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Abstract 

The residential building is a major energy consumer and pollution source worldwide. The 

shift towards constructing energy-efficient buildings is impelling higher performance. In 

sustainable building, occupants become a major source of uncertainty in energy consumption. 

Yet, energy simulation tools often account for occupant behaviour through predefined fixed 

consumption profiles. Therefore, energy and buildings experts are in need for more precise 

methods for better forecasting the influence of occupants on the building performance. An 

activity-based framework for quantifying occupant-related energy consumption is proposed. 

The energy consumption is quantified per domestic activity as a function of households’ 

socio-demographic and economic attributes. The aggregation of such domestic activity 

energy consumption provides an accurate estimation of the household energy consumption 

per daily, monthly and annually periods. First, a literature review about residential energy 

consumption and the existing modelling approaches is presented. Second, a systematic 

breakdown structure of energy end-uses is proposed. The activity-based framework is then 

introduced. An application example is demonstrated together with simulation results. Finally, 

model’s utility is outlined and its possible implications are discussed. 

Key words: Energy modelling framework, simulation model, residential building, occupant behaviour, 

household profile, domestic activity. 
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1 Introduction 

The building sector is a substantial energy consumer and environment pollutant in most countries. It 

accounts for important shares, ranging between 16 and 50 percent, of national energy consumptions 

worldwide [1–4]. In order to reduce these consumptions and emissions and to promote sustainable 

development, authorities around the globe are thus establishing energy directives and regulations that help 

optimising building’s performance. Examples of these directives are the European “Energy Performance of 

Buildings” (or EPBD) and the latest French thermal regulation RT2012 [5]. Moreover, various energy 

efficiency labels and green building rating systems already exist worldwide, such as  BREEAM in the U.K, 

LEED in the United States, and BBC-Effinergie in France [6]. Such energy labels and certifications 

encourage the use of best practices and the development of energy efficiency solutions that go beyond the 

minimum requirements stipulated by standards and regulations. As a result of such norms and labels, 

building actors are tending progressively to construct energy-efficient and green buildings. This is also 

accompanied with new market expectations such as the “energy performance contracts” that impel 

constructors to deliver energy-efficient buildings and to guarantee  their performance level for a number of 

years [7]. As a result, a better comprehension and integration of building performance determinants into the 

design of buildings has become essential. At the same time and due to the deployment of smart meter, 

providing a solution for visualizing real time energy consumption is now a legal requirement. A better 

comprehension of such occupants’ behaviours is a promising way to engage occupants towards a reduction 

of their energy consumptions by the mean of nudges dissemination.  

The energy performance of a building is governed by various parameters, such as its physical characteristics, 

its external environment, its internal services systems and equipments, and most importantly the behaviour 

of its occupants [8–10]. Industrial energy simulation tools, such as Energy Plus, eQUEST, ESP-r and 

TRNSYS, focus primarily on the structural behaviour of buildings and their relations to specific 

environmental conditions while taking insufficiently the role of the occupants into account [11,12]. This 

simplification of occupants’ behaviour may leads to unrealistic energy estimates [11,13]. Therefore, energy 

and buildings experts are in need for tools that enable them to model more accurately the influence of 

occupants on the whole-building performance. Such models can thereby be used as complementary tools 

for existing industrial ones in order to provide more accurate estimates of residential energy consumption 

and accompany inhabitants towards the reduction of the energy consumption. Consequently, some design 

and technical solutions may be better adapted and energy performance contracts (guarantees) may be better 

adjusted. 

2 Literature review 

2.1 Occupants and residential energy consumption 

The residential sector consumes secondary energy, i.e. electricity and hydrogen produced from primary 

energy sources such as coal, natural gas, petroleum, nuclear energy and renewable energy sources, which is 

used by occupants for performing their domestic activities. Several studies pointed out the major end-use 

groups of secondary energy such as space heating, space cooling, domestic hot water, as well as appliances 

and lighting [14–17]. Building’s energy consumption is highly dependent on the performance of its systems 

and the general behaviour of the occupants [18]. According to Robinson [19], the most complex processes 

taking place within buildings are those that result from human behaviour. Authors such as Emery and 

Kippenhan [20], Masoso and Grobler (2010), and Guerra-Santin and Itard [21] also reveal occupants’ 

influence on residential energy consumption. Authors such as Page et al. [22], Robinson [19] and Wilke et 

al. [18] show that the influence of occupants can be modelled by their presence, the actions they perform 

(activities such as cooking, using light, etc.), as well as their interactions with the controls of inherent 

building systems designed for adjusting the indoor environment (e.g., lighting and HVAC).  



Occupant behaviour is considered as a substantial source of uncertainty in energy modelling since energy 

use can vary dramatically between different households [23–26]. Swan and Ugursal [15] reveal that 

occupant behaviour in residential buildings varies widely and can impact energy consumption by as much 

as 100% for a given dwelling. This variation is mainly due to the variability in occupant profiles. Literature 

confirms the high correlations between household attributes on the one hand, and domestic appliances 

ownership levels, their energy rating, and their use patterns on the other [27–29]. For instance, Yun et al. 

[30] affirm that household income is an important factor in determining ownership of air conditioning 

equipments. Barr et al. [31] explain that the environmental concern is the major determinant for the purchase 

of energy-saving appliances such as washing machines, cookers, and dishwashers. Pachauri [9] concludes 

that the total household income level may cause high variations in energy requirements across Indian 

households. Lutzenhiser et al. [32] confirm that household attributes such as income, education, family size, 

occupation hours, and household are highly influential on energy consumption. Guerin et al. [33] identify 

household income, age, education level, home ownership, desire for comfort, and energy conservation 

incentives as influencing factors. Similar variables are also reported by Nugroho et al. [34] and Santamouris 

et al. [35]. McLoughlin et al. [36] identify the number of occupants, disposable income, head-of-household 

age, tenure type, social group, education level, and appliance ownership as the most influencing factors on 

residential energy consumption. To summarize, considering the energy consumption of household in green 

or passive building is highly dependent occupants’ behaviors, appliances and devices and the way they 

interact each other, all the aforementioned factors are directly or indirectly (income, education, etc...) 

occupant driven.  

2.2 Modelling energy consumption in residential buildings 

A number of techniques and approaches have been developed to model energy consumption in residential 

buildings. According to Swan and Ugursal [15], these approaches are either top-down (econometric or 

technological) or bottom-up (statistical or engineering) approaches, where each of them comprise a number 

of scientific techniques [15,36]. To model occupant-related residential energy consumption, some 

researchers use sub-metering on measured data in order to derive representational loads of households’ 

energy use, and thus deduce estimates of buildings’ energy consumption. Authors such as Seryak & Kissock 

[24], Yohanis et al. [37] adopted such an approach. Although such frameworks can generate representative 

load profiles and provide some insights about occupants’ role in energy consumption, they do not depict 

occupants’ behaviour and preferences towards energy consumption. Another widespread modelling 

approach is uses of stochastic techniques for simulating occupancy patterns and various energy-load 

schedules. This second approach uses other source of information, namely the time use surveys (TUS), 

instead of using sub-metering data, The TUS are large-scale time-use surveys conducted at the national 

level, where each TUS record contains information on 24-hour period of activities of a given individual 

[38]. Then by applying stochastic techniques such as Monte Carlo Markov Chains (MCMC), daily activity 

patterns of energy consumption may be derived. Shimoda [39] uses data from 2000 Japanese Time-Use 

Survey (JTUS) to create typical occupant schedules for residential end-use energy simulations of Osaka 

City. Tanimoto [40] proposes a stochastic approach for residential cooling-load calculations. The same 

author develops later a method to simulate the load schedules for appliances, lighting, and hot water [41]. 

Richardson et al. [42] introduce a Markov-chain technique to generate synthetic active occupancy patterns, 

based upon time-use surveys in the United Kingdom. The stochastic model proposed by these authors 

provides a mapping between occupants’ activities (state) on the one hand and appliance use on the other, 

creating thus highly resolved synthetic energy demand data. In their results, Richardson et al. [42] find good 

match between occupancy profiles yielded by the model and real profiles taken from the TUS data. Based 

on this occupancy model, the same authors developed a lighting model and a domestic electricity demand 

model [43,44]. Widén and Wäckelgård [45] develop a high-resolution stochastic model of domestic activity 

patterns and electricity demand in Sweden. They identify nine different electricity-dependent activities such 

as sleeping, cooking, dishwashing, cloth washing, TV and others. The authors associate each of these 

activities to its corresponding domestic appliance(s). By defining load patterns for each appliance, they are 



capable to estimate the total electricity demand per household. The authors show that realistic demand 

patterns can be generated from these activity sequences. Muratori [46] and Wilke et al. [18] use 

heterogeneous Markov chains to model domestic activity patterns of individuals and to predict energy 

consumption of households. Subbiah [47] uses American TUS data for developing a disaggregated energy 

demand-modelling framework that estimates energy demand profiles based on individual-level and 

building-level energy-consuming activities. Subbiah [47] claims that his model can result in better results 

than other TUS-based models since it can account for interactions between household members and that it 

computes domestic activities at both individual and household levels.  

Other approaches stemming from artificial intelligence domain have started to be applied for modelling the 

dynamic aspects of energy consumption in buildings. Kashif et al. [13] propose a conceptual framework to 

simulate dynamic group behaviour by using an agent-based approach. The authors use this framework to 

predict the energy consumption of a household by simulating the interactions between inhabitants living in 

the same home. Quijano et al. [48] propose an agent-based simulation platform called SMACH (for multi-

agent simulation of human behaviour) for assessing the impact of the adaptive behaviour of various 

electrical appliances on the overall consumption of dwellings. The human agents imitating individuals’ 

behaviours are modelled from observations in the real world of some volunteer families. As concluded by 

Quijano et al.[48], the major limitation of their approach is that the different strategies have not been tested 

in a real environment and that it would be difficult to identify the activity of each individual at every 

moment.  

2.3 Research gaps with regard to occupant-related energy consumption frameworks 

Based on this literature review, a number of shortcomings of the existing models may be revealed. First, 

models in literature do not account sufficiently to household variables while quantifying residential energy 

consumption [49]. In most of the approaches, the only variable considered for representing households’ 

attributes is the number of occupants (e.g. Richardson et al. [43], Widén & Wäckelgård [45]). This means 

that such models cannot assess the variability of energy consumption between two households having the 

same number of occupants but of different income level. Secondly, there has been little published work for 

generating energy demand profiles with a very fine granularity, meaning at the level of individuals, which 

is an important aspect for depicting sharing phenomena of appliances and activities. For instance, if two or 

more individuals are watching TV at the same time, the energy consumption of the appliance must be 

counted only once. Thirdly, to the authors’ knowledge, none of the existing frameworks presents a model-

driven approach for quantifying energy consumption of domestic activities. Most of the published models 

are based either on monitored consumption data or on time use surveys, and therefore on correlations 

between occupancy patterns on one hand and appliance use on another. Therefore, as no explicit correlation 

between socio-demographic attributes and energy consumption (occupancy patterns and appliance 

ownership and uses), a reliable quantification of domestic activities and their yielded consumption as a 

function of occupants’ socio-demographic and economic attributes cannot be established through such 

approaches. 

2.4 Proposed modelling framework 

In this paper, we have demonstrated a bottom-up activity-based parametric modelling framework which is 

capable of forecasting energy consumption spectrums of a household as a function of its socio-demographic 

and economic attributes. A main novelty of the proposed framework is its capability to quantify energy 

consumption per domestic activity at a very fine granularity (domestic activity), at the level of a specific 

individual occupant and/or household. The modelling framework can thus be used to assess the variability 

in consumption values provided the diversity of households’ characteristics in order to refine household 

profiles in thermal simulations and energy consumption visualization data. 

In this paper, a systematic breakdown structure of energy end uses in residential buildings is first established 

in section 3.  An activity-based framework for modelling households’ energy consumption is then proposed 



in section 4. In the same section, an exhaustive inventory of energy-consuming activities is established, 

model’s ontology is introduced, and energy quantification mechanisms are presented. A direct application 

of the framework for one domestic activity is then proposed in section 5. The modelling procedure is 

presented and a sample of simulation results is given. Finally, framework’s features and its utility are 

discussed in section 6. 

3 Energy consumption breakdown in residential building - Scope of the 

research 

According to literature review, energy use of residential buildings may be divided into two categories of 

sources. The first category encompasses the energy used by indoor environmental-control devices and 

systems such as lighting, heating, ventilation and air conditioning (HVAC) that occupants use for adjusting 

their comfort levels. These devices and systems belong to the dwelling and are controlled by end-users. The 

second category however includes the appliances that occupants use for performing their daily living 

activities such as cooking, washing, and entertainment.  

In order to better represent these energy uses, we propose here a breakdown structure which segregates 

residential energy consumption at three levels. The proposed breakdown structure is illustrated in Figure 1. 

 

Figure 1: Systematic breakdown structure of energy consumption in residential building 

The first level is the building level, which comprises the end-uses of inherent systems and equipments 

installed for the general services of the building. These end-uses are: heating, cooling, ventilation, lighting 

(in building’s common areas in case of multi units building), and centralized domestic hot water in some 

cases. The influencing factors of energy consumption at this level are mainly attributed to building’s 

physical characteristics (altitude, orientation, insulation, wall type, etc.) and to the external climate 

(temperature, humidity, wind, etc.).  

The second and third levels of the structures represent the energy consumption due to occupants’ activities 

and their domestic appliances. The second level, corresponding to the dwelling level, comprises common 



domestic energy usages of occupants such as: lighting (inside dwelling), cold (refrigerators and freezers), 

personal heating and cooling (electrical), and other auxiliary equipments (e.g. internet boxes, routers, etc.). 

The consumption pattern of these end-uses is said to be transversal or diffuse. Some of them consume energy 

continuously (such as refrigerators) and others non-continuously (such as lights). Their use by household 

members is not associated to a major activity itself, but it is rather for getting a necessary comfort (e.g. 

visual) for accomplishing a set of domestic activities (e.g. using light for reading or for eating).  

At the third level, we position the energy consumptions due to major intentional domestic individual 

activities such as watching TV, washing dishes, and doing laundry. As shown in literature, energy use at 

this level is mainly influenced by occupants’ socio-demographic attributes and their lifestyle. An exhaustive 

list of these activities is established and presented in Table 1. Some activities may be grouped in so-called 

‘aggregated activities’ which are defined according to the daily life needs of household members. For 

example, the aggregated activity “Laundry” comprises three elementary domestic activities: washing 

laundry, drying laundry, and ironing laundry. These activities are characterized by their specific nature 

(shared or additive) and an activity Service Unit that allows to quantify the amount of activity that is 

performed. These two characteristics are defined and discussed in depth in section 4.4 and 4.5.  

As confirmed in literature, the energy consumption of end-uses such as heating, cooling, lighting, ventilation 

depends highly on the structural characteristics of the building. Nowadays, a good understanding of these 

end-uses has been established, and international regulations and documentations are settled. Their yielding 

energy consumption is thus modelled and simulated within energy simulation tools with a good precision. 

On the other side, energy consumption of domestic activities such as cooking, multimedia, informatics and 

others is still less explored [45]. In fact, energy consumption at the third level (occupant level) represents a 

major part of energy use especially in the case of green buildings and passive buildings for which systems 

at the building dwelling levels are optimized and become more robust and resilient. In addition, a main 

feature of these end-uses is their variability among different households due to their high dependency on 

occupant’s socio-economic and demographic characteristics [50]. Given these facts, the research work of 

the present paper is focused on modelling occupant-related energy consumption due to domestic activities 

(second and third levels). The energy use at the first level (building level) is excluded from considerations. 

Table 1: Detailed list of activities, needs and actions 

Need category Activity Activity’s service unit (SU) Activity nature 

House-caring 

Dish washing Total quantity of used dishes and cutlery/ week Shared and/or additive 

House cleaning Total surface to be cleaned (m2)/ week Additive 

Washing laundry  
Total quantity of  

used laundry (kg)/month 
Additive 

Drying laundry 
Total quantity of  

used laundry (kg)/month 
Additive 

Ironing laundry Quantity of laundry to be ironed (kg)/month Additive 

E.I.C. 

(Entertainment, 

Information and 

Communication) 

Watching TV channels 
Total duration of watching TV channels 

(min)/week 
Shared and/or additive 

Watching videos Total duration of watching videos (min)/week Shared and/or additive 

Playing video games 
Total duration of playing video games 
(min)/week 

Shared and/or additive 

Listening to music and radio 
Total duration of listening to music  

and radio (min)/week 
Shared and/or additive 

Playing music Duration of playing music (min)/week Additive 

Surfing on the internet 
Total duration of surfing on the internet 

(min)/week 
Additive 

Reading Total duration of reading (min)/week Additive 

Communicating Total duration of communicating (min)/week Additive 

Printing and scanning Number of printed and scanned pages/week Additive 

lf-feeding Eating Total number of taken foods/ week Shared and/or additive 



Food conserving 
Total quantity of food conserved in refrigerator 

and/or freezer (kg)/ week 
Additive 

Food preparing Quantity of washed aliments (kg)/ week Additive 

Self-care 

Hand washing Number of washed pairs of hands/ week Additive 

Bathing Total number of baths and showers taken/ week Additive 

Tooth brushing Total number of tooth brushing/ week Additive 

Shaving Total number of shaving/ week Additive 

Hair dressing Total number of hair dressing/ week Additive 

Go to toilet Total number of “going to toilet”/ week Additive 

Thermal Comfort 
Heating Heating duration (min)/ week Shared and/or additive 

Cooling Cooling duration (min)/ week Shared and/or additive 

Indoor Air 

Quality Comfort 

Ventilating Ventilating duration (min)/ week Shared and/or additive 

Air extracting Air extracting duration (min)/ week Shared and/or additive 

Air purifying and humidifier 
Air purifying and humidifying duration (min)/ 
week 

Shared and/or additive 

Visual Comfort Use lighting Lighting duration (min)/ week Shared and/or additive 

 

4 An activity-based energy consumption modelling framework of occupant-

related energy consumption 

An activity-based approach is proposed here for modelling occupants’ energy consumption yielded by 

domestic activities. Activity-based approach entails that energy consumption of a household is estimated 

through summing up the energy use due to different activities carried out. The proposed framework lies on 

two major hypothesis. First, activities in a dwelling must be enounced in such a way that they do not overlap 

on each other and the cumulative sum of energy consumed per each activity may be used to globally assess 

energy consumption of a household in a dwelling. Second, an activity quantity per household is estimated 

based on the activity quantities per individuals. For this point, cumulative summation may be assumed for 

a given activity but of course the sharing of activity or economies of scale may diminish this basic 

summation (e.g. for the watching TV activity). The structure of the proposed Activity-Based Energy 

Consumption modelling framework is presented as a UML class diagram in Figure 2, where its different 

objects are explained in the following section. The numbers on the edges represent cardinalities between 

model objects. For instance, the notation (1..*) indicates that an activity may have one or more 

corresponding actions. 

4.1 Characterizing occupant behaviour with regard to energy consumption 

Occupants perform domestic activities to satisfy their needs and well-being, such as house carrying, 

preserving and preparing food, supplying heat and light and maintaining health and sanitation [26]. Most of 

these activities require the usage of certain appliances that consume energy (electricity, gas, fuel) and water. 

We characterize occupants’ behaviour towards energy and water consumption through a need-activity-

action paradigm. The latter is inspired from the activity theory (from social sciences), which states that the 

human behaviour can be represented through activities [51].  

 

 



 

Figure 2: UML class diagram of the Stochastic Activity-Based Energy Consumption model 

This triplet need-activity-action characterizes a continuous interaction between occupants and their built 

environment. We first define the “need” as the true driver of human behaviour. Needs may be physiological 

or psychological and are satisfied through activities. Seven types of energy-use-related needs are identified 

in accordance with Maslow’s pyramid, such as house-caring and self-feeding (Table 1). An ‘activity’ is 

defined as a functional element performed by an individual or group of individuals in order to satisfy their 

daily living needs and well-being. For example, ‘washing laundry’ and ‘preparing food’ are two different 

activities (Table 1). An ‘action’ is the way of caring out an activity (response to how an activity is carried 

out). The action is a set of domestic intentional acts leading directly (by using a home appliance) or indirectly 

to energy consumption. For instance, two actions may be attributed to the activity ‘washing laundry’: (1) by 

hands, or (2) using a washing machine. Therefore, activities and actions represent the means by which 

occupants interact with their living habitat (appliances, building, and external environment). 

4.2 Characterizing households and individuals 

The way a household performs activities is influenced directly by the habits and lifestyle of its individuals 

as well as their personal preferences (for example: use of appliances, lighting levels, indoor temperature 

preferences, etc.) [29]. In this perspective, households’ variables such as size, composition, revenue, and 

life stage must be taken into account [52]. The attributes describing individuals and households, which are 

considered in the model, are chosen based on literature review and statistical studies. A household (𝐻𝐻) 

comprises one or more individuals living in the same dwelling and who can interact with each other and 

with the building and its systems. Each individual is characterized by a number of attributes (such as age 

and income), while the characteristics of a household are represented mainly by those of its reference person 

(RP) (Table 2). The definition of reference person (or household head) is widely adopted in scientific 

literature [31,36,53] and French national statistics [54]). The reference person is defined as the elder 

economically-active individual among household adults. The reference person is considered as the 

representative of a household’s socio-economic status. The list of attributes characterizing households and 

individuals is given in Table 2. To our knowledge, it is the first time that a so complete list of household 

characteristics is integrated into a forecasting model of energy and water consumptions of residential 

buildings. 

Table 2: Households’ and individuals’ attributes [54] 



Individual attributes Household attributes 

Age Household type 

Gender Number of adults 

Activity status Number of children 

Socio-professional class Household’s total income 

Education level RP’s age 

Income RP’s activity status 

 RP’s socio-professional class 

 RP’s education level 

The number of occupants is a major determinant of energy consumption in dwellings. Households with 

higher number of occupants logically show higher occupancy patterns and perform more energy-consuming 

activities, thus leading to higher energy consumption levels. The household type represents the structure of 

a family. The French population is classified into the five household types as shown in Table 3. 

Table 3: Household types [55] 

Household type Percentage share in the total population 

Singles 33,5 

Couples without children 26,1 

Couples with at least one 

child 
27,4 

One-parent households 7,9 

Composite households 5,1 

Total 100 

The age of an individual can exert a strong influence on energy consumption. Individuals perform different 

activities, purchase different equipments and have different comfort preferences according to their age. The 

French population is classified into different age segments as shown in Table 4. 

Table 4: Age categories of the French population  [55] 

Age Percentage share in the total population 

Less than 26 30,5 

26-35 12,3 

36-45 13,3 

46-55 13,6 

56-65 12,7 

66-75 8,6 

> 75 9,1 

Total 100 

The Activity/Employment status influences directly the occupancy profiles of household’s individuals, 

inducing thus a high impact on energy consumption trends. For instance, un-employed individuals and 

retired people are logically more present at home than working individuals, performing thus more domestic 

activities and consuming more energy. The activity/employment status is considered in the framework 

through five discrete values as shown in. 



 

Table 5: Activity and employment status categories  [55] 

Activity/employment status Percentage share in the total population 

Active-employed 51,3 

Active-unemployed 5,2 

Inactive (15 to 24 years) 9.1 

Inactive (>65 years) 19,9 

Other inactive 14,5 

Total 100 % 

Energy consumption is highly correlated to the social and professional class of households [30,35]. For 

instance, occupancy hours at home depend on individuals’ working hours and so do domestic activity 

patterns. The socio-professional classes of the French population considered in the framework are 

summarized in Table 6.  

Table 6: Socio-professional categories [55] 

Socio-professional category Percentage share in the total population 

Independent 8,6 

Senior managerial staff 15,6 

Middle level professions 23,1 

Clerical and service staff 29,2 

Manual workers 23,5 

Total 100% 

As for the education level variable, the French population is clustered into seven categories as in Table 7. 

Table 7: Education level categories [55] 

Education level Percentage share in the total population 

No diploma or CEP 26,2 

Junior high school certificate 6,8 

CAP (vocational training certificate), 

BEP 
20,3 

Baccalaureat, or equivalent 14,2 

Short-term higher education 9,4 

Long-term higher education 12,5 

Pursuing initial studies 10,6 

Total 100 % 

The income has an impact on equipment ownership and energy consumption levels. Some studies show that 

the higher income of a household, the higher the number of domestic appliances owned is [56]. Moreover, 

it may be hypothesized that households with higher incomes afford to consume more energy than those with 

lower incomes who are restrained by their budget, and thus tend to reduce their consumption. Income 

classification for the French population is given in Table 8. 

 

 



Table 8: Income categories per French individual [55] 

Monthly net income (Euros) Percentage share in the total population 

Less than 700 7,6 

700-1000  11,6 

1000-1500  20,8 

1500-2000  17,4 

2000-3000  24,9 

3000-4500  13,1 

More than 4500 4,6 

Total 100 

 

In addition to the preceding fundamental variables, an important intermediary variable is introduced, namely 

the ‘environmental awareness’. The latter represents individuals’ attitudes towards purchasing energy 

efficient appliances as well as their energy consumption patterns. People with higher environmental 

awareness levels are more conscious to sustainable development and more respectful to energy reduction 

policies. They possess mainly energy efficient appliances and they often try to limit energy squandering. 

Environmental awareness can affect appliance ownership levels as well as energy consumption behaviour 

of occupants. For instance, an energy-conscious individual would rather prefer to buy low-energy 

consuming appliances, and will apply certain energy-efficient habits such as turning off light when not 

necessary. Literature review and statistical studies have shown that the environmental awareness of an 

individual can be estimated as a function of three attributes: income, age, and education level [31,57]. The 

classification of environmental awareness levels is adopted from a French study which distribute 

environmental awareness into different levels ranging from 1 to 5 [57]. High environmental awareness 

(HEA) corresponds to levels 4 and 5, while low environmental awareness to levels 1, 2 and 3 (Table 9). 

According to Maresca et al. [57], the environmental awareness level of a given household is mainly 

influenced by three determinants: household’s total income, reference person’s age, and reference person’s 

education level. 

Table 9: : Environmental awareness levels (from Maresca et al. [57]) 

Level Environmental awareness  

1 Very little aware 

2 Little aware 

3 Moderately aware 

4 Enough aware 

5 Very aware 

4.3 Mapping household attributes to appliance ownership and characteristics 

The second part of the framework consists of establishing probabilistic relations between households’ 

attributes on the one hand, and the ownership of home appliances as well as their characteristics on the other 

hand. In literature, simple probabilities (conditional probability of one variable given another one) are 

adopted, however in our case, joint conditional probabilities (conditional probability of one variable given 

three others) are used in order to have more robust calculations. The formula used for calculating the joint 

conditional probability 𝑃 (𝐴|𝐷𝑖) of an event A given three (or more) dependant events 𝐷𝑖 ( i = 1, …, n) is 

adopted from [58] and presented in equation 1.1.  



𝑃(𝐴 | 𝐷𝑖 , 𝑖 = 1, … , 𝑛 ) =
1

1 + 𝑥
 ∈  [0 , 1] (1.1)  

With 𝑥 =  
∏ 𝑑𝑖

𝑛
𝑛=1

𝑎𝑛−1 ≥ 0  

and 𝑎 =  
1− 𝑃(𝐴)

𝑃(𝐴)
 ;  𝑑𝑖 =  

1−𝑃(𝐴|𝐷𝑖)

𝑃(𝐴|𝐷𝑖)
 , 𝑖 = 1, … , 𝑛  

First, the ownership rate of an appliance is estimated through a conditional probability as a function of three 

variables: household’s type, reference person’s age, and reference person’s socio-professional class. The 

marginal probability distributions are taken from a national French statistics [59]. An example of such 

probability distributions is given in table 10. Second, the energy-efficiency of an appliance is estimated 

through another joint conditional probability as a function of households’ revenue, reference person’s age, 

and households’ environmental awareness level. The marginal probability distributions are taken from 

another national study [57].  

 

Table 10: Appliance ownership rate (%) as a function of household type 

Appliances Appliances ownership probability as a function of household type  

 Single 

One-

parent 

family 

Couples 

without 

children 

Couple with one 

children or more 

Other 

households 

Refrigerator 99,4 100 100 100 100 

Freezer 76,3 88,9 92,8 94,7 88,7 

Micro-wave oven 76,1 90,5 86,1 93,7 87,6 

Cloth washer 87,5 98,8 98,5 99,6 93,5 

Dishwasher 27,2 46,6 63,8 72,1 42 

Color TV 95,3 98,6 98,8 98,7 97,8 

VCD, DVD player 69,7 88,4 87,6 95,4 83,8 

Landline phone 83,2 82,6 94,3 93,3 89,4 

Mobile phone 64 90,4 82,6 95,7 81 

Computer 45,8 77,7 63,1 92,9 68,8 

Internet 39 69,1 57,7 87,6 60,1 

4.4 Quantifying an activity  

The estimation of activity quantities per household and per individual as a function of their attributes is the 

major novel contribution of this work. In order to quantify a given activity, we define a quantification unit 

namely the ‘service unit’. This definition is based on the definition of the functional unit in Life Cycle 

Assessment (ISO 14044). For example, we define the service unit of the activity ‘washing dishes’ to be the 

total quantity of used dishes and cutlery per month, and that of the activity ‘washing clothes’ as the quantity 

of clothes to be washed per month. As pointed out earlier through model’s architecture (Figure 2), the 

quantity of an activity is disaggregated to both household’s and individuals’ levels as a function of attributes. 

The service unit of an activity is determined basically per individual. Then, the service unit per household 

is determined by aggregating the service units of all household members (Figure 3). This aggregation 

depends on the nature of the activity, whether it is a shared or an additive one. For the sharing case, data can 

be obtained either from nation-wide surveys or determined through meaningful heuristic logics which are 

further fitted to global national data of consumption. Moreover, the authors are collaborating with an 

industrial construction partner who is providing real monitored energy use of occupants. This monitoring 

data is therefore being used to validate modelling hypothesis, as well as to validate simulation results. 



4.4.1 Activity nature 

The nature of a domestic activity determines the quantification mechanism of its service unit. We distinguish 

here two types of activities: additive and shared (Table 1). An activity is said to be shared if its service unit 

can be shared by two or more household members. For instance, ‘watching TV’ is considered as a shared 

activity since, in most cases, family members watch TV together. Thus the total service unit of this activity 

at the household level is not the sum of all individual activities, but it is rather an aggregated sum with a 

percentage of sharing. Shared activities may also be carried out individually. On the other side, an activity 

is said to be additive if sharing does not take place. In this case, the service unit at the household level is 

equal to the sum of all individual service units. For instance, using computers, bathing and washing laundry 

are additive activities. It must be noted here that we consider the sharing and non-sharing as a function of 

the activity’s service unit, and not as a function of the appliance. In other words, people may share the same 

appliance for the same activity; however they do not share the service unit. A direct example of this is the 

‘washing laundry’ activity. The service unit of this activity is defined as the ‘quantity of laundry’ generated 

per household per month. In general, household members use the same washing machine at home, yet their 

service units are rather additive and not shared. This is because each individual uses his/her own laundry 

differently than others (different quantities, different changing frequency, etc.), where the total service unit 

for the household is the summation all the individual service units.  

 

 

Figure 3: Determining the service unit of an activity 

4.4.2 Cascading of service units between activities 

For the sake of convenience, different activity service units (SUs) may be expressed from a same or shared 

intermediary SU variable. For instance: 

- The number of breakfasts and lunch/dinner meals are two intermediary SU variables that allow 

calculating water and electricity consumptions used for the two activities: ‘washing dishes’ and 

‘cooking’, 
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- The weight of dirty clothes per week is an intermediary SU variable that can be used for calculating 

energy and water consumptions for the three different activities: ‘washing clothes’, ‘drying clothes’, 

and ‘ironing clothes’. 

In order to represent all these interdependencies among activities, a complete dependency framework of 

intermediate and final service units has been established. A detailed description is beyond the objective of 

this paper, yet a guiding example is given hereafter for the three laundry-related activities. 

Application example of the cascading/service unit network on the laundry activity 

We provide here a limited view of our SU (service unit) network. An example is taken on the aggregate 

laundry activity as illustrated in Figure 4: if a household washes a quantity of laundry (washing machine), 

a proportional quantity is thus expected to be dried (tumble dryer) and a part of this quantity to be ironed at 

home (iron). The service unit of the inheriting activity will thus be a function of its predecessors’. For 

instance, the service unit of the activity ‘ironing laundry’ can be plugged onto the activity ‘washing laundry’, 

without being obliged to start from zero. Some additional influencing parameters such as the percentage of 

laundry to be ironed over the total laundry quantity may also be considered.   

4.5 Determining energy and water consumption for an activity 

Given the probabilistic nature of the variables, Monte-Carlo technique is used to run simulations. At each 

simulation run, all random variables are re-initialized to determine deterministic values which are then used 

in the calculation. The number of simulation runs is determined according to the convergence of the results. 

During each simulation run, random variables are generated to calculate: (1) the ownership of appliances, 

(2) the environmental awareness level of the household, (3) the energy-efficiency of appliances, and (4) the 

appliance technology. The energy consumed by an activity for a given household, is thus calculated 

stochastically as a function of the service unit (which is the quantity of activity per duration unit) and the 

characteristics of the appliance (power rating, size, and technology) involved in the activity (sections 4.3 

and 4.4). 



 

Figure 4: Service unit interdependencies for the three activities concerning laundry at home 

One should notice that the model is of stochastic nature due to the probabilistic mapping established between 

household attributes on the one hand (taken as inputs) and the corresponding appliance ownership, appliance 

characteristics and power rating, and activity quantities on the other. Given this probabilistic nature, Monte-

Carlo technique is used to conduct simulations. Moreover, the model is capable of generating random 

households automatically (i), rather than being specified by the user as input. In addition, constraints may 

be defined on some (or all) household’s attributes in order to conduct specific consumption-variability 

analysis (ii). 

5 Application example of the framework for the activity “watching TV”  

5.1 Activity-based framework for the “watching TV’ activity 

In this section, a demonstration of the proposed activity-based framework is performed on the ‘Watching 

TV’ activity. A modelling framework for the subject activity is first established as shown through Figure 5.  
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Figure 5: Applying the modelling framework for the activity “watching TV” 

The procedure for estimating the energy consumption used by a given household for performing the activity 

‘watching TV’, is described through the following four steps: 

 First step: Determining the ownership rate (probability) of the television appliance. A probabilistic relation 

is established to estimate the ownership rate as a function of a household’s type, reference person’s age, and 

reference person’s socio-professional category. National statistical data are used for this aim. 

Second step: Determining the technology and power rating of the TV appliance. Televisions can exist in 

multiple technologies and energy ratings. National statistical distributions are used to attribute stochastically 

a given technology for the TV appliance owned by the household. Once the technology of the TV is 

determined, its corresponding power rating interval can be deduced from technical documents. During 

simulation, a power rating value is chosen arbitrarily from this interval. 

Third step: Quantifying the service unit of the activity ‘watching TV’. The service unit for this activity is 

defined to be the watching duration in minutes per day per household. First, service units for all household 

individuals are taken from national statistical surveys giving watching duration of TV per individual per 

day as a function of his/her age and socio-professional class [54]. Knowing that household members can 

watch TV simultaneously, a sharing coefficient of common watching durations must be taken into account. 

For the French population, a national survey gives sharing coefficients for the ‘watching TV’ activity as a 

function of household’s type as shown in Table 11 [54]. 

Table 11: Sharing coefficient for the ‘watching TV’ activity as a function of household type 

Household type Sharing coefficient per individual 

Single person 0 

One-parent family 0,51 

Couples without children 0,74 

Couples with children 0,71 

Others 0,57 
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Fourth step: Calculating activity’s energy consumption (for active and standby modes). Using the service 

unit together with the power rating of the appliance, the energy consumption yielded by the ‘watching TV’ 

activity can thus be estimated. Given the stochastic nature of the model, each simulation run will result in a 

different combination of variables, and thereby in different consumption values. The number of simulation 

iterations is adjusted according to the convergence of the results. Finally, the resulting consumption values 

are represented through a statistical distribution giving thus a ‘spectrum’ of electricity consumption yielded 

by the subject activity.  

In what follows, some simulation examples of electricity consumption for the ‘watching TV’ activity are 

presented. The simulations are conducted according to the aforementioned procedure presented earlier. 

Figure 6 shows electricity consumption distributions for five different (manually defined) households (HH). 

The box plots in this figure reveal how the consumption values can vary from household to another, where 

each box plot corresponds to a thousand simulations. For instance, the first household (HH1), which 

corresponds to a ‘single-person’ type, shows a median electricity consumption value of 2.5 KWh/week. On 

the other hand, the third household (HH3), which corresponds to a ‘couple with children’ family, shows a 

median consumption of 5 KWh/week.  

 

Figure 6: Simulated electricity consumption for the activity ‘watching TV’: Comparison of five different 

households 

Another example of simulation results for the activity ‘watching TV’ is given in Figure 7. In this example, 

a constraint is defined on the household type: only ‘couples with children’ families are considered. The 

simulation is conducted to assess variability in consumption values as a function of the number of children 

present in each household. It can be noticed from this figure how electricity consumption increases with the 

increase in the number of children.  



 

Figure 7: Simulated electricity consumption for the activity ‘watching TV’: Comparison of households 

with different number of children 

5.2 Simulation model validation 

To validate the model of the ‘watching TV’ activity, real measured data are taken from a national French 
study [60]. This study measures electricity consumption of television devices in 99 French households, 
where the households are chosen arbitrary without any constraints on their demographic and socio-
economic attributes. For validating the framework, consumption values are thus taken from the above 
mentioned study, and compared to samples of simulation results. This comparison is illustrated through 
Figure 8 for which 10000 simulation runs were performed. The similarity between both distributions is 
assessed through a Mann-Whitney Wilcoxon test., a non-parametric test that validates that a distribution 
is the same between two different groups, especially for independent and non-normal distributions. We 
run the test with a 95% confidence interval. The p-value resulting from the test is equal to 0.427. For 
Mann–Whitney-Wilcoxon test, this p-value indicates that the null hypothesis can be retained, meaning 
that both samples have the same distribution Results confirm the similarity of energy consumption 
distributions for activity ‘watching TV’ between simulation results and real data. These results give a clear 
validation of SABEC simulation model for “watching TV” activity. This first validation test succeeds to 
validate our simulation model. An additional campaign of measurements of households’ energy 
consumption is under progress. Results from this campaign will participate to go further into the validation 
step.  



 

Figure 8: Comparison of electricity consumption for the activity ‘watching TV’: Simulation results against 

real-data (99 households) 

6 Discussions, conclusions and perspectives 

In this paper, a bottom-up activity-based approach for forecasting residential energy consumption is 

proposed. First, a systematic breakdown structure of energy use is established. A detailed list of domestic 

energy-consuming activities is then proposed, where these activities are classified according to their nature 

(shared or additive). The activity-based modelling framework is then presented in details. In order to 

quantify a given activity, the notion of ‘activity’s service unit’ is introduced. Service units are measures of 

activity quantities per duration unit, and are consequently linked to energy and water demand at both 

individual and household levels. Activity’s service units can then be associated to the usage of one or more 

domestic appliances in order to predict energy consumption. The proposed activity-based approach can 

account for dependencies between service units of different activities. This is an important feature for 

modelling the total energy consumption yielded by all domestic activities as a whole. To account for the 

variability of household profiles, a fairly sufficient number of household an occupant driven attributes is 

considered. 

The modelling framework was then demonstrated through an example application for the ‘watching TV’ 

activity. The modelling steps are illustrated and a sample of simulation results is presented. These results 

for this activity are then validated against real-measured data coming from a national French study. The 

illustration of the framework through this example activity reveals the interest of our approach for building 

appropriate parametric and probabilistic consumption models from household profile attributes. The authors 

are collaborating with an industrial construction partner who is providing real monitored energy use of 

occupants. This monitoring data is therefore being used to validate modelling hypothesis, as well as to 

validate simulation results.  



As shown through simulation results, the model may be used to produce precise energy consumption 

intervals, per activity and per household. Moreover, the framework allows assessing energy consumption 

variability between different household profiles. Given these features, such a model may thus be coupled 

to industrial energy simulators to produce more accurate energy estimations with a reduced uncertainty 

[49]. This is a substantial point for addressing the growing market of ‘energy performance contracts’.  

Finally, the originality of our work is the decomposition of electro-domestic consumption by activities. 

This is of the utmost importance since occupants can and know how to regulate their activities. This 

model could be central to the development of a connected building approach, to the Internet of Things at 

the service of information and regulation of consumption. Although to date, we still do not have adequate 

technical resources for allocating consumption by activities, we can get ahead by calculating consumption 

by reference activities from the cloud data "for comparable family", develop visualization interfaces and 

offer occupants means to voluntarily de-consume (incentives, emulation by social network, diagnostic and 

support to action plan ...). 
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