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In addition to the principal roof types of table 1, the approach 
also works with the connecting roof shapes of figure 9. 

 

 

 

Figure 9. Examples for possible connecting roof shapes 

One significant improvement of the proposed method over 
[3] is the ability to deal with non-symmetric and more general 
roof shapes.  

3. Experiments 
The test area covers 400m x 400m near the core of the city of 

Graz with 186 different buildings. The vertical aerial photography 
was taken with a GSD of 10 cm and 80% forward and 60% 
sideward overlaps, using the large format digital aerial camera 
UltraCam-X. 

Ground truth of the roof shapes was collected by hand. Table 
2 summarizes the types of roofs. Since some roofs fall outside the 
standard types, a “miscellaneous” category with 24 entries was 
required. An additional classification was into “simple” and 
“complex” buildings, and the latter was further classified into L-
buildings (corners), T-buildings and buildings with U- and other 
irregular shapes. The test area has 125 simple and 61 complex 
buildings. Of the complex buildings 25 are L-and 17 are T-
buildings, and 19 fall into the miscellaneous category. 

Table 2. Ground truth: types of roof shapes for the 186-
building test area 

 

The smoothing of the DSM not only eliminates outliers, but 
increases the throughput of plane detections by a factor two. Plane 
detection requires a focus on the major planes, and thus a 
meaningful threshold for the acceptable minimal size for plane 
segments. This threshold is calculated for every building 
depending on the size of the building footprint and the size of the 
single plane segments.  

 
The 186 buildings consist of a total of 614 major roof planes. Of 
these, our approach detected 567 planes. Table 3 presents the 
detection rates at 92%. A major limitation for the plane detection 
presents itself when the roofs are curved or very fragmented, thus 
when there are no planes. The test area has four such buildings.   

Down-sampling of the DSM point clouds by a factor 4 is 
acceptable to first suppress minuscule plane segments and to 
secondly accelerate the throughput. This down-sampling 
eliminates small structures in advance. Nonetheless even with this 
down-sampling not all small structures can be eliminated 
especially larger dormer windows. Before the roof type can be 
assigned one needs to eliminate the remaining small structures 
caused by bigger dormers and chimneys and other extrusions or 
intrusions. Success in defining and removing such small structures 
was at 83%, identifying 612 of the 738 smaller roof structures.  

 

Table 3. Different roof shapes 

 roof planes smaller structures 

total 614 738 

detected 567 612 

Detection rate [%] 92 83 

 
The assignment of a standard roof type concerns 162 of the 

186 buildings, since 24 fall outside the standards. If we could 
detect these non allocatable buildings automatically we achieve a 
detection rate of 88%, thus 145 buildings out of 162 were 
correctly classified (see table 4). If we include the 24 non-
allocatable buildings we achieve 78%.  

While the flat roof would seem to be the easiest type to 
identify, only 88% were correct. This translates to an error in 2 of 
16 buildings, and it turns out that these 2 flat roofs have gardens. 
The shed roofs were identified at a rate of 86% since 2 buildings 
were incorrectly classified due to large extrusions in the form of 
large dormer windows. Gable roofs were detected at a 91% 
success rate. Problems again occur with large extrusions. All hip 
roofs were correctly detected. However, the half-hipped roofs 
only were correctly classified in 43% of the cases.  The problem 
with this category derives from the two small plane segments in 
the upper height class. The current approach eliminates those 
plane segments during plane detection  
 

The test area did not include any mansard and mansard 
hipped roofs. We therefore processed 10 additional buildings from 
another data set (Annecy, France) for each of these two types. All 
5 mansard roofs were detected. Errors occurred with the mansard 
hipped roofs in 2 of the 5 cases. The plane segments in such roofs 
are at very similar pitches so that plane detection merges plane 
segments when they should be kept separate.  
 

Table 4. Evaluation of roof shape detection;  

 

4. Conclusion 
We propose a method for automatically mapping roofs and 

classifying them into architecturally accepted standard types, 
based on traditional digital large format color aerial photography. 
This method relies on point clouds at 25 pts/m2 extracted from 
highly overlapping vertical aerial imagery, and on an image 
classification using color and texture to delineate building outlines 
and footprints. Experimental work in a Graz-test area with 186 
buildings with 614 roof planes, results in correct roof planes in 
92% of the cases. Small roof structures do confuse the analysis 
and must therefore be detected and eliminated. This is successful 
in 83% of all the test cases. Roof types get classified correctly at a 
rate of 88%.  LiDAR literature quotes its success with roof type 
assignments at xxx%. Limitations exist with complex roof shapes 
that include large dormers, or with curved roofs. However, those 
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difficulties are not specific to aerial photography and also present 
themselves with LiDAR data. We may thus conclude that aerial 
photography produces results at least as good as those from 
LiDAR point clouds.  

While we propose to continue with the development of roof 
analysis work based on aerial photography, the experimental work 
has revealed that some weaknesses exist in the proposed method. 
These weaknesses from confusions with large dormers, or roof 
gardens, or small differences in pitch angels of mansard hipped 
roofs will be addressed. In addition work is needed with a wide 
range of buildings in diverse areas of the World where 
architectural styles are different from those in the initial test area 
Graz.  An initial look at French urban areas immediately shows 
the strong use that is being made there of curved roofs. Snow-free 
coastal resort environments may have various types of flat roofs, 
historical small towns, alpine towns, urban cores with skyscrapers 
and the urban fringe with its industrial zones will offer different 
challenges.  

We expect that a focus will be needed next on the analysis of 
the detailed extrusions, sometimes intrusions, on roofs. These 
concern chimneys, dormers, sky lights, terraces etc. Success with 
those details will reflect back on an improvement of the roof 
analysis and type assignments.  
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