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Generating corner cases for crashtesting deep networks
Platon Jordan1,2,3 and Avrin Guillaume2 and Chan-Hon-Tong Adrien3

Abstract. Today, adversarial attack is almost the only kind of hard
samples considered by the community to tickle deep networks. How-
ever, such additive perturbations are not realistic for many applica-
tions (e.g. remote sensing).

This paper introduce a new kind of hard samples called corner
cases where the entire data is generated (not just a perturbation). This
allows to constraint more easily those data to be both hard but also
realistic.

1 INTRODUCTION
The performance of the machine learning algorithms can be empiri-
cally evaluated via test campaigns. Synthetically, a machine learning
module is a real continuous function f from a sample space X that
tries to approximate an unknown function y ∈ {−1, 1}, which can
be evaluated on some samples x drawn from probability P . So, the
probability of failure of the approximation of y by f is

Pf =

∫
X

|sign(f(x))− y(x)|P (x)dx

and, can be estimated using a testing dataset of samples x1, ..., xN
(using human annotator to evaluate y) drawn i.i.d. from P as mean
converges toward expectation:

1

N

∑
n∈{1,...,N}

|sign(f(xn))− y(xn)| →
N→∞

Pf

This is the fundamental principle of machine learning.
However, in real life, data from test campaigns are not really i.i.d..

Thus, such conventional testing approaches only allow to obtain a
coarse estimate of the operating environment of the targeted artificial
intelligence system.

This issue is not new at all. But, it is becoming critical with the
raise of deep learning (DL), which appears with [13] (see [14] for a
review). Indeed, DL has bring exceptional performance improvement
in many fields like computer vision, and, as the technologies matures,
the possible applications are becoming more and more diverse. DL is
already in production for many digital application e.g. [21], but, also
in industrial/medical application under expert supervision. The typ-
ical example is car with driving assistance where responsibility still
relies on the driver, but, where DL module handles critical decision.
And, there is growing evidence that society is asking complemen-
tary performance assessments for grey box DL applied in critical use
cases.

For example, today, there is a very large academic effort [5] around
performance assessments under adversarial setting [18] and about
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improving such performances [23, 3]. But, adversarial example are
just one kind of hard samples: [9] offers agnostic perturbation, [25]
tries to list major parameters which makes a sample hard...

Beside, hard samples are not equally realistic depending on the
application. An autonomous driving system will sooner or later face
adversarial example as a scrap of tape is sufficient to create an ad-
versarial traffic sign (and as there will malicious users). But, on the
other hand, a system working on remote sensing data may not as a
very large physical modification may be required to have an impact
on the system.

Starting from this point, we try in this paper to generate hard sam-
ples called corner cases designed to be realistic (i.e. within the orig-
inal distribution) before being hard. Importantly, we do not try to
generate realistic perturbation of a real sample (like in adversarial).
We try instead to generate a complete sample both hard but mainly
realistic (without requiring annotation).

Indeed, this paper provides a proof of concept on optical character
recognition which highlight the interest of this approach.

2 Related works

2.1 Evaluation issues

It is well known that canonical empirical evaluation is limited. First,
even in i.i.d. setting, bounding the gap between real and measured
error (i.e. the goal of PAC-learning [17]) is only possible with high-
but-not-1 probability [22], and, in practice bounds are too loose [8].
Then, canonical evaluation does not take into account bias (not i.i.d.
samples), dataset drift and hacking (change in P ), fairness... Thus,
there is a room for complementary evaluation based on test data gen-
eration and automatic scenario selection methods, including GAN
and adversarial approaches and/or formal method.

Formal methods (e.g. [10]) are interesting for some feature which
can be formally stated e.g. [12] could be used to prove some robust-
ness features. But, unfortunately, it is not possible to state formally
the global specification of a deep learning module otherwise there
is no need for machine learning (currently, for this reason, DL may
never be allowed in plane where critical software is required by DO-
178B/ED-12B [6] to be 100% compliant with formal specification).

On the other hand, tickling the targeted network with hard sam-
ples can provide an idea on some model features independently for
the possibility to formalize them. If those hard cases x are in the dis-
tribution (i.e. P (x) 6= 0), such hard cases can even improve (theoret-
ically) the estimation of the real accuracy via importance sampling
[2]. But, as P is unknown, these generated data will probably just be
used to provide additional evaluation. But, this may still be relevant
depending on the realism of those samples.



2.2 Adversarial examples

The main studied kind of hard samples against DL is today adversar-
ial example. An adversarial example is a perturbation ||e|| � ε such
that y(x)f(x+ e) > 0 while y(x)f(x) > 0 (this is an error because
y(x) = y(x+ e) as y is expected to be smooth).

One reason is that generating adversarial is trivial for DL. Indeed,
f depends on some weights w, and, training fw is just optimizing
w (using derivative) such that fw(x) ≈ y(x) on training samples
(for which y is known). But, the exact same method which allow
to compute the derivative according to w is able to compute the
derivative according to x making it possible to optimize x such that
fw(x) 6= y(x), eventually creating adversarial examples (see Fig1).

Figure 1. Classical way to produce white box adversarial.

2.3 Generative adversarial networks

Generative adversarial networks [7] (GAN) are usually used to create
new data instances because of their powerful representation ability.
GANs are based on an unsupervised learning task that involves au-
tomatically discovering and learning the regularities or patterns in
input data in such a way that the model can be used to generate or
output new examples that plausibly could have been drawn from the
original dataset.

objective of GAN is to learn a generator G and discriminator D
such that at the end of the training G is able to generate point G(s)
from random seed s, and, D is somehow able to filter point which
seems not drawn from P . Let say: D(x) is expected to be positive
if x is a real sample and negative if it is a generated one, and G is
optimized such that D(G(s)) > 0 for a large set of seed s.

2.4 Realistic adversarial example

In adversarial attack, one only requires ||e|| ≤ ε. For some norm
(or pseudo norm) and/or if ε is very small, such perturbation can be
invisible. But, structurally, there is only constraint on the norm of ε,
but no constraint on his realism. Thus, when ε is large and/or when
the norm is L0, adversarial example exhibits clear ”noisy” pattern: a
typical example is given in figure 2.

Over the years, several attack strategies using GANs had been im-
plemented typically in computer vision (x is an image) to tackle this
realism issue.

Figure 2. Example of adversarial images: it exhibits clear noisy pattern.
Figure from [19].

[24] AdvGAN employs GANs to create adversarial perturbation,
it adopts an image-to-image network architecture to learn the map-
ping from an original image to a perturbed output [11]. On the other
hand [1] propose a new variant of GAN training in the continuity of
AdvGAN but this time where the GAN is trained with an attacker.
It is based on two stages method. During the first stage, the attacker
guides the training of the generator; in the second stage, the attacker
is removed and the generator is encouraged to generate adversarial
examples similar to original samples. Both AI-GAN and AdvGAN
are applied in semi-white-box and black-box attack settings without
having knowledge of the defences in place but in each scenario but
requires input image sampled from the original distribution.

In this paper, we claim that a limitation of these works is to gener-
ate perturbation and not directly sample. A way to generate sample
directly is presented just bellow.

3 Realistic corner cases

The key claim of our method is that generating directly samples allow
to keep them realistic more easily while still allowing to focus on
hard one.

Obviously, as we generate x independently from any real sam-
ple x, we can not directly known if f(x)y(x) > 0 because y(x) is
not known (and it could not be annotated by an human as we are
considering massive automatic generation). Thus, we are not consid-
ering adversarial example. Instead we introduce the idea of corner
case: point x such that f(x) ≈ 0. Indeed, if f(x) = 0, then what-
ever y(x) may be, the point is not correctly handled (alternatively, it
could be seen as pair x1, x2 with ||x1 − x2|| � ||x1 + x2|| with
f(x1)f(x2) < 0: this is an adversarial pair independently of the
individual value of f(x1) and f(x2)).

Importantly, any continuous function f with positive and nega-
tive value has null one. So, any model f admit corner cases x with
f(x) = 0 (in some ways, even y does). But this is not an issue if
P (x) = 0 i.e. if these corner cases are not realistic. Now, as we are
just generating a sample x and not a perturbation e (which should be
added to a sample x), then, constraining x to be realistic is easier: it
can be directly implemented using a GAN framework (see Fig3). So,
given, f the targeted model and G,D a generator and discriminator
encoding P , it is possible to look for a seed s such that f(G(s)) ≈ 0
andD(G(s)) > 0 (D classifiesG(s) as realistic). Indeed, as weights
of f,G and D has been optimized during training, it implies that
derivative regarding weights can be computed, so, the same method
can be used to compute the derivative regarding the input. Thus, one
can consider the global loss: l(s) = α|f(G(s))|−D(G(s)) where α
is a tradeoff between hardness and realism, and, optimize s to min-
imize this loss (from random seed). Eventually, at the end of this
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Figure 3. Proposed method to generate realistic corner cases.

minimization, f(G(s)) ≈ 0 and D(G(s)) > 0.
If such seed s is found, it means that f admits realistic corner cases

(which is bad), otherwise, it means that f is robust (at least) to this
attack.

Thus, our approach is different from the state of the art mainly
as we do not generate a perturbation e of a sample x (which has
the advantage of knowing y(x)) but directly a sample x = G(s)
on which we impose both a realistic constraint D(G(s)) > 0 and a
hardness constraint f(G(s)) ≈ 0.

4 PRELIMINARY EXPERIMENTS
4.1 Dataset
In this preliminary experiments, we rely on the simple MNIST
dataset. MNIST is a classical computer vision benchmark composed
of 60000 grayscale 28x28 images of hand written digits from 0 to 9
(written white on a black background) with a frozen train/test split
(50000 train images) [15] .

Obviously, the simplicity of this dataset is not representative of
real word problems. Yet, this dataset is relevant for this proof of con-
cept for three reasons. First, using this dataset will allow better repro-
ductibility, and, it is easy to estimate the quality of produced images.

Then, accuracy on this dataset is known to be near 100% making
it relevant for considering corner cases which can not be detected us-
ing standard accuracy metric. Indeed, wondering about future use of
computer vision for critical function is urgent, but, computer vision
performances seems not sufficient today. Despite it is hard to know
performance of industrial autonomous driving system (e.g. Telsa,
Mobileye, Googlecar), today academic segmentation performances
on CITYSCAPE are not higher than 85% of IoU [4] making it use-
less to consider rare issues.

Finally, our overall pipeline is composed of a targeted CNN plus
a generator and a discriminator. Hard corner samples are expected to
be generated from a seed, classified as true by discriminator but clas-
sified with low confidence by the targeted CNN. But, if seed space
has very low dimension, generator will straightforwardly produce re-
alistic samples, allowing to remove the discriminator offering a sim-
pler and more stable pipeline. This is possible on MNIST which can
be scattered in 2D using simple autoencoding [16] (decoder is our
generator).

4.2 Implementation details
To simulate a targeted CNN, we just learn a VGG13 [20] on MNIST-
train. Performance on test are higher than 99% of accuracy.

We train a symmetric autoencoder on MNIST (without consider-
ing label) composed of 4 convolutional layers (for each encoder and
decoder). Image are projected in 2D by encoder.

Then, we combine the decoder with the CNN to perform our at-
tack. We rely on a simple gradient descent for optimizing the seeds.

4.3 Image visualisation
The goal of our attack is to produce realistic image hard for the tar-
geted CNN. In this subsection, produced images are displayed. Of
course, this does not provide information about the quantity of pro-
duced realistic corner cases. But, the present study aims at providing
a proof of concept. Attacking this particular CNN on this particular
dataset is not hard (MNIST is known to contain ambiguous data like
7 and 1 being hard to distinguish).

Figures 4, 5 display produced images during the optimization of
the seeds. It can easily be seen in figure 5 that some images are be-
coming more ambiguous during optimization.

Figure 4. Example of images generated with our attack

Figure 5. example of images generated during the optimization

In practice, only 50 gradient step (Adam, lr=0.001) were needed
to produce corner cases (confidence loses 2 order of magnitude). Due
to the simplicity of the dataset, around half corners cases are realistic
(as seen in the above figures).

Let stress that the attack presented here leads to some unrealistic
images (merging between digit or things that are not digit like seen in
figure 4). Discriminator is expected to filter such cases in general, but
here due to the simplicity of MNIST (embedding has only 2 dimen-
sions), it is even not required as a sufficient ratio of generated images
are realistic. Let stress the difference between the corner cases gen-
erated within the present study and adversarial examples like [19] in
figure 2: our corner cases may be realistic or not but in any case there
are not noisy like adversarial (at least [19] ones).
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Importantly, here performance of f is only 99% but the point of
this paper is that the offered algorithm could be applied on a criti-
cal module with very high accuracy (e.g. around 10−6) to look for
failures: finding even some failures can be an issue for critical sys-
tem but will be rather hard with classical evaluation (at such level of
performances).

4.4 Seed visualisation
As MNIST allows to scatter data in 2D (using the encoder), several
optimized seeds are plotted in Figure 6 (corresponding to the corner
cases of figure 4) plus the real code (from encoder) of some real
data. This allows to understand seeds optimization, and, validate that
seeds still remain around of real codes. We check the trajectory of
the optimized seed (input of generator). Currently, we though seeds
would tend to reach border between classes to form corner cases.
But, it is not: seed only move marginally. Yet, they still reach corner
case without exhibiting noisy pattern.

Figure 6. Real code and optimized seeds

4.5 Comparison with classical adversarial attack
To strengthen the statement that our attack produces less noisy sam-
ples (Fig.2) than classical adversarial attack (Fig.1), we compare
FSGM attack on images generated from a seed, and, direct modi-
fication of the seed (our attack).

The Fast Gradient Sign Attack (FGSM) is one of the most popular
adversarial attack method, it is described by [7]. As described in 2.2,
the attack adjusts the input data to increase the loss thank to gradient
backpropagation:

perturbed x = x+ ε ∗ sign(∇xJ(θ, x, y))

where x is the original input image, y is the label of x, θ represents
the model parameters, and J(θ, x, y) is the loss (typically a cross en-
tropy). Importantly, the training is based on the capacity to compute
∇θJ so computing∇xJ is possible too.

So, here, we sample random seeds and forward them in the de-
coder to get generated images (x = G(s)). Then, on one hand,
FSGM is performed in the image x = x+ ε∗sign(∇xJ) eventually
producing an adversarial-like sample, while, on the other hand, our
attack is performed on the seed (with s = s + ε ∗ ∇sJ

||∇sJ|| ) eventu-
ally creating a corner cases. Importantly, we have not the real label at

runtime, so we use ŷ is the predicted label instead of y in the FSGM
attack.

Figure 7 shows a comparison between outputs for ε = 0.25.
The example generated via a classical FGSM are noisy for large

raw decoded our seed attack FSGM on image

Figure 7. comparison between FSGM and our attack

ε, whereas the attack on the seed are not (it even tends to smoothen
the digits). This phenomenon is proportional to epsilon.

Importantly, we need to acknowledge that most corner cases are
not useful: in this experiment (where fewer gradient steps are per-
formed on the seed compared to 4.3), our attack produces realistic
and hard images in only 2% of times. Yet, from evaluation perspec-
tive producing hard sample is interesting even if the yield is low.
FSGM yield seems much higher, but, those adversarial images are
completely unrealistic.

5 CONCLUSION
Conventional approaches to evaluating the performance of automatic
image recognition systems based on test dataset, by calculating error
rates from sampled data, have limitations. Indeed, no guarantee is a
priori provided in today’s test campaigns as to the representativeness
(distribution of influencing factors similar to actual operating con-
ditions) and completeness (presence of rare events) of this sampled
dataset. Moreover, the annotation phase of the test data being costly,
it is not possible to expand the size of these databases indefinitely. It
is therefore useful, in addition to these classical evaluations, to use
test methods that do not rely on annotated data but contribute to char-
acterize the operating environment of these intelligent systems. The
present study proposes a proof of concept for the automatic genera-
tion of realistic corner cases from a decoder and a CNN trained on
the MNIST database. The encouraging results show the usefulness
of such an approach for the detection of CNN bugs in optical char-
acter recognition. Future work will be carried out to demonstrate its
usefulness for other applications (e.g. autonomous driving).

This approach could also benefit the learning phase of the system.
Indeed, the generated corner cases could be annotated a posteriori
in order to be re-injected in the learning base and thus extend the
operating environment of the system.
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