure 4 is taken from our experiments. It illustrates that
outliers and noise in the elevation data are minimized, yet
the global structure of a roof is maintained.

(a) (b) (c)

(d) (e)
Figure 4. (a) RGB image of single building of the test dataset; (b)
Raw range image prior to smoothing; (c) Range image using TGV;
(d) Detail of raw range image; (e) Smoothed detail.
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2.2. Plane Detection

Roof planes get detected in the smoothed point cloud. Of
the many different methods available for the task, RANSAC
plane detection has become a standard, in particular in the
LiDAR literature [2, 13, 15]. Its principle is well explained
in [11, 4]. A limitation of RANSAC results from its disre-
gard for neighborhoods; it treats all points the same with-
out considering that a point might be near another. For that
reason [14] has introduced a variation on RANSAC that in-
corporates neighborhood relations. It starts by random sam-
pling to generate model hypotheses. Minimal sets are con-
structed in a way that neighboring points are selected with
higher probability. That means that if a point xi has already
been selected, that xj has the following probability of being
drawn:

P (xi|xj) =

{
1
Z exp−

‖xj−xi‖2
σ2 if xj 6= xi

0 if xj = xi
(1)

where Z is the normalization constant, σ is a heuristi-
cally chosen constant, xi and xj are single observations.
After the creation of all hypotheses, a preference set of pre-
ferred hypotheses is created for each point. Points belong-
ing to the same structure have a similar preference set, thus
they are close in the conceptual space. To find the mod-
els the method uses an agglomerative clustering procedure,
where at each step the two clusters with the minimum pair-
wise distance are merged. This distance reaches from 0
(identical sets) to 1 and just elements are linked together
whose preference sets overlap. Figure 5 shows the result of
the plane detection for one building of our test dataset. The
comparison of a plane with the point cloud produces a mea-
sure of accuracy. We find that the test data have elevation
noise of ±12cm; this is to be related to the GSD at 10 cm.

2.3. Classification

The roof plane detection is the basis for a classification
into major planes, minor planes and superstructure planes.
We further divide the category superstructures into chim-
neys, dormer windows and other structures. Our classifica-
tion workflow, illustrated in figure 6, consists of an initial
and a refined classification. The initial classification ana-
lyzes every plane segment to determine if it is linked to any
other segment to build a larger “region”. Then the size of
the resulting region or assembly of plane segments gets con-
sidered.

Depending on the size of the regions with respect to the
overall size of the roof we assign each region to an appro-
priate category.

A secondary analysis addresses the smaller planes and
superstructures. Depending on their height values with re-
spect to the neighboring pixels these regions are classified

Figure 5. Axonometric view of (a) point cloud of building roof,
points in red; (b) point cloud and detected major planes in green.
Note the intersection line and points belonging to the planes in
black (c) point cloud and detected minor planes in blue. Note in-
tersection line and points belonging to the planes in black; (d) Side
view of point cloud and major planes; at right is an enlarged detail
showing standard deviation between points and plane at ±12cm.
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Figure 6. Proposed classification processing steps

as part of a smaller plane segment (regions without height
continuities at the borders), or of a superstructure or are
eliminated entirely. To achieve meaningful results we dis-
tinguish between height discontinuities at the edges of the
roof and within the roof by using the information about a
building from the building classification.

The refined classification for the superstructures uses the
DSM and the RGB-values for a more accurate and robust
segmentation of the roof parts as proposed by [7]. This is
region growing with seed pixels for every region from the
initial segmentation. The seed pixel locations are the cen-
troid of each segment. The region is iteratively grown by
comparing all unallocated neighboring pixels to the region.
The difference between a pixel’s intensity value and the re-
gion’s mean is used as a measure of similarity.

The pixel with the smallest difference measured this way
is allocated to the region. This process stops when the inten-
sity difference between region mean and new pixel becomes
larger than a certain threshold.

The classification of the single regions is performed us-
ing area, geometric form and height discontinuities at the
region’s borders.

For the example of chimneys one postulates that on all
4 edges of the region are height discontinuities and that the
maximum height is not lower than the height of the roof’s
ridge. Dormer windows have height discontinuities on at
least three edges. Moreover their area is larger than the
chimney’s and the geometric form is more “quadratic” than
elongated. Chimneys have usually smaller and narrower
forms with a maximum width of 50cm. In a last step we
approximate the single chimneys by best fitting rectangles.

Figure 7. Classification of two test buildings; (a) major roof planes
(in red); (b) smaller roof planes (in yellow); (c) dormer windows
(in blue); (d) chimneys (in green);

Figure 7 shows the different generalized segmentation re-
sults for two example buildings.

2.4. Template Matching

A major question of roof analysis addresses the use of
the attic. The existence of dormer windows strongly indi-
cates that the attic has been extended. However, the absence
of dormers does not indicate that the attic has not been ex-
tended. In lieu of dormers there might be skylights.

Skylights can be detected by matching a rectangular sky-
light template with an edge image computed from the aerial
photography over the area of the major roof planes. The
match is scale and rotation variant. Fast directional chamfer
matching as proposed in [9] improves the traditional align-
ment between two edge images by incorporation of edge
information into the matching costs. This improves the
robustness of chamfer matching in the presence of back-
ground clutter. This method augments the chamfer distance
with an additional cost for orientation mismatch which is
given by the average difference in orientations between tem-
plate edges and their nearest edge points in the query image.
Instead of an explicit formulation of the orientation mis-
match, the chamfer distance is generalized to points in R3

for matching directional edge pixels. The directional cham-
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fer distance score is given in [9] by

dDCM (U, V ) =
1

n

∑
ui∈V

min
vj∈V

|ui − vj |+ λ|φ(ui)− φ(vj)|

λ . . . weighting factor between location and orientation
terms;

ui . . . set of template image edge map
ui . . . set of query image edge map
φ() . . . direction term

Figure 8 shows results for the detection of skylights on
building roofs.

Figure 8. Left: original roof image; Right: detected skylights
(marked in green) on a building roof.

2.5. Roof Meta-Interpretation

A meta-interpretation of the roof concerns its extended
or not. This is based on the number and location of chim-
neys, the use of skylights and dormers. These may be of
interest as escape routes in the event of a disaster.

Figure 9. Left: original roof image; Right: detected skylights
(marked in green) on a building roof.

Future work might address the existence of roof terraces,
flat roofs with their elevator shafts and air conditioning
compressors to interpret the uses of the building. This is
interesting for urban planning, real estate development and
transactions or it could be used for value assessments for

property tax assessments. Figure 9 illustrates a segmented
building roof with the conclusion whether the attic is living
space or not.

3. Experimental Results
The test area covers 400m x 400m near a European urban

core with 186 different buildings. The vertical aerial pho-
tography was taken with a GSD of 10 cm, 80% forward-,
60% side-overlap.

Ground truth was obtained by a manual interpretation
of the 69 extended attics in the 186 building (see table 1).
The extended attics are characterized in 20 instances by
dormer windows, in 17 cases they have just skylights and 32
have both dormers as well as skylights. Additional ground
truth was obtained manually for all major and minor planes,
dormer windows, chimneys and skylights (see table 2).

Dormer
windows

skylights both total

number 20 17 32 69
Table 1. Ground truth for 69 extended attics in 186 buildings.
Some attics have only dormer windows or skylights, and some
have both.

Major
planes

Smaller
planes

Dormer
windows

Chimneys Skylights

number 446 198 186 552 574
Table 2. Ground truth for the major and smaller planes, dormer
windows, chimneys and skylights in the 186 buildings of the test
area.

Part of the experimental work was to understand the ef-
fect of the smoothing operation. It not only eliminates out-
liers, but improves the throughput of plane detections by a
factor two since the smoothness of the point cloud improves
the size of the plane segments.

A differentiation between major and minor or smaller
planes is heuristic and a function of architectural customs in
an area. The threshold can be assigned as a function of ev-
ery building’s footprint and the size of the individual plane
segments. But some smaller planes will get erroneously as-
signed to the major plane class and vice versa.

Table 3 summarizes the achieved results. Detected were
446 major and 198 smaller planes, 186 dormer windows,
552 chimneys and 574 skylights. Of the total of 644 planes,
579 were detected, thus achieving a detection rate of 90%. It
was somewhat more successful to detect major planes than
minor ones, with success rates at 92% and 86%.

Current limitations of the approach were found in cases
where plane segments have very similar pitches and are thus
merged erroneously into one plane when they should be
kept separate. Another limitation exists with curved roof
surfaces that exist in some regions extensively, such as in
France, and they may also be found in modern buildings. In
these cases the attempt at fitting roof planes produces many
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Major
planes

Smaller
planes

Dormer
windows

Chimneys Skylights

Total
number

446 198 186 552 574

Detected
segments

409 170 151 420 453

Detection
rate (%)

92 86 81 76 79

Table 3. Experimental results for the building roof segmentation

small segments and a failure of the approach. A check will
be needed that addresses curved roofs.

Of 738 superstructures, 571 were detected. This corre-
sponds to a detection rate of 77%. The dormer window de-
tection rate was at 81%, the chimneys’ at 76%. Applying
these superstructures to an interpretation of extended attics
delivers success at a rate of 82%.

Misclassifications of superstructures occurred in the case
of very complex roof shapes with non-allocatable roof
structures, particularly when surfaces were curved. Since
our approach had not been considering the existence of roof
gardens, it failed in those cases.

It is thus obvious that further work is needed to address
curved roofs and roof terraces.

4. Conclusion
We contribute a novel use of vertical aerial images to de-

scribe and characterize building roofs as a new content in
a 3D GIS. Since the aerial photographs offer a very high
overlap, they produce very dense 3D point clouds. These in
turn support, jointly with the RGB-content of the images,
the mapping of major roof planes and of roof superstruc-
tures. The rate of correctly detecting roofs, dormer win-
dows, chimneys and skylights are at 76% to 81%. This
in turns permit one to assign to a “normal” building a la-
bel of “extended attic” and assign specific architectural roof
styles.

LiDAR today is the workhorse for the production of 3D
point clouds, and research in building reconstruction is of-
ten considering LiDAR as the major data source. However,
a search for LiDAR-literature addressing roof superstruc-
tures came up empty. We will therefore argue that vertical
aerial photography is a valid data source for mapping build-
ing roofs, and that the same cannot be said at this time for
LiDAR.

Our future work therefore will continue with vertical
aerial imagery. Improvements of algorithms will have to
address curved roofs and roof terraces, and will have to
broaden the algorithmic basis to include more image- de-
rived features to augment the point clouds.

A differentiation between major and minor or smaller
planes is heuristic and a function of architectural customs
in an area which makes the algorithm less robust. In order
to solve this problem in future work we want to enter this
information as prior knowledge of an area.

Very importantly, a widening of the range of architec-
tural styles will be needed to go from coastal resort envi-
ronments via historical small towns and mountainous urban
areas to modern urban zones with skyscrapers and industrial
facilities in various regions of the World.
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