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Figure 9. Examples for possible connecting roof shapes

One significant improvement of the proposed method over [START_REF] Kada | 3D building reconstruction from lidar based on a cell decomposition approach[END_REF] is the ability to deal with non-symmetric and more general roof shapes.

Experiments

The test area covers 400m x 400m near the core of the city of Graz with 186 different buildings. The vertical aerial photography was taken with a GSD of 10 cm and 80% forward and 60% sideward overlaps, using the large format digital aerial camera UltraCam-X.

Ground truth of the roof shapes was collected by hand. Table 2 summarizes the types of roofs. Since some roofs fall outside the standard types, a "miscellaneous" category with 24 entries was required. An additional classification was into "simple" and "complex" buildings, and the latter was further classified into Lbuildings (corners), T-buildings and buildings with U-and other irregular shapes. The test area has 125 simple and 61 complex buildings. Of the complex buildings 25 are L-and 17 are Tbuildings, and 19 fall into the miscellaneous category.

Table 2. Ground truth: types of roof shapes for the 186building test area

The smoothing of the DSM not only eliminates outliers, but increases the throughput of plane detections by a factor two. Plane detection requires a focus on the major planes, and thus a meaningful threshold for the acceptable minimal size for plane segments. This threshold is calculated for every building depending on the size of the building footprint and the size of the single plane segments.

The 186 buildings consist of a total of 614 major roof planes. Of these, our approach detected 567 planes. Table 3 presents the detection rates at 92%. A major limitation for the plane detection presents itself when the roofs are curved or very fragmented, thus when there are no planes. The test area has four such buildings. Down-sampling of the DSM point clouds by a factor 4 is acceptable to first suppress minuscule plane segments and to secondly accelerate the throughput. This down-sampling eliminates small structures in advance. Nonetheless even with this down-sampling not all small structures can be eliminated especially larger dormer windows. Before the roof type can be assigned one needs to eliminate the remaining small structures caused by bigger dormers and chimneys and other extrusions or intrusions. Success in defining and removing such small structures was at 83%, identifying 612 of the 738 smaller roof structures. The assignment of a standard roof type concerns 162 of the 186 buildings, since 24 fall outside the standards. If we could detect these non allocatable buildings automatically we achieve a detection rate of 88%, thus 145 buildings out of 162 were correctly classified (see table 4). If we include the 24 nonallocatable buildings we achieve 78%.

While the flat roof would seem to be the easiest type to identify, only 88% were correct. This translates to an error in 2 of 16 buildings, and it turns out that these 2 flat roofs have gardens. The shed roofs were identified at a rate of 86% since 2 buildings were incorrectly classified due to large extrusions in the form of large dormer windows. Gable roofs were detected at a 91% success rate. Problems again occur with large extrusions. All hip roofs were correctly detected. However, the half-hipped roofs only were correctly classified in 43% of the cases. The problem with this category derives from the two small plane segments in the upper height class. The current approach eliminates those plane segments during plane detection The test area did not include any mansard and mansard hipped roofs. We therefore processed 10 additional buildings from another data set (Annecy, France) for each of these two types. All 5 mansard roofs were detected. Errors occurred with the mansard hipped roofs in 2 of the 5 cases. The plane segments in such roofs are at very similar pitches so that plane detection merges plane segments when they should be kept separate. 

Conclusion

We propose a method for automatically mapping roofs and classifying them into architecturally accepted standard types, based on traditional digital large format color aerial photography. This method relies on point clouds at 25 pts/m 2 extracted from highly overlapping vertical aerial imagery, and on an image classification using color and texture to delineate building outlines and footprints. Experimental work in a Graz-test area with 186 buildings with 614 roof planes, results in correct roof planes in 92% of the cases. Small roof structures do confuse the analysis and must therefore be detected and eliminated. This is successful in 83% of all the test cases. Roof types get classified correctly at a rate of 88%. LiDAR literature quotes its success with roof type assignments at xxx%. Limitations exist with complex roof shapes that include large dormers, or with curved roofs. However, those difficulties are not specific to aerial photography and also present themselves with LiDAR data. We may thus conclude that aerial photography produces results at least as good as those from LiDAR point clouds.

While we propose to continue with the development of roof analysis work based on aerial photography, the experimental work has revealed that some weaknesses exist in the proposed method. These weaknesses from confusions with large dormers, or roof gardens, or small differences in pitch angels of mansard hipped roofs will be addressed. In addition work is needed with a wide range of buildings in diverse areas of the World where architectural styles are different from those in the initial test area Graz. An initial look at French urban areas immediately shows the strong use that is being made there of curved roofs. Snow-free coastal resort environments may have various types of flat roofs, historical small towns, alpine towns, urban cores with skyscrapers and the urban fringe with its industrial zones will offer different challenges.
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		roof planes	smaller structures
	total	614	738
	detected	567	612
	Detection rate [%]	92	83

Table 4 . Evaluation of roof shape detection;
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We expect that a focus will be needed next on the analysis of the detailed extrusions, sometimes intrusions, on roofs. These concern chimneys, dormers, sky lights, terraces etc. Success with those details will reflect back on an improvement of the roof analysis and type assignments.