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ABSTRACT

Internet search has initially been a strong driving force for the
rapid emergence of 3D building models of large urban areas.
Additionally, many commercial and governmental initiatives have
been started to develop urban 3D geographic information systems
in a transition from the classical 2D- to the novel 3D-GIS. The
modeling of building roofs is thus a relevant research topic. The
focus has been on the use of aerial LiDAR point clouds (Light
Detection And Ranging). However, recent progress in digital
aerial cameras has rendered possible the acquisition of very dense
point clouds from high overlap digital aerial imagery, and to use
these point clouds jointly with the image information to generate
3D building models.

This paper presents a multi-step processing framework and work
flow for the automatic segmentation of building roofs in densely
built-up areas from high-resolution vertical aerial images. Details
extruding from, or intruding into, a roof are being excluded so that
each roof is being modeled by means of its planar segments and
can then be classified as a specific roof type from a set of standard
roof shapes. We show that the results from aerial photography
compete well with LiDAR-results as reported by LiDAR
researchers. Our experimental work employs a test area in Graz
(Austria) with 186 buildings.

Categories and Subject Descriptors
1.4.8 Scene Analysis (Object reconstruction).

General Terms

Algorithms, Measurement, Experimentation, Verification.

Keywords
Semantic segmentation, roofs, roof shapes, aerial images, plane
detection, smoothing

1. INTRODUCTION

The 2- dimensional GIS is rapidly morphing into a 3-dimensional
model of the Earth and human habitat. Typical use of the resulting
3D GIS and its 3D virtual cities include urban and landscape
planning, architectural design, tourist and leisure activities,
environmental simulations, disaster preparedness, real estate
transactions etc. Depending on the input data and the application,
the required level of detail (LOD) may vary widely. This may
range from the Lego-type parallelepipeds denoted as LOD-1 via
models with roof shapes as LOD-2 to building models with detail
such as windows and roof details as LOD-3 and on to LOD-4 to
include the building interior [18]. In its most sophisticated form,
the virtual city will model not only each building, but also each
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tree, street detail, bridge and water body is modeled in three
dimensions, and many details will be included such as windows,
doors, facade elements, sidewalks, manholes, parking meters,
suspended wires, street signs etc., all as separate objects (see
figure 1). LOD-2 to LOD-4 need a model of the roof shapes.

Figure 1. 3D city model, LOD2 (detail of Leiden, Netherlands)
[Courtesy: Aerodata International Surveys, Belgium,
http://www.aerodata-surveys.com/].

The state of the art methods of interpreting building roofs are
based on airborne LiDARs (Light Detection And Ranging). They
offer instant access to point clouds and an easy transition to a
Digital Surface Model (DSM). The two fundamental LiDAR-
approaches for 3D building reconstruction are model-driven or
data-driven. Model-driven methods use a predefined list of roof
forms as presented in figure 7 and match the data against those
forms [1], [2]. Complex roofs typically are beyond such model-
driven methods. Therefore data-driven roof reconstruction is often
preferred [3], [4], [5], [6], [7], where a roof gets segmented into
planar roof elements. Ideally, each data-plane describes exactly
one roof plane. A recent paper [8] assesses the quality of
reconstructed building models using LiDAR. It quotes a point
density of 25 pts/m> which corresponds to a Ground Sampling
Distance of 20cm. It quotes a total standard deviation for corner
point identification of 10-15cm.

The progress in digital aerial cameras has made possible the
acquisition of very dense point clouds at 100 pts/m? and up to
1000 pts/m?, based on imaging with Ground Sampling Distances
GSD between 10 cm and 3 cm. Those densities are desirable to
model details of facades and roofs, street signs and suspended
wires. The DSM from aerial photography no longer is being
computed at point intervals of 10 to 20 pixels associated with
traditional 2-image stereo overlaps. Current point clouds get
acquired at a density of 1 point per pixel taking advantage of a 10-



image multi-view geometry [9], and thus to a concept of “super-
resolution” [10]. Such dense DSM leads to well-defined
horizontal building roof lines and is helpful in automating any
roof-related analysis.

This paper presents the automatic segmentation of building
roofs in densely built-up areas from high-resolution vertical aerial
images, it assigns to each roof a type, and it offers a measure of
suitability for a roof to carry solar panels.

We describe a multi-step processing framework leading to a basic
roof model. Tests of the proposed procedure are based on a test
area in Graz (Austria) with 186 buildings We show that vertical
aerial images provide us with a success assignment to a roof type
in 88% of all roofs.

2. Approach

The basis for the proposed roof interpretation is a framework
introduced in [11] and its improvement to deal with extruding
masonry of a building [12]. This segments the images and
photogrammetric point clouds into individual properties, building
footprints and 3D point clouds associated with each building.

Once the building’s point cloud has been isolated, roofs get
segmented in 3 steps. First is a smoothing of the DSM with a total
generalized variation method (TGV) [13]. Then all roof planes get
extracted using an approach first introduced by [14] and
employing so-called random sampling and conceptual
representation. Finally the roof planes are input to a classification
of roof types.

2.1 DSM Smoothing

Measured range data will be noisy so that an interpretation
may fail. This topic is a very prominent one in photogrammetry
and in literature there exist many algorithms that discuss this
problem. The main requirement for such a smoothing algorithm is
that it minimizes noise but preserves sharp edges and small
structures. For this reason and to accelerate the plane detection we
smooth the data using the “total generalized variation” TGV [13].
This method has the advantage that it can be efficiently
implemented on the GPU and is therefore very fast.

The variational approach finds the solution of the model by
the minimizer of an energy-functional that is usually composed of
two terms. The regularization term copes with the a-priori
assumption about the smoothness properties of the solution and
the data term forces the solution to be similar to the input data.
The second order variant of this functional is ideally suited for
piece-wise affine surfaces and therefore well suited to buildings
that can be approximated by piece-wise planar surfaces.

The data term is based on the robust Huber-L1 norm, the
regularization term is based on TGV. The strength of the Huber-
L1 norm is that it reduces stair-casing often found in other
models and better reflects the noise model of real range images.
By implementing the Huber norm to the data and regularization
term the sp-called “Huber model” is obtained.
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The main property of TGV this is that it allows to reconstruct
piecewise polynomial functions of arbitrary order. It has the
property to be convex, which means that a solution is globally
optimal. For the approximation of buildings it is sufficient to use
the TGV regularization of the second order since they can be
approximated by piecewise planar surfaces. This method
combines TGV regularization of second order with the Huber-L1
norm.
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Applying this method to a typical roof produces a smoothed
result illustrated in Figure 2, taken from the test dataset in the city
of Graz, Austria. In this image you can see that outliers and noise
within the range data are minimized by maintaining the global
structure of a roof.

Figure 2: (a )Shows RGB image of single building of our test

dataset (b) shows range image without using TGV model (c)

shows range image using TGV model (d) shows detail of raw
range data (e) shows detail of range data using TGV.

2.2 Plane Detection

The smoothed point clouds are now the input to plane
detection. This applies to facades as well as to roofs. We use the
“J-Linkage” method introduced by [14] that resembles the
RANSAC method. The approach is described in [14] in detail, but
we will present a short summary here. The process starts by
random sampling to generate model hypotheses. The big
difference to RANSAC is that minimal sets are constructed in a
way that neighboring points are selected with higher probability.
That means that if a point x; has already been selected, that x; has
the following probability of being drawn:

lexp _—”x]- — xi” if xj # x;
P(xj|x) =1z 02 s
Z ... normalization constant

c... heuristically chosen constant

Xi X ... single observations



RANSAC in contrast treats all points with the same weight
that is in our case undesirable. Each surface point gets associated
with the characteristic function of the set of random models that
fit the point. Upon the creation of all hypotheses one computes for
each point a preference set (set of hypothesis it prefers). Points
that belong to the same structure have a similar preference set,
meaning they are close in the conceptual space.

A tailored agglomerative clustering groups points belonging
to the same model, where at each step the two clusters with the
minimum pairwise distance are merged. This distance between
two preference sets is calculated using the Jaccard distance:

|AUB|—|ANB|
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where A and B are two sets. It measures the degree of overlap of
the two sets and reaches from 0 (identical sets) to 1. Elements are
linked together if their preference sets overlap. Outliers are
represented as small clusters. Figure 3 shows the result of the
plane detection for one building of our test dataset.
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Figure 3: (left) Axonometric view of smoothed 3D point cloud
of building roof (GSD 10cm) (points are highlighted in red);
Dimensions: x,y-axis [in pixels], z-axis [in m]

(right) 3D Point cloud of roof highlighted in blue; overlaid are
the two major planes, marked in blue and the two smaller
planes in green.

2.2.1 Elimination of Small Structures

The definition of segments of roof planes is followed by an
elimination of smaller structures. These could for example be
dormer windows or chimneys.

There are two main parameters that are important for this
processing step: First, the size of the individual segments of
planes must exceed a threshold for the segment to be retained.
Additionally we need to consider the possibility that segments of
planes are linked and really do represent parts of a larger and
therefore relevant segment. And second the existence of height
discontinuities at the borders of a segment. These discontinuities
within a roof can be found primarily at dormer windows and
chimneys. Figure 4 illustrates a building roof where some
structures have been eliminated on the basis of the rules described
here.
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Figure 4: RGB image of building and building mask without
smaller structures (downsampled by factor 4).

2.3 Roof Shapes

The roof planes are now available as an input into a
classification of the roofs. The analysis is complex because
building configurations can be rather complex. Therefore it makes
sense to consider the building footprints, much as has been done
in the modeling of facades in [11]. One can decompose a building
footprint into so-called “cells” representing simple basic shapes,
using a method introduced in [3]. Should an individual cell appear
to still be complex, we review the 3D point cloud itself. The point
cloud of a cell gets associated with different height classes using a
method introduced in [15].

It is necessary to differentiate between simple and complex
building footprints. The complexity of buildings and thus roofs
may include urban L- and T-shapes (see figure 5). A simple
footprint is of a building consisting of only four faces (see figure
7). Complexity gets increased if roof elements are connected, as
shown in figure 9: a footprint is thus complex when a building has
more than 4 faces and if it has connected roof elements. This is
the case for L- ,T- and miscellaneous other buildings like the ones
illustrated in figures 5 and 8. The complexity of the building is
thus represented by the complexity of its footprint, and this must
be determined. The big problem is that the used building
classification (see figure S5b) is not very accurate because of
misclassifications due to vegetation and shadows. Therefore to
enhance our roof interpretation we have to determine the
emerging masonry. We use a method to reconstruct building
fagades in 3D that was presented in [11]. This resulted in a
description of the complex 3D facade and a refined building
footprint. Figure 5 illustrates how the footprint gets represented by
straight line segments.

| U |

Figure 5: (a) building visible in vertical aerial image (b)
segmentation result (¢) in red modified building outline using
3D fagade reconstruction (d) enhanced building footprint.

After the determination of the building footprints in a next
step we have to split the footprint into mostly quadrilateral regions
to ease a further interpretation. A method presented in [3] divides
a building footprint into mostly quadrilateral shaped polygons in
accordance with figure 6. The decomposition considers the
requirement that the number of cells be a minimum. This can be
done by defining an adequate subset that still reflects the
characteristics of the building.

Figure 6: Decomposition of building footprint from figure into
quadrilateral cells.

The cells now determine the roof shape of the building. We
are particularly interested the standard roof shapes illustrated in
figure 7 and table 1, and their combinations when roofs get
connected as illustrated in figure 9.



Table 1. Different roof shapes
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Figure 7: Different roof shapes (a) gable roof (b) shed roof (c)
hip roof building (d) half hipped roof () mansard roof (f) flat
roof (g) saw-tooth roof (h) mansard hipped roof.

A fully automatic classification of roofs into the standard
shapes uses a concept introduced in [14]. It works with “height

classes” associated with the 3D point cloud (see figure 8): in our

case we rely on a lower, a middle and an upper class. |-
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Figure 8: Classification of a building roof into different height « [
classes [15].

This idea is very crucial when dealing with different kinds of
hip roofs and mansard roofs. In contrast to the method used in
[15] we employ both the roof pitch and the building footprint.

Therefore all segments of roof planes are assigned to their
appropriate height class. The number of points belonging to each 4
%
|

of the three classes is counted per plane. Points in the upper and
lower class are of special interest. The ratio between the numbers
in these two classes is relevant for the assessment of the roof
shapes. This is especially effective with hip roofs. The
classification uses the following features of a roof:

Number of planes

Roof pitch

Orientation of normal vector
Points belonging to lower and upper class and their ratio anih ol b gt
Adjacency matrix (planes)

One important parameter is the orientation of the normal
vector. This is important to determine the orientation of two
adjacent roof planes. The result of this calculation is a function of

the position of two roofs, it is 0 if two planes stand normal to each 2
other, 1 if two planes face in a similar direction and -1 if they look L
in opposite directions. The use of these parameters and the <+ ]+
decomposition of a roof into quadrilateral cells results in a 5
classification of each roof into the major roof shapes of table 1. v

wer class




In addition to the principal roof types of table 1, the approach
also works with the connecting roof shapes of figure 9.
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Figure 9. Examples for possible connecting roof shapes

One significant improvement of the proposed method over
[3] is the ability to deal with non-symmetric and more general
roof shapes.

3. Experiments

The test area covers 400m x 400m near the core of the city of
Graz with 186 different buildings. The vertical aerial photography
was taken with a GSD of 10 cm and 80% forward and 60%
sideward overlaps, using the large format digital aerial camera
UltraCam-X.

Ground truth of the roof shapes was collected by hand. Table
2 summarizes the types of roofs. Since some roofs fall outside the
standard types, a “miscellaneous” category with 24 entries was
required. An additional classification was into “simple” and
“complex” buildings, and the latter was further classified into L-
buildings (corners), T-buildings and buildings with U- and other
irregular shapes. The test area has 125 simple and 61 complex
buildings. Of the complex buildings 25 are L-and 17 are T-
buildings, and 19 fall into the miscellaneous category.

Table 2. Ground truth: types of roof shapes for the 186-
building test area

Flat | Shed | Gable | Hip | Half | Mansard | Mansard | Sawtooth| Non-
roof | roof | roof | roof |Hipped roof Hipped roof |allocatable
Roof roof roofs
16 14 | 121 2 7 0 0 2 24

The smoothing of the DSM not only eliminates outliers, but
increases the throughput of plane detections by a factor two. Plane
detection requires a focus on the major planes, and thus a
meaningful threshold for the acceptable minimal size for plane
segments. This threshold is calculated for every building
depending on the size of the building footprint and the size of the
single plane segments.

The 186 buildings consist of a total of 614 major roof planes. Of
these, our approach detected 567 planes. Table 3 presents the
detection rates at 92%. A major limitation for the plane detection
presents itself when the roofs are curved or very fragmented, thus
when there are no planes. The test area has four such buildings.

Down-sampling of the DSM point clouds by a factor 4 is
acceptable to first suppress minuscule plane segments and to
secondly accelerate the throughput. This down-sampling
eliminates small structures in advance. Nonetheless even with this
down-sampling not all small structures can be eliminated
especially larger dormer windows. Before the roof type can be
assigned one needs to eliminate the remaining small structures
caused by bigger dormers and chimneys and other extrusions or
intrusions. Success in defining and removing such small structures
was at 83%, identifying 612 of the 738 smaller roof structures.

Table 3. Different roof shapes

roof planes | smaller structures
total 614 738
detected 567 612
Detection rate [%] 92 83

The assignment of a standard roof type concerns 162 of the
186 buildings, since 24 fall outside the standards. If we could
detect these non allocatable buildings automatically we achieve a
detection rate of 88%, thus 145 buildings out of 162 were
correctly classified (see table 4). If we include the 24 non-
allocatable buildings we achieve 78%.

While the flat roof would seem to be the easiest type to
identify, only 88% were correct. This translates to an error in 2 of
16 buildings, and it turns out that these 2 flat roofs have gardens.
The shed roofs were identified at a rate of 86% since 2 buildings
were incorrectly classified due to large extrusions in the form of
large dormer windows. Gable roofs were detected at a 91%
success rate. Problems again occur with large extrusions. All hip
roofs were correctly detected. However, the half-hipped roofs
only were correctly classified in 43% of the cases. The problem
with this category derives from the two small plane segments in
the upper height class. The current approach eliminates those
plane segments during plane detection

The test area did not include any mansard and mansard
hipped roofs. We therefore processed 10 additional buildings from
another data set (Annecy, France) for each of these two types. All
5 mansard roofs were detected. Errors occurred with the mansard
hipped roofs in 2 of the 5 cases. The plane segments in such roofs
are at very similar pitches so that plane detection merges plane
segments when they should be kept separate.

Table 4. Evaluation of roof shape detection;

. Half Mansard | Saw-
Roof | Flat | Shed | Gable | Hip Hipped Mansard Hipped | tooth | Total
shape | roof | roof | roof | roof roof
Roof roof roof
Tol 6 | a [ 121] 2 | 7 0 0o | 2 |16
number
Detected
roof 14 12 112 2 3 0 0 2 145
shapes
Detection
rate (%) 88 86 91 100 43 - - 100 | 78

4. Conclusion

We propose a method for automatically mapping roofs and
classifying them into architecturally accepted standard types,
based on traditional digital large format color aerial photography.
This method relies on point clouds at 25 pts/m® extracted from
highly overlapping vertical aerial imagery, and on an image
classification using color and texture to delineate building outlines
and footprints. Experimental work in a Graz-test area with 186
buildings with 614 roof planes, results in correct roof planes in
92% of the cases. Small roof structures do confuse the analysis
and must therefore be detected and eliminated. This is successful
in 83% of all the test cases. Roof types get classified correctly at a
rate of 88%. LiDAR literature quotes its success with roof type
assignments at xxx%. Limitations exist with complex roof shapes
that include large dormers, or with curved roofs. However, those



difficulties are not specific to aerial photography and also present
themselves with LIDAR data. We may thus conclude that aerial
photography produces results at least as good as those from
LiDAR point clouds.

While we propose to continue with the development of roof
analysis work based on aerial photography, the experimental work
has revealed that some weaknesses exist in the proposed method.
These weaknesses from confusions with large dormers, or roof
gardens, or small differences in pitch angels of mansard hipped
roofs will be addressed. In addition work is needed with a wide
range of buildings in diverse areas of the World where
architectural styles are different from those in the initial test area
Graz. An initial look at French urban areas immediately shows
the strong use that is being made there of curved roofs. Snow-free
coastal resort environments may have various types of flat roofs,
historical small towns, alpine towns, urban cores with skyscrapers
and the urban fringe with its industrial zones will offer different
challenges.

We expect that a focus will be needed next on the analysis of
the detailed extrusions, sometimes intrusions, on roofs. These
concern chimneys, dormers, sky lights, terraces etc. Success with
those details will reflect back on an improvement of the roof
analysis and type assignments.
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