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Strong solution for Korteweg system in bmo™*(RY) with
initial density in L*°

Boris Haspot *'

Abstract

In this paper we investigate the question of the existence of strong solution in
finite time for the Korteweg system for small initial data provided that the initial
momentum poug belongs to bmo;l(RN ) for T > 0 and the initial density po is
in L>°(RY) with N > 1 and far away from the vacuum. This result extends the
so called Koch-Tataru theorem for the Korteweg system. It is also interesting to
observe that any initial shock on the density is instantaneously regularized inasmuch
as the density becomes Lipschitz for any p(¢,-) with ¢ > 0. We also prove the

N
existence of global strong solution for initial data (po — 1, poug) € (B2fool(RN )N

Bfoo (RMYNL>®(RN)) x (Bf;l (RN))N. This result allows in particular to extend the
notion of Oseen solution (corresponding to particular solution of the incompressible
Navier Stokes system in dimension N = 2) to the Korteweg system provided that
the vorticity of the momentum poug is a Dirac mass adg with « sufficiently small.
IHowever unlike the Navier Stokes equations the property of self similarity is not
conserved for the Korteweg system since there is no invariance by scaling because
the term of pressure.

1 Introduction

We are concerned with compressible fluids endowed with internal capillarity. The model
we consider originates from the XIXth century work by J. F. Van der Waals and D. J.
Korteweg [25, 20] and was actually derived in its modern form in the 1980s using the
second gradient theory (see [8, 18, 24]). Korteweg-type models are based on an extended
version of nonequilibrium thermodynamics, which assumes that the energy of the fluid
not only depends on standard variables but also on the gradient of the density.

We are now going to consider the so-called local Korteweg system which is a compressible
capillary fluid model, it can be derived from a Cahn-Hilliard like free energy (see the
pioneering work by J.- E. Dunn and J. Serrin in [8] and also [1, 4, 13]). The conservation
of mass and of momentum write:

0

—.p + div(pu) =0,

ot

) (1.1)
a(pu) + div(pu ® u) — div(2uD(u)) + VP(p) = divK.
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Here u = u(t,z) € RN stands for the velocity field with N > 1, p = p(t,z) € Rt is the
density, D(u) = 3(Vu 4! Vu) is the strain tensor and P(p) is the pressure (we will only
consider regular pressure law). We denote by u the viscosity coefficients of the fluid. We
supplement the problem with initial condition (po,ug).

The Korteweg tensor reads as:

A
divK = 252pV(—\/ﬁ), (1.2)
N
where k(p) = "‘; is the coefficient of capillarity with x? € R*. The term divK allows

to describe the variation of density at the interfaces between two phases, generally a
mixture liquid-vapor. In our case it is also called quantum pressure.

We briefly mention that the existence of global strong solutions for the system (1.1) with
small initial data for N > 2 is known since the works by Hattori and Li [17] in the case
of constant capillary coefficient x(p). Danchin and Desjardins in [7] improved this result
by working with initial data (pg — 1, poug) belonging to the homogeneous Besov spaces !
BQ% X 32%71—1 (it is important to point out that BQ% is embedded in L*° which allows to
control the L norm of the density, it is even better since it implies that pg is necessary

a continuous function). In [16], it is proved the existence of global strong solution with

N N
small initial data provided that (po — 1, pouo) is in (By’y N L) X By, ' This result
extends [7] but does not allow to deal with general shocks on the initial density.

We wish now rewrite the system (1.1) using the formulation introduced in [2] (see also
the existence of global energy weak solution), we consider the following effective velocity
with ¢ > 0:

ve =u+cVinp, (1.3)

which enables us to rewrite the system (1.1) as follows when x? < p? 2 using the fact

that div(pVVinp) = QpV(%):

Op — cAp + div(pv.) =0
- s N
PO + pu - Vo — pdiv(pVu) — (u — ¢)div(p' Vo) + VP(p) — 2m1pV(7p) =0.

(1.4)
with k3 = k2 — 2uc + ¢2. We specify now the value of ¢ and we want to deal with a ¢
such that k7 = 0, we take now:

cr=p—p2—rk% and co = p+ /2 — K2

'In the sequel we will only consider homogeneous Besov space that we will note B, . even if they
are generally written B, with s € R and (p,r) € [1,+00]2. We refer to [3] for the definition of the
homogeneous Besov spaces and for the notion of product in the Besov spaces related to the so called
paraproduct. We will use the same notation as in [3].

*We will only consider this case in the sequel.




Setting now v1 = u+ c1VInp and vo = u + oV Inp , we have:
((Oip — c1Ap + div(pv) =0
I (pv1) + %diV(/wl ®v2) + %diV(pvz ®v1) — pA(pvr)
— V12 = k2Vdiv(pv1) + VP(p) =0, (1.5)
Oy(pva) + %div(pvl 2 v2) + %div(pw 2 01) — A (pva)
+ /12 — K2Vdiv(puy) + VP(p) = 0.

In this paper our main goal consists in proving the existence of global strong solu-
tion for the system (1.1) with minimal regularity assumption on the initial data. More
precisely since this system models a mixture liquid vapor with different density, we wish
to show the existence of strong solution for initial density pg belonging only to the set
L®(RY) (and in addition for initial density far away from the vacuum). In particular it
implies that our functional setting will include the case of initial density admitting shocks
what is also fundamental both in the physical theory of non-equilibrium thermodynamics
as well as in the mathematical study of inviscid models for compressible flow.

In addition we wish also to deal with momentum pgug exhibiting specific structure, typ-
ically we have in mind the case of initial vorticity belonging to the set of finite measure
in dimension N = 2 (we will recall later that there is such a theory for Navier-Stokes
equations and even explicit such solutions, the so called Oseen tourbillon). In order to
obtain such results, it seems necessary to work in space with minimal regularity assump-

N
tions. Typically the space B ?;1 with third index r = 400 is a good candidate for the
initial momentum pouyg.
To do this, let us now recall the notion of scaling for the Korteweg’s system (1.1). Such
an approach is now classical for incompressible Navier-Stokes equation and yields local
well-posedness (or global well-posedness for small initial data) in spaces with minimal
regularity. In our situation we can easily check that, if (p,u) solves (1.1), then (px,uy)
solves also this system:

pa(t, ) = p(N2t, \x) , up(t, z) = Au(\’t, \x) (1.6)
provided the pressure laws P have been changed to A2P.

Remark 1 It is very important to point out that since there is only a scaling invariance
up to the pressure term, we can not hope to show the existence of global strong self similar
solution for the Korteweg system. Indeed in comparison with the Navier-Stokes system,

we know that it exists global in time self similar solution provided that the initial velocity
N

ug s homogeneous of degree —1 (such initial data exists for example in the set Bgozl
with 1 <p < +00).

In particular in the sequel we will able to deal with initial data (po, pouo) such that py is
homogeneous of degree 0 and poug of degree —1, however the associated strong solution
will be a priori not self similar.

The previous transformation (1.6) suggests us however to choose initial data (pg,ug)
in spaces whose norm is invariant for all A > 0 by the transformation (pg,ug) —



(po(A-), Aug(X-)). A natural candidate is for example the space L>®(RY) x >l As
we mentioned previously this invariance was also used for the first time by Kato [19] to
prove that the Navier-Stokes equation is locally well-posed for arbitrary data in L™ (RY)
and globally well-posed for small initial data. Kato’s result was extended to larger scale
invariant function spaces (one interest of dealing with larger function spaces is that they
may contain initial data which are homogeneous of degree —1 and therefore give rise

to self-similar solutions), in particular in [5] Cannone, Meyer and Planchon proved the
N

existence of global strong solution with small initial data in Bpﬂ; ! with p < +00. A
similar analysis was carried out for the vorticity equation in Morrey spaces by Giga and
Miyakawa [12]. Finally this approach has been generalized by Koch and Tataru in [21]
when the initial data is small in BMO~Y(RY).

As explained these results allow to obtain the existence of global self similar solution
for small initial data when N > 2 for the incompressible Navier-Stokes equations. In
dimension N = 2, it allows in particular to prove the existence and the uniqueness of
the solution for initial data ug verifying curlug = adg or ug = a% with « small enough.
These solutions are the so-called Lamb-Oseen solutions which are self-similar. However
we have even an explicit formula for these solutions even when |«| is large, the Lamb-
Oseen vortex are given by:

curlug (t, ) = %G(%), U (t, ) = %Ug(%), reR? t>0, (1.7)
where: -
1 2
G6) = e 160 = 51— ). €2

with €+ = (=&, &1). In passing, we mention that the existence of global solution with
initial vorticity in the set M(R?) of all finite measures on R? was first proved by Cottet
[6] and independently by Giga, Miyakawa and Osada [12]. In [12], the authors proved
also the uniqueness when the atomic part of the initial vorticity is sufficiently small. The
uniqueness for any curlug € M(R?) is proved in [10], it allows in particular to obtain
the existence and the uniqueness of global self similar solution for large initial data when
N =2.

In this paper we are interested in adapting the technics of Koch-Tataru to the case of the
Korteweg system (1.5). More precisely, we wish to prove the existence of strong solution
in finite time for (1.1) provided that pov; (0, -) and pov2(0, -) are sufficiently small in norm
My o7l (BRY) for T'> 0 and when the initial density is far away from the vacuum and is

bounded in L* norm . We recall that bmo~!(RY) is the set of temperated distribution
up for which for all T" > 0 we have:

sup // ()] dyds) < +00.
xERN,O<t<T

We define the norm of || - Hbmo 1gyy by:

N

ltollymomtyy = sup / / (y)Pdyds)

xGRN,0<t<T



with e®ug be the solution to the heat equation with initial data wug:
T

ePuy = ug * ¢z with ¢(z) = m~2e 1 and de(z) =tV ( .

).
In the sequel we will denote by &r the space of temperated distribution associated to the
following norm:

o~ [ 1
lulle, = sup Villu(t, )llpee@ny+(  sup  t72 // |ul?(s,y)dtdy)?, (1.8)
0<e<T 2€RN 0<t<T 0 JB(z,Vt)

More precisely we will show pv; and puvg belong to Er for T' > 0 the time of existence and
that (p, %) is in L9 (L= (RY)). We recall that pv; = pu+ ¢1Vp and pvg = pu + c2Vp, it
. . . . 1 L.

implies in particular that Vp = m(pvg — pv1) and we deduce from the definition

of & that it exists C' > 0 independent on ¢ such that for all 0 < t < T we have:

IVp(tlzam) < = (1.9
Combining (1.9) and the fact that p remains in LS°(L°°(RY)) it implies that instanta-
neously the density p is regularized and becomes necessary Lipschitz even if the initial
density pp admits shocks.

The second point is that with our choice on the initial data, it implies that pgug is in
bmo}l. In other way we can work with Dirac mass adg for the initial velocity associ-
ated to the momentum poug in dimension N = 2 provided that « is sufficiently small,
it consists to prescribe the initial momentum as follows poug(z) = a% with z € R2.
It means that we can extend the notion of Lam-Oseen tourbillon to the case of the Ko-
rteweg system at least when « is sufficiently small. It is obvious that in this compressible
framework the divergence of such Lamb-Oseen tourbillon does not remain null all along
the time, this is due to the coupling between vorticity and divergence of the velocity.
Similarly we can combine vorticity vortex and divergnece vortex if we take the following
initial momentum poug(x) = a% + 041% with z € R? and |a/|, |aq| sufficiently small.

T

1.1 Mathematical results

In this section we state our main result.

Theorem 1.1 Let 0 < k2 < p? and N > 1. Let pg € L¥(RN) with pg > ¢ > 0 and
pov1(0,-), pov2(0,-) € bmo Y (RN). Then there exists T > 0 sufficiently small such that
there exists a unique solution (p, pu) of the system (1.1) on [0, T] provided that for ey > 0
we have :

10001.(0; ) lpmozt + 1P002(0, ot < €1, (1.10)
In addition it exists C > 0 such that:

1
loviller + llovaller + lollzge oo + 112 Nz e) < € (1.11)



Remark 2 [t is important to observe that the condition (1.10) implies that ¥V pg is small
in bmo L (RN) with the norm || - 1 when 0 < k% < p?. It is also interesting to
T

observe that there is no smallness assumption on py when k%> = p? since in this case
vpu1(0,-) = pv2(0,-). We deduce also on this case that pu(0,-) is not necessary small in
bmo~! but the smallness carries on the momentum of the effective velocity pv1(0, -) which
describes the coupling between the velocity ug and the density po.

Hbmo

Corollary 1 Let 0 < k2 < p? and N > 1. Let pg € L®(RN) with pg > ¢ > 0, assume
———b

that Vpo and poug are in D(RN) " then there exists T > 0 such that there ewists a

unique solution (p, pu) of the system (1.1). We have in addition the estimate (1.11).

We prove now a result of global strong solution with small initial data.

Theorem 1.2 Let 0 < k? < p%, p > 0, N > 2 and P'(p) > 0. We assume that
N N N
(po — p,uo) € (3227001 N By, NL>) x (Bzfool)N. There exists €9 such that if:

oo =7l - y ol y, << (1.12)

2,00 2,00 2,00

then there exists a global strong solution (p,u) of the system (1.1). In addition it exists
C > 0 such that for sy € (3,1):

[ (pv1, pva)|| - <C,

N g . N Hp— Pl
LOO(RﬂB;%;O l)ﬂLl(RJF,BQ]%]O:l) Hp P”

Loo(Rth;mBﬁo)le(R+,B§;103§;2)
[P = pll Lo mt L0 m)) < Ceo
s _
sup 2 [|(p(t, ) — p, pui(t,-), pva(t, )|l N 1451 <C.
teRT B

2,00

Remark 3 As previously, this theorem allows to prove the existence of global strong
Oseen solution provided that curl(poug) = ady with || small enough in dimension N = 2.
When k% < p? it would be possible to extend this result by working with Besov spaces
constructed on LP Lebesgue spaces in high frequencies as in [14] for compressible Navier-
Stokes equations.

2 Proof of the Theorem 1.1 and the Corollary 1

2 _ 2

We are going now to prove the Theorem 1.1 in the case 0 < xk? < u?. The case K I

is similar except that v = v1 = v9 and we apply the estimates in bmo:;1 on puv.



From (1.5), we observe that we have for ¢t > 0, Q = V(A)~ldiv and P = Id — P

t
p(t, ) = e“1t? pg —/ e =) div(pv; )ds,
0

1 t

Ppuy(t,-) = e"*AP(pv1 (0, ) — 2/ eH=)AP(div(pv; @ vg) + div(puy @ v1))ds,
0
1 t

Ppuy(t, -) = e AP(puy(0,-)) — 2/ eM=IAP(div(pv; @ v) + div(pvy ® v1))ds,
0

t
Qpui(t,-) = e 2Q(pv1 (0, ) — / e U=IAQ(F (p, v1,v2)(s))ds,
0

t
Qpua(t, ) = e 2Q(pv2(0, ) — /0 1 =IAQ(F(p, w1, v)(s))ds,

with:
Flp,v1,02)(s) = 3 (div(pvr @ vs) + div(pez © va))(5, ) + VP(p(s, ).

We are going now to work in the following space:

1
1oy 1,02l = llpviller + llpvaller + (o )l @),

for T small enough.We observe in particular that for any p € L (L>®(RY)) we have:

lomller < lpllLge (oo @y Imller- (2.13)

We shall use in the sequel a contracting mapping argument for the function v defined as
follows:

ecltApo

U(p, pui, po2) = [ eAP(pv1(0,)) + €22 Q(pv1 (0, -))
M AP(pva(0,-)) + e AQ(pw2(0, )
" et =9)Adiv (puy)
- / Tert=9AP(div(pvy ® ve) + div(pve ® v1)) + e2EAQ(F(p,v1,v2)) | ds.
0 %e“(t_S)AP(div(pvl ® v2) 4 div(pvy @ v1)) + e EDAQ(F(p, v1,v2))
(2.14)
More precisely we want to prove that 1 is a contractive map from Eg a7 to Eg v, with
R, M > 0:

Er e = {(p, pv1, pv2) € LF(L®(RY)) x & x Ep/

1 N (2.15)
pz g onl0,T]xRY, llpviller + llpvaller < 2R, lIpll gz @y < 2llpollze}
Er v, is endowed with the following norm:
1
1(ps pv1, p02)l B g0 = [1(PV1, pU2) |7 + BHP”LL}"(L‘X’% (2.16)

with 8 > 0 sufficiently large that we will defined later and Er y/,7 is a Banach space.
Let ¢ > 0, we know that it exists C' > 0 (depending on ¢) such that for all 0 < ¢ < T we



have (see [22] p163):

t
H / =) 2Pdiv(v ® w)dslley < Ollo]leslwlle
0 (2.17)

t
H / =92 Qdiv(v ® w)dslle, < Ollo]ey lw]ley-
0

Similarly we have (see [21]) for C,C; > 0:

t
H / AT P(p)(s, Vds]le,

1 t
< C( sup t|P(p)(t,")||z=+  sup N/ / |P(p)(s,y)|dsdy) (2.18)
0<t<T 0<t<T,zeRN t2 J0o JB(z,V/1)

< C1T(|P(p)|| s (oo (V) -

We deduce from (2.17), (2.13) and (2.18) that it exists C' > 0 such that for any 7" > 0
we have:

1(¥2(p, pv1, pv2), ¥s(p; pv1, pr2))llez < C(lloov1(0, ) llpmozt + 1P0v2(0, ) 071
1 (2.19)
o e lloviller lovaller + TIIP(P) Lo (roo () -

Let us estimate now the L norm of (¢1(p, pv1, pv2) , we have then for any

1
! ¢1(P’PU17PU2))
t € [0,7] and using the maximum principle:

t
[41(ps pv1, pv2)(t, )L < [lpollze + H/ e =98 div(pvy )ds|| o
0 (2.20)

t
G1(ps por, pr2)(t+) > min po(z) — | / eI diy (pvy )ds|| o
z 0

We have then using integration by parts and for 0 < ¢t < T it exists C,Cy,Co,C3 > 0
such that:

|z —y|?

t t
1 _
| / et (=8 div (pv)ds| < | / / ¢ 0 div(por)(s, y)dyds|
0 0 JRN (4017T(t—5))3

2
|

t _
1 — _lz—y
Sc// N1 ik TR |pv1(s, y)|dyds|
0 JRN (47T61(t — 3))7+§ 4cq (t — 8)

T A L a5 s (5, e (221
<O e 4t—s 1||pv1(s,-)||Leeds
0 Vt—s (47r(t—s))% 4t — s) -

L |
< Osyl|pv ———ds
= 2”:0 1||5T/0 \/m\/g

< Csllpoiler-

We deduce now from (2.20) and (2.21) that for C' > 0 large enough we have for ¢ € [0, T']:

{ 14100, pr1, po2)(t, )L < lpollze + Cllpviller

. 2.22
1 (p, pur, pua)(8,-) > min po(z) — Cllpvi ey (2:22)
zeRN

8



Let us prove now that for M, T, R well chosen, we have:

Y(Er M) C ERMT- (2.23)

Taking i; = £ and R such that 2CR < min(§, [0l oo mrvy) (With €' > 0 defined in
(2.22)) and where min cpn po(x) > ¢ > 0, we deduce from (2.22) that for any ¢ € [0, 7]
and for any (p, pv1, pv2) € Eg aa1:

[¥1(p, po1, po2)(t, )L < 2lpo]| =
¢ 1 (2.24)

t)>S=
¥1(p, put, pu2)(t,-) > 5=

Now we deduce from (2.19) that we have for any (p, pv1, pv2) € Eg pr and Cp > 0 large
enough:

1(¥2(p, pv1, pr2), ¥s(p; pv1, po2))llez < Cr(llpovi(0;)llpmozt + 100020, ) ot

(2.25)
+AMR? + TMy).

We set now R = 4C (|| pov1 (0, -) Hbmo;—l—HpoUg(O, -)||bmo;1) and My = SupPgc(0.2]po|| o] £ (2)-
Now choosing R such that 4C; M R? < g and T such that C1MT < % we deduce from
(2.25) that we have for any (p, pv1, pv2) € Er m s

1(h2(p, p1, pv2), 3(p, pr1, pv2))llez < 2R. (2.26)

Fr In conclusion we have chosen R and T such that:

min(g, || poll oo ) 2 R
< " R< d T<—*_ 2.27
= 20 =320, M T S uom (2:27)

with R = 4C4((||pov1 (0, )||bm071 + || pov2(0, )Hbmo 1). We deduce (2.23) from (2.24) and

(2.26). It suffices then in practice to take T < 4C 37 With R = min(45, 3201)

Let us prove now that 1 is a contractive map. More precisely let us estimate ||1(p, pv1, pva)—
Y(p1, prwr, prw2)|| pg v With ((p, pv1, pu2), (p1, prwt, prws)) € Egar. We have then:

Y(p, pv1, pv2) — Y(p1, prws, prws) =
¢ e (=92 div(prw, — puy)
/ et AP (Fy (py, prwy, prwz) — Fi(p, v1,v2)) 4 e2UD2Q(F (p1, prwy, prwa) — F(p,v1,v2)) | ds.
0\ et=98P(Fy (p1, prwn, prws) — Fi(p, v1,v2)) + e I2Q(F (p1, prws, prwa) — F(p, v1, v2))

(2.28)
with: .
Fi(p,v1,v2) = i(div(pvl ® v9) + div(pvy ® v1)).
Now we have:
div(pv1 ® v2) — div(prw; @ we) =
o | L (01— 1)
d1v(;(pv1 — prwi) ® pvg) + div(prw; ® (pvg — plwg);) + div(prw ® prws T)
(2.29)



From (2.17) and (2.37), we deduce that for C, C; > 0 large enough and for any (p1, p1w1, prw2),
(p,v1,v2)) in Ep arr we have for C,Cy > 0 large enough:

t
I [ 22 (o1, prion prun) — Fa(p.on, ) sl
0

1
< CH;”L%"(LW)(HPW — prwilepllpvaller + llov2 — prwsllerllp1wi e,
. (2.30)
+ |!le1||£Tlew2H£THHHL%O(Loo)HP = pillse ey + lpv2 — prwsallesllpville,

+ [lpv1 — prwi ez lp1wa| ;)
< C1M(R+ MBR?)|(p, pv1, pv2) — (p1, prw1, prw2) | g .

We proceed similarly for the part || fg e (=)AQ(Fy (p1, prws, prws) — Fi(p,v1,v2))ds||e,
with 4 = 1,2. Similarly from (2.18), we have for ¢ = ¢1,co and C' > 0 large enough:

t
I [ e3P (o) = Plor))dsle, < CTIP() = Ploo)le woay

< CMTB|(p, pv1, pr2a) — (p1, prwt, prwe) | Eg ar s

(2.31)
with My = SUPw[0.2]po | oo ()| |P'(x)]. From (2.28), (2.37), (2.30) and (2.31) we deduce

that it exists C' > 0 sufficiently large such that:

1¥2(p, pv1, pv2) — ¥a(p1, prwi, prwa), ¥3(p, pui, pv2) — ¥3(p1, prwr, prws)||e,

(2.32)
< CIM(R + MBR?) + MyBT]||(p, pv1, pv2) — (p1, prwt, prw2) || Bp ar s

From (2.21), it yields that for C' > 0 large enough:

1 C
BH%(,O, pv1, pv2) — P1(p1, prwt, prwz)|| s (Lo (r)) < EH(Wl — p1w1)|ler (2.33)
Combining (2.32) and (2.33), we deduce that we have for C' > 0 large enough:

1 (p, pv1, pv2) — P (p1, prwe, prwa)|l ey

2 1 (2.34)
< C(M(R+ MBR?) + MyST + 5) [(p, pv1, pv2) — (p1, prawt, prw2) || Ex arr
It suffices now to choose 3, T and R such that:
1
C(M(R+ MBR?) + MBT + —) < 1 (2.35)

8

It proves in particular that the map v is contractive and it concludes the proof of the
theorem 1.2.

: ey bmo T H RV )N
Let us prove now the corollary 1, if pov1(0,:) € (D(RN))N then we can
observe that:

li tA : =0. 2.
Tlglolle pov1(0,-)|le, =0 (2.36)

10



Indeed assume that wy € (D(RY))" then we have using the maximum principle for the
heat equation:

1 t
el < ol s e [ dads
0<t<T,zo€RN t2 JO JB(z0,V%)
< Tlw||gee.
By density we can conclude. In particular it implies that for 7" > 0 small enough we

have:
€2 pov1 (0, )l + ll€" pov2(0, ) lley < €1. (2.37)

Using the proof of the Theorem 1.1), we conclude that there exists a strong solution (p, pu)
on [0,7]. Indeed it we follow the previous proof, it suffices to fix R and T sufficiently
small and verifying the previous estimate. By density it exist wy € (D(R™))¥ such that:

R
€™ (w1 — pov1(0,)[|ey < [lwi — povr (0, Weomozt < 7

Now we choose T} < T sufficiently small such that:

A
[e" 2w e, < 5

We have now:
e pov1 (0, ) ey, < R,

and R, T; verifies the estimates of the proof of the Theorem 1.1.

3 Proof of the Theorem 1.2

In order to prove the theorem 1.2, we are going to start by studying the linear system
associated to (1.5):

0yq — cAq + divm = F
{ iq — cAq + divim (3.39)

om — uAm — aVdivm + fVq = G,

with ¢ >0, >0, p+a > 0and g > 0. In the sequel we will note W, , o 3 the semigroup
associated to the previous system and we have in particular from the Duhamel formula:

( . > (t,) = Wepia,8(t) < gfo > +/0t Weias(t = 5) < g > (s) ds. (3.39)

This system has been studied by Bahouri et al (see [3]) in the framework of the Besov
space Bj; when ¢ = 0. We are going now to extend this study to the case of general
Besov space of the form Bj,. Setting:

d = A"divin and Q = A" tcurlm,

11



with by definition KS\f &) =|¢ |Sf(§) when a € R and for f a temperated distribution,
we will study the following system:

Oq—cAq+Ad=F
Od — vAd — fAqg = A7 divG (3.40)
9 — pAQ = A LeurlG.

with 7 = (u+ «). We refer to [3] for the definition of the Chemin-Lerner spaces E%(B;,T)
with (p,p,7) € [1,+00]3, T > 0 and s € R.

Proposition 3.1 Let T € (0,+00]. We assume that (qo,uo) belongs to B;;’S X (BS’;)N
with the source terms (F,G) in E%(B;fl N B3 ) X (E%(BS’OO))N.

,O0

Let (q,u) € (LFP(Byot x Bsoo) N LE(Bstl x Bst2)) x (LF(Bso) n Lh(B3E)Y be a
solution of the system (3.38), then there exists a universal constant C' such that for any

T > 0 we have:

(3.41)

Proof: Let (¢,m) be a solution of (3.38), we are going to separate the case of the low and
high frequencies, which have a different behavior concerning the control of the derivative
index for the Besov spaces. Our goal consists now in studying the system (3.40) and in
particular to estimate (¢,d) and 2. We observe that € verifies simply an heat equation
and classical estimates on the heat equation in Besov spaces give (see [3]):

1 750 (3 )nEp(mst) < CUIN By + G 7y (55 (3.42)

Let us study now the unknowns (g, d).

Case of low frequencies

We assume here that [ € Z with | < [y (we will determine later |y € Z). Applying
operator A; (see [3] for the definition of A;) to the system (3.40) and denoting g; = A;g,
we obtain the following system:

d
prAd + cA?q + Ad; = F},
(3.43)

%dl + ﬂAzdl — BAq = G.

We set:
1= Bllallz + ldil7-- (3.44)

Taking the L? scalar product of the first equation of (3.43) with ¢; and of the second
equation with d;, we get the following two identities:

1d

5%”%”%2 + (Adlv (_Il) + CHAQlH%? = (Ea Ql)7

1 d (3.45)
5%”@“%2 + 0| Ady |72 — B(Aqi, d;) = (G, dy).

12



We deduce that:

5S04 (BellAallze + PIAGIZ) < Gl 2l e + IRl el (3.46)

From the definition of f12 we deduce that it exists a1, C > 0 independent on [y such that:

5 oI+ a2 i < CR(IGH e + | Fil2). (3.47)

We have in particular for [ < ly:
1d 2 3.48
s g ft t a2 fi < C(lGillzz + (| Fill2)- (3.48)

Case of high frequencies

We consider now the case where [ > [y + 1 and we define now f; as follows:
2
17 = 1Aql7: + Alldi||72 - E(A%dl%

with A > 0 to be determinated. We apply the operator AA; to the first equation of
(3.40), multiply by Ag and integrate over RY, so we obtain:

1d

5 arllAalEe + A% + (A%, Aq) = (AR Agy). (3.49)

Moreover we have in a similar way:

||leL2 + U||Ad)||32 — B(Aq, dy) = (G, dy).

2dt
d
dt(A(H’ dp) + [|[Ad)]|Z2 — BllAqi||72 + (¢ + 2)(A%d, Aq) = (AF},d) + (G1, Aqy).
(3.50)
By linear combination of (3.49)-(3.50) we have:
2 1 B
S 2Nl + (47— — )il + T Aal - A5(Aa, ) 1)
3.51
1 1
=T ﬁ(AFl,dz) - m(GuAQl) + (AFbAQZ) + A(Gy, di).
We have now in using Young inequalities for all a > 0:
a 2 1 2
(di, Aqr)| < S l[Aaql72 + %HleL%
1 B8 AaB AB
SRR N+ (47 - ) I + (o = S Al — 5l
1 1
< _c—i— D(AFl;dl) - m(leAQI) + (AFy, Aqy) + A(Gy, dy).
(3.52)
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We have now since [ > [y + 1 for ¢; > O:

B AaB

]. 1 AC]_IB
thfz +cl[Aq|72 + (AD — P 2720 )HAleLz + (? - 7)”A ill72
1
< — AR, d) — —— (G, A AF A A(Gy, dy).
= C+17( 1y l) C+l7( 1y QI)+( 1y QI)+ ( Iy l)
(3.53)
We choose now a, A and [y as follows:
1 1
Ap = QMJ B - — Aajp >0, Av — — —2—250@ > —, (3.54)
c+v c+D 2 c+ v 2a ~ 2(c+ D)

with M > 1 sufficiently large to determine later. Now from the definition of f12 and using
Young inequality, we have:

1 2M 2 2M 2

ZIA 2 o 2 < 2 ZIA 2

180l + (o5 — oIl < A7 < SIAal + Gy + g Ml
(3.55)

We choose now M sufficiently large such that % — ﬁ > % Using (3.53) and

(3.55) we deduce that there exists constants ae > 0 and C7 > 0 such that for [ > [y + 1
we have:

1d

st T2 17 <CLAR 2 + Gill2)- (3.56)

It yields that:

g it 2 i < G + Gl ). (3:57)

Final estimates

Integrating over [0, ¢] the estimates (3.48) and (3.57) and multiplying by 2!~ we have
for Cy > 0 large enough and any [ € Z:

215-1) £y (1) + min o, az)22° / o) (3.58)
0 3.58

1
< 510 + GGl ggy + 1FUl 71 B 2rms 1)

From the definition of f; we deduce the estimate (3.41) using in particular (3.55). It
concludes the proof of the proposition. O

Let us study again the system (3.38) and applying div to the momentum equation,
we have:

(3.59)

0rq — cAg + divim =0
Odivm — vAdivm + fAq = 0,

We assume now that u,c,v, 8 > 0 and v # ¢. The only case where v = ¢ will be in the
sequel the case k2 = 2. We will study this case later.
When we apply the Fourier transform F, we have then:

]:< m > (t,6) = e“‘(f)f< a0 > 3 (3.60)

mo
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with: |£‘2 .
o C
A0 = <—B!£\2 ma?)

The characteristic polynom is:
Pye)(X) = X = Mg (e +v) + evlg]* + B¢
The eigenvalues are:

o if ¢]2> 25

o2

)\lh( ) "5‘ ((V+C ’—I_ ’V C|\/ |§’2)

Aan(6) = 5161 +0) v - c|\/ o)

o if ]2 < 2

o

wi(©) = 51¢P (v + o) +iru—c\\/@_‘f§2,§‘2 1)

ha() = IR+ ) =il - M(_“fm - 1),

High Frequencies
When |¢£]? > @ ﬁ)Q we have:

(b Jeo=ro (" o) @erF=( 40 Ve s

with:

—2 -2
P) = <|s2(c—u—|c—u|a<s>) 5|2(c—v+c—ua<s>)>

1 1

B ! 2( : )
PE) =D (1 e (emvrloriat® )

lc — v|a(§) |£|2(07V7‘c,y‘a(g))

We have denoted a(§) by a(§) = /1 —

()60 = g

%. Finally we get:

—2e~tM1n(8) 2e "t 2n(©) L (o—tAan(§) _ p—tA1n(§)
€2 (c—v—le—vla(®) | €12 (c—rtle—vlale)) e (€ ¢ )
e~ tAn() _ o—tAan() 2e="M1n () _ 2e~*2n(O)

62 (c—vtle—vla(©) 62 (c—v—le—vla())

o ( dig?no ) " (3.62)
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It yields then:

— 1
Fq(t,&) = (e7Mn®) — e=thn(®) seu(c —v) V)]-"q + 5~ Fdivin
1
+ 5(6*0\2}1(5) + e*t)‘lh(é))}"qo(f)
. _ _ B sgn(c—v) __ .
Fdivm(t,€) = (e tAan(€) _ g—tA1n(€) —=Fq (&) + ———=Fdivmg(&
(&) = ( )(!C—Vla(é) 0(§) 20(E) 0(€))
+ %(e‘t’\%(g) + e~ n(8) Fdivimg (€).
(3.63)
Low Frequencies
When [£]? < % we have:
—tA11(§) 0
q _ e -1 q0
(gt ) e =P ()7 o) (G Y. o
In addition if we denote a1(§) = 4/ % — 1, we have:
-2 -2
Pi(e) = [ IR (c—vile=vlar(©))  1¢2 (c=vtile-viar(©))
1 1
Bi 1 2
_ 1 2(c—v+i|e—v|a
(AU = @ (1 S 1(5)))
€12 (c—v—ile—v]on (©))
Finally we have:
q pBi
F t,&) =
()09 =g
e tA1(8) 2e~t*21(6) L (o=thai(§) _ ,—tA1i(€)
+ e e
€12 (c—v—ile—v]ar(e))  [¢[2 (c—vtile—vlaa(€)) glee )
e~ tAu(8) _ o—tAu(f) 28 _ 2e” 221 (6)

€2 (c—vtile—vla1(9)) g2 (e—v—ile—vlai ()

X f( dig(r)no > (&)

(3.65)
We obtain finally:
o) _ o~y Senlc —v) 1 .
Fq(t,8) =i(e e )( 200 (@) Fao(€) + |§|2|C_V‘a1(£)}"d1vmo(§))
n %(e*w@ + e ) Fao )
; i) _ @y B sgn(c —v) . .
Fdivm(t, &) = i(e e )(]c—u|a1(§)]:qo(§)+ 20m(8) fdlvmo(g))
n %(e—tma + e Fdivmy (€).
(3.66)
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Proposition 3.2 Let ¢ be a smooth function supported in the shell C(0, Ry, Re) with
0 < Ry < Ry. There exist two positive constants k and C depending only on ¢ and such
that for allt > 0 and A > 0, we have:

oo (2 )l <o Vo o) (2 Yie o

Proof: From (3.63), we deduce that for |£]? > % (with Ry the Riez transform such

that FRig(§) = %]—"g(ﬁ) for g a temperated distribution):

W(AlD)W(t)( 0 )]1@,5)

mo

200 e = via(g) 2= Ta(mo)i(©))

_ ¢(‘§|> <(em1h(5) _ et (SBUC V) 2oy

it

1
+ =

(€O 4 o~h®) ;q0(5)>

[F¢(A71D)W(t) < gfo > ]1+Z’(t’€) — (z)(%) <(et>\2h(§) _ eft)qh(f))( — W}'quo(f)

F(Qmo)i(8)) + %(6_”%(5) + e OV F(Qmo)i(€) + 6_”'5'2]:(Pm0)z‘(§)> ,

(3.68)
with ¢ € [1, N]. We have used the fact in the previous formula that Pm verifies simply

an heat equation. Similarly from (3.66), we have for |¢|> < (ViBC)Q:

[m(xlD)W(t)( o )m,f)—¢<‘§'>(i<e—”ﬂ<f>—e—””<f>>(sg“(c"’)fqo<§>

sgn(c —v)

2a(¢)

mo 201 (§)

1 —tA2(§) —tA1(§)
KHC_VM ZfR mo);(€)) + 5 (e e M) Fao(€)

[F(f)()\ilD)W(t) < gfo > ]1+i(t7€) — (z)(%) <,L-(et)\1l(§) _ et/\2l(5))(|cyﬂ?|al(€)f'Riq0(§)

+ ngna(ié)y)]:(@m(ﬁi(f)) + %(e_ml(é) + e M) F(Qmo)i(€) + 6_”t|52]:(19’m0)i(§)>-
(3.69)

Applying Plancherel Theorem, we observe easily that it exists € > 0 small enough and
C., ke > 0 such that:

1 q0 — ke A2t -1 qo
< €
e (0] (ol | PR R T G
(3.70)
Indeed we use the fact that when & € RY /C(0, \/% —¢, \/% + &) we have:

a1<s>zru—cr\/45(1_ =y © >ru—cr\/45 oy € > VE

H 1RN/C(O»\/|,,4_BC‘2 -




The only difficulty is the behavior of the solution in the region C(0 \/ % —&, \/ % +¢),
in particular when C(0, R1 A, R2A) N C(0, |V C|2 - \/‘V e ) # 0. We have in par-
ticular when |£2 € (—2£5, 22 + ¢) that a(€) € (0, /2):

—c?? To—c?

2 V—cCc|lx 2 V—cC|lo
‘e—tAl(ﬁ) _ e—th(ﬁ)‘ _ e_t\gpéwrc) e*t‘gl ‘ 2 s — etm | 2 LxA) ‘
a(§) a(§)
When ta(€) < 1, it exists C' > 0 sufficiently large such that for any z € [0, |v —¢|(— P 6‘2 +
g)] we have:
et —e ¥ <(Cx.
It implies that we have when ta(§) < 1, it exists C1,C2 > 0 large enough such that:
et — g=tr2(8) _tePte) et
‘ a(f) ‘ < Cﬂf‘f’Qe < 026 4 . (3.71)
When ta(§) > 1 (and ﬁ <'t), we deduce that for C3 > 0 large enough and ¢ < 3:
™M) —emt2(O) |y 2, et _Hellv-cla®  tlelPlv—cla)
@ 1= ap e e
2 2 2 2
V—=c €% (v+c) V—c t1g|% (vte—velv—c])
< | 45 | t|f|2€_ 3 + | | t|f‘2€_ 5 (372)
2 v+c
< Cgeit‘él i+ ).

From (3.68), (3.70), (3.71) and (3.72), we deduce that it exists € > 0 small enough and
C., ke > 0 such that:

-1 q0 —Kke A2t -1 q0
e 2 o PO DWE (0 ) 12 < e or D) (1) 1
(3.73)
— ¢) whoch corresponds to a1 (§) €

48 48

Let us deal now with the case [£]? € (W’ o2

(0, +/¢), we have then:

7 2 v—cla i 2 v—cla
e_t)\l(g) B e—tz\z(f) _t‘g‘Q(yJ,_c) e_ tg“| = | 1(5) —e t|€| ‘2 [ (€) |
] 2
1 (§) o1 (§)
el |sin (Mﬂ
= Zé 2
a1 (§)]
When taq(€) < 1, it exists C, 02 > 0 large enough such that:
725)\1(6) _ 715)\2 c 2,4
e e ‘ < Cytle e et < Oy~ o) (3.74)
a1 (§)
When ta;(€) > 1, we deduce that for C5 > 0 large enough:
e tA(§) _ p—tA2(§) ‘ 2 1ePe _tel(vte) (v+o)
a1(§) o — € (3.75)
< 036_“5'2511”'—6).
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From (3.66), (3.70), (3.73), (3.74) and (3.75) we obtain finally from the Plancherel The-
orem that there exist C, x > 0 such that for any ¢ > 0 we have:

_ A2 _
oo oW (2 )l <ce oDy (2 Y @19
0 mo
It concludes the proof of the proposition 3.2. O

We are going now to prove time decay estimates in Besov spaces for the semi group W (t).

Proposition 3.3 Lets € R, r € [1,+00] and s1 > s, (o, mo) € (Bioo)NJrl then it exists
Cs, > 0 such that for all t > 0 we have:

e (2 Vs <220 () e, 3.77)

Proof: From proposition 3.2, we have for x,C' > 0 and any [ € Z:

1AW (t) ( gfo ) Iz < Ce A, ( w ) 112 (3.78)

mo

We deduce that for any [ € Z, we have:

c
T G

2

a0 Ve 79

We use now the fact that z*5=e™"* is bounded in L>°(RT) to deduce that it exists
Cs, > 0 such that:

ls1 q0 ls q0
oA () sl < S2clla (0 Y @80
It concludes the proof of the proposition 3.3. O

3.1 Proof of the Theorem 1.2

We shall use a contracting mapping argument to prove the Theorem 1.2 ( for the moment
we only consider the case 0 < k2 < p?) and we consider the following map ¢ defined as
follows with ¢ = p — 1:

_ q0
T/}]_(q,p’Ul, PUQ) - Wcl,,u, “2_,{2’13/(1) (t) < pvl(o’ ) )
0

t
+/0 WCl#h u?—k2,P'(1 )(t_ 5) ( F(p,v1,v9) > (5) ds.
7/’2(Q7PU1,PU2) = WCQ’#’_ n2—k2,P'(1 )( ( pUQ )

t
+/0 WCQHUﬂf I 2—k2 Pl 1)

19

(3.81)

F(p,v1,v2) >(S> ds.



with
F(p,v1,v2) = —%(diV(Pvl ® vg) + div(pv2 @ v1)) — (P'(p) — P'(1))Vp.

We define finally 13 as follows:

b3(q, por, pu2) = < (;’i 1)(241(,(;; q;)lvjf,) 7:)21))2) > (3.82)

Let us prove now that 3 is a map from Xy in itself with s; € (%, 1):
2

~ N N ~ N N ~ N _ ~ N
Ex = (I®(®R", Bz, n B2 ) nI'®RY, B2 nB2)) x (T°(RY, B ) n MR, B2

2

51
H(Q7 p'U17,0U2)HWM = sup t?2 H(Q(t, ')7pvl(t7 ')7p1)2(t7 )H N 14sy
2 teR+ B2,oo

1(q, pv1, pr2)llx 5 = I1(g; pv1, pU2)lIE N oWy + 119l Loo et Lo (mYY)-
2 2 2

The space E'n in which we work is more complicated as in [7], indeed we need decay
2
estimate in time in Besov space on the solution in order to control the L* norm of
g. In [7], the control of the L® norm of ¢ is a direct consequence of Besov embedding
N

Bf’l — L since the third index of the Besov spaces are 1.
From the proposition (3.1), we deduce that for C' > 0 large enough:

[¥s(a, po1, pr2)lley < Clllgoll x -0y +llpvi(0,)l -y + lov2(0, )]

2z BZ,oo ><B2,oo B2,oo 2,00 (3 83)
+ | F'(p,v1,v2)]| - N_ .
IF (el oy

Next using classical paraproduct law and composition theorems (see [3]), we get for
C1 > 0 large enough and a continuous function C"

|| div(pv1 ® v2)

1
y1, = Cllvifley llvalley (14 H; —1] ),

HZI(R+,B

oo ) L°°(1R+,L°°(RN))DZ“’(R"',BQ%O))
P'(p) — P'(1))V < 41|V P'(1 — P'(1
I(P0) = POVl oy SCValy oy g 1P 0) = POy

e \Y
< G| qIIE%(R+7B§j)IIQIIE4(R+7B§,

[ee]

C(||Q||L00(R+,LOO(RN)))-

(3.84)
Combining (3.83), (3.84), interpolation and composition theorems, we obtain for C; > 0
large enough and a continuous function C:

1
)

ls(a, pors pr2)lley < Cl(\l(lollBgfleg o011y s + lleva(0, ')HBngl

%) 2,00 2,00

1
I(q. pv1, pr2) %, (1 + C(ll(p, oo @i (1 + (g, pv1spv2)lzy ))-
2
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It remains now to estimate the ||[¢3(q, pv1, pv2) ||W y norm, using the definition of 41 and

o (see (3.81)) we have for t > 0:

||¢1(Q7pvl’pv2)(t7')HB%71+51 < ”Wcl,,u, /.LQ—){Q,P/(I)(t) ( pUl( ) > || **1+51

2,00
N y 1y, ds.

t
0
* /o HWCW’V “2_"“2’P'(1)(t =) < F(p,v1,v2) > B

do
ot o) vy < IV, i (e ) ) 120
w =) po o ) O ds
et =/ p2—k2,P'(1) F(p,v1,v2) Bﬁ:*sl ’
(3.86)
From proposition 3.3, it yields that for C' > 0 large enough we have:
C
1s(a; por, pu2)(t )| gy 1, < gl!(qo,pvl((),-),pvz(Ow))HB%_l
2,00 2,00
+/0 mHF(PWLUQ(& .)HBQ%;S“”CZS

We have now using classical paraproduct laws for s > 0 and C' a continuous function:

ldiv(pvr ® v2)(s: )|y 5400, < H(* — Dpor @ pv2)(s,)|_y 2.,

2 ,00 2,00

+ H(pvl ® pvg)(s, ')HB%—2+251

2,00

1
< GO0 M) 0+ s My I own ()l Iovats v
(3.88)

2,00 2,00

Similarly we have for C' > 0 large enough and s; € (%, 1):

2,00

(P () = P Vals, )|y aiany < OV, )y ors [P+ ) = PNy sy

2,00 2,00

< C(HQ(sv)HLOO)HQ( )HQBfflJrsl
> (3.89)

From (3.87), (3.88) and (3.89), we get for C1; > 0 large enough and C' a continuous

function:
4
1¥3(q; pvr, pr2) ()l w_1ysy < = ll(q0, pra(0;-), pr2(0, )| vy
BQOO t2 B2,oo
t [ e O M)+ ey (s,
0 (t—s)l_% 5 Loo(RN) q\s, BQ%OQOLOO pPUL(S, Bgogprsl
2
X [lpva(s, Il _1+q1+0(||CJ( )||L°°)||CJ(S,')||B§_1+sl)d8
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We get finally:

Cq
st(% P, PUZ)(ta ‘)HBQ%OJ:LJFSl < EH(Q(L pU1 (07 ')7 p7)2(07 ))HBQ%;1

toc 1 1
2 71 —_— _— . . .
+ II(q,pvl,pvz)IIWg/o T sslc(ll(p(s, ) £(85 )| oo @) ) (1 + [la(s, )IIBZgmew)ds
Ch
< t%l H<Q()7pvl(07 ')7/)1)2(0’ ))HBQ%OO—I
¢ WPy Clle. )l A+ ¢ ixy) [
v V: — S oo v U —_——
q, pU1, pU2 w P,p Lo (R, Lo0) q, pv1, pU2 X% ; (t—S)l_%‘ssl
(3.90)
We have now since s; € (2,1)
t 1 1 1 [t 1 1
/ A5 = 1/ ey
0 (t—s)t2 s% t2 Jo (1 —wu)t—2 u™
It comes that for C' > 0 large enough we have:
1s(a; por, pu2)liwy < C (g0, pv1(0,-), pr2(0, )
e (3.91)

1
+11(g, por, po2) v, Cll (o, D@ )0+ (g, por; po2)lixy ))-
2

It remains now to estimate the L>°(RT, L°(RY)) norm on [13(q, pv1, pv2)]1. From (3.81)

N
and using the fact that By (RM) is embedded in L>®(RY), we have for C > 0 large
enough:

(o por, pola ) s ey < 10V, i (ot ) Jiliecany

0

t
+/0 H[ch, #27,{2,P/(1)(t_5) < F(p,v1,v2) )h(S)Hle o

Pz

(3.92)

1 > is the solution of the system (3.38), we deduce from the

WCL#, n?—r2,P'(1) ( pv1(0, )
first equation of (3.38) and using the maximum principle and the proposition 3.3 that
for t > 0 and C, Cy, (5, Cs > 0 large enough:

qo

0, (poriy ) eeqa) < lollmqan

t
c1(t—s)A 3: o
+A ||6 1 dlv[WChlJn ;1,2—1{2,13’(1)(8) < ,0'U1(O>‘) )]QHB]; ds

2,1

! ¢ q0
R = LANV-== () ol
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And it yields:

qo0
Ve, vim=z.pr) < p01(0,-) >]1(t7')”L°°(RN) < lloll oo )

[ G CIO
0 (t—s)'F VBP0 (0,0) JH R

,00

q0 3
Y, 0@ (e, ol 03)

! Cs 1 q0
< oo + — 7 5 N_,ds
< Il + TRy (pontoy )

2,00
< lgoll gy +Call (P ) ) w
- p'Ul(O,‘) B2

2,00

The third inequality corresponds to an interpolation inequality in Besov spaces. In a
similar way, we have for C,C7,Co, C3 > 0 large enough and using proposition 3.3 and
interpolation in Besov spaces (see [3]):

t
0
P = ] A NE T

¢ c 0
<[ —C N s, ds
[ =l PR s

Lz

(3.94)
t 1 2 1
< / (IR v ) (s o [ Balpon ) ()]
0 (t—s)ﬁ_ 1 Bfoo By 2
1 3
NIk NIk
+ HF3(p)(87 )|’B2%0;3+251”F3(107 U17U2)(S7 )HBz‘Igo;?""i;i)ds’

with Fb(p,v1,v2) = 3(div(pvr ® vg) + div(pve ® v1)) and Fs(p) = (P'(p) — P'(1))Vp.
Using classical paraproduct law, composition Theorem and interpolation (see [3]), we
have now for s > 0, a function C' continuous and C > 0 large enough:

. 1
Jaiv(on © )] x sy <10~ Dowi @ o))y ooy

2,00 2,00

2 2

+l(ovr @ pv2)(s, )y o1

2,00

N 51
23
2,00

< Clc(lli(sa Mroo@m) A +llals )y lleva(s, )Ny llpva(s, )l

2
B NL*

s}

2,00

2
B2 NL>=

1 1 1
< ClC(H;(s, Mree@my) (X + lla(s, )| x Mpvi(s, -)HBg_lllpvz(s, ~)||;%_1||pv2(s, ')”;g_ml

2,00 2,00 2,00

(3.95)
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Similarly we have using composition, interpolation theorems and paraproduct laws (we
can since s; > %), it exists a continuous function C' and C7 > 0 large enough such that:

I(P'(1 + q) — P'(1))Va(s, ')HBg,H%l < [[Vq(s, ')HB%fH?% I(P'(1+q) — P/(1))(s, ')IIBngH?%

2,00 2,00

< Cll(s, ')||L°°(RN))HQ(57')”2BN 1250

2,00

4 2
< I 7 o I3 3 )
< CiC([lp(s, )l oo @y lla(s, )HB;O;HSIHQ( )Hsﬁj

(3.96)
It yields using (3.88), (3.89), (3.95) and (3.96) that for C' a continuous function and
C1 > 0 sufficiently large:

o wi=
vz

2
| F2(p, v1,v2)(s, ~)H;%,3+251 | F2(p,v1,v2) (s, )| 343
2,00 2,00
3

1 3
+ 1 Fs(p) (s, -)H;%,msl 1F5(p, v1, v2) (s, -)II;%_HE}

2,00 2,00

< (COC P M)+l y | I ooa(s. Iy i loea(el iy 1))

2,00 L 2,00 2,00

CUG o)1+ lael iy ool y sty oGl )

7N

g?oomL 200 2,00 2,00
; :
2
#(CUG Mmooy lats My )
: AL
< (et Mmoo W o, )

1 1 3
> C’(H(;,p)(s, ')HLoo(RN))(l + HQHE%QLOO(RJF,LOO(RN)))( 3oy 1(q, /"11,,002)”51/N
2

s 4
1 1 3 1
x |l(q, pv1, po2)ll 12, + —=7 1(a, pr1, po2)lliy I, pvl,pvz)\|§N>
> s T T

2

1
CUES P Mzoe @) A+ llall g nzoe e, oo ) DI, pvr, poa)lx -

S 4
(3.97)
Plugging (3.97) in (3.94), we obtain for a continuous fonction C since s; > %:
| :
IV, . € =) N,y s
cn /i —r2,Pr(1) F(pa U1, UZ) B2?1 (398)

< *C(II( P)(8: Moo @) (1 + (@ pors pv2) (@, por, po2) 1

7
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Combining (3.92), (3.93) and (3.98), we have for C; > 0 sufficiently large and C a
continuous function we have for any ¢ > 0:

q0
(0 pon, pola s ooy < ol + ol (% 3 Yy

2,00

1 1
+ %C(H(;,p)(sa Moo @) A+ 1l(g, por, pv2)llx w ) (@ po1; pv2)llwy (g, por; pv2)llis

(3.99)
This estimate proves that we need to distinguish the short time and the long time, indeed
(3.99) is interesting only for the long time.
We are going now to apply a fixed point theorem and we define the map 4 as follows
for any ¢ > O:

¢4(Q7P017 PU2)<t7 ) = w(CI?PUl:PUQ)(tv ) Ift € (OvT]7
¢4(q7/)111a PU2)<t7 ) = ¢3(Q7:0’Ulapv2)(t7 ) ift > Tv

with v defined as in the previous section:

ecltAqO

¥(g, pui, pu2) = | e AP(puy(0,)) + e 2Q(p1 (0, -))
e EP(pv2(0,)) + e 2Q(pr2(0, 1))
¢ et t=9)Adiv(puy)
- / Tert=9AP(div(pvy ® vo) + div(pve ® v1)) + e2EAQ(F(p,v1,v2)) | ds.
0 %e“(t_S)AP(div(pvl ® vp) + div(pvy @ v1)) + e EDAQ(F (p, vy, v3))

and T' > 0 to determine later. We are going now to prove that v is a map from Xx N
2 b

Eg, v in itself with s; € (3,1) and 0 < R, Ry, T < 3 sufficiently small that we will
define later. It is important to mention that we can work in small time on (0,7) in

N
Er, m.r since (pv1(0,-), pv2(0,-)) are in BMO~Y(RY), indeed we know that BQfool is
embedded in BMO~1(RY). We define Xv , as follows:
2 ?

Xy p= {(q, pv1, pv2) € Xga H(%PUDPUZ)HX% <R}

2

In the sequel we will note X5 T and Xy o o define the subsets of Xn where the
PR PR 2
norms are respectively only considered on the time interval [T, +oo[ and [0,7]. We
have obviously || - |[xy <l llx= + 1 llx+ -
2 X N

2
Combining (3.85), (3.91) and (3.99) we have for C' a continuous function and C; > 0
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large enough and for all (g, pv1, pv2) € Xn r N Er M1
2 b

[a(a, pvr, po2)ll s, < Ml¥s(a, o1, pe2)llxy, < Call(ao, por (0, ), po2(0, DIy + llaoll
2 2

2,00 2 ,00
1 ) 1
+ ﬁ”(q,ﬂULPUQ)HXN (1+C(lp, *”Loo(RJr,LOO)))(l + H(C]aPUl,ﬂw)HX%))
< C1(ll(go, pv1(0, -), pv2(0, ))H Nyt H(JOH -
R2
+ —=(1+ sup C(y))(l—i—R))
\/T yE[O,max(R—&-l,ﬁ)}
(3.100)
We take now R such that:
R =2C1(ll(q0, po1(0,-), po2(0, N5y +llaoll 5 )
B2 oo 2 oomLoo
We assume now that 0 < R < % and then the initial data are sufficiently small such that:
R
R*(1+ sup C(y))(1+R) < i
y€[0,2]
It gives the following condition:
3 T
—R(1+4 sup C(y)) < £ (3.101)
2 y€[0,2] 4
In a similar way we can estimate ||1)4]] X nXp It suffices to apply exactly the same
2
estimates than in the previous section for the norm X7. For the norm Xy we have to
2
repeat the same estimates in Besov spaces on a finite time interval (0,7") and to choose
T, Ry > 0 sufficiently small as previously. We just say few words on the case of the norm
Wy . First we have by interpolation since s1 € (%, 1):
2
51
sup ¢ 2 [[[1ha(q, por, pu2) (b, 1l 1ih, < T (| [alg, por, pua) (2, il Ny ooN
€l0,7] B =([0.T),B7, NBy)

S1
< TF |- -
2

The norm E7; is classical to estimate (we refer to [3] or to the previous estimates). We
2
deduce now that for C' > 0 large enough:
51
sup 3 [[a(g, por, pu2) (6, )| g iesy T2 [l g, + Cllova (0] s,
te[0,7] BQ S Py B2
w09y 1o,

2,00

t 3
+ C/O Z: e =2 [div(pv1 @ v + v2 @ v1)(s) + VP(p)(s)] HB%fHSlds,

2,00
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with 81 € (c1,¢2, ). We have now for Cp,Cy > 0 large enough, C a continuous function
and ¢t € [0,T):

t
/ 1P =)D div(pvy @ va + va ® o))y 1y, ds
0

2,00

t
1
<C ———||lpv1 ® va(s _
> 1/0 (t—s)l_%le 2( )HB% 2+2s;

2,00

t 1 1 1
< | o sl e pw)I L O () ) (4 g, pon po2) | - )
/0 (t—5)1*71 §51 N p E%

Cs 1
< Tl”(qapvhpUQ)HQ ]TIC(”;
2

t2

(5, )llz) (X +[I(g, por, po2)l - ).

(3.102)
Proceeding as previously, we have also for C1,Cs > 0 large enough, C' a continuous
function and ¢ € [0, 7T]:

t
| IRy s

2,00
t
1
< Cz/ = _|P(+q) - P()| x ds (3.103)
0 (t—8)7 B2?oo
T
C%C

= (Hp(sa')HLOO)H(Q,,O’Ul,pUQ)HE—M.

2

We obtain then the stability for the norm X using (3.102) and (3.103).

2
In a similar way, we can prove that 14 is contractive. More precisely taking (q, pv1, pv2),
(q1, prw1, prwz) in Xy N ER, a7 we have for ¢ > T
2 b

¥1(q, put, pv2) — ¥1(q1, prwe, prws)

t
0
- /0 Wq,u,\/ﬁ—ﬁzvp’(l)(t =) < F(p,v1,v2) — F(p1, w1, w) ) () ds.

Va(gq, p1, pv2) — (g1, prws, prws)
t 0
= /0 Wc’l,u,f ML,&’P,(l)(t —s) | Fl(p,vi,v2) — F(p1,w1,ws2) | (s) ds.

(3.104)
As previously we show that for C7 > 0 large enough we have:

[94(g; po1; pr2) = Palqr; prown, prws)|lx+
¥ (3.105)
< C1R(1 + R)|/(g, pv1, pv2) — (Q17P1w1,ﬂ1w2)“X%-

Taking again R sufficiently small we deduce that the map 14 is contractive (it suffices
again to repeat the same process on [0,7] with 7' > 0 sufficiently small). It concludes
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the proof of the Theorem 1.2 in the case 0 < k2 < p?. The proof in the case k2 = p?
is similar except that v; = vg, in addition when we study the system (3.59) there is no
distinction between high and low frequencies. The eigenvalues associated to the matrix
A(§) are always complex and the system has the same behavior than a equation mixing
heat and Schrédinger equation.

Acknowledgements

The author has been partially funded by the ANR project INFAMIE ANR-15-CE40-
0011. This work was realized during the secondment of the author in the ANGE Inria
team.

References

[1] D. M. Anderson, G. B McFadden and A. A. Wheller. Diffuse-interface methods in
fluid mech. In Annal review of fluid mechanics, Vol. 30, pages 139-165. Annual Reviews,
Palo Alto, CA, 1998.

[2] P. Antonelli and S. Spirito, Global existence of finite energy weak solutions of quantum
Navier-Stokes equations, Arch. Rat. Mech. Anal. 225, no. 3 (2017), 1161-1199.

[3] H. Bahouri, J.-Y. Chemin, R. Danchin. Fourier analysis and nonlinear partial dif-
ferential equations, Grundlehren der mathematischen Wissenschaften, 343, Springer
Verlag, 2011.

[4] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, I. Interfacial free
energy, J. Chem. Phys. 28 (1998) 258-267.

[5] M. Cannone, Y. Meyer and F. Planchon. Solutions auto-similaires des équations de
Navier-Stokes. Séminaire sur les équations aux dérivées partielles, 1993-1994, exp.
Nol2 pp. Ecole polytech, palaiseau, 1994.

[6] G.-H Cottet. Equations de Navier-Stokes dans le plan avec tourbillon initial mesure.
C. R. Acad. Sci. Paris Sér. I Math. 303(4), 105-108 (1986).

[7] R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of
Korteweg type, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 18,97-133 (2001)

[8] J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch.
Rational Mech. Anal. 88(2) (1985) 95-133.

[9] H. Fujita and T. Kato. On the Navier-Stokes initial value problem I, Arch. Ration.
Mech. Anal., 16, (1964), 269-315.

[10] I. Gallagher and T. Gallay, Uniqueness for the two-dimensional Navier-Stokes equa-
tion with a measure as initial vorticity, Math. Ann., 332 (2005), 287-327.

[11] Y. Giga and T. Miyakawa. Navier-Stokes flow in R with measures as initial vorticity
and Morrey spaces. Comm. Partial Differential Equations 14 (1989), 577-618.

28



[12] Y. Giga, T. Miyakawa and H. Osada. Two-dimensional Navier-Stokes flow with
measures as initial vorticity. Arch. Ration. Mech. Anal. 104(3), 223-250 (1988).

[13] M. E. Gurtin, D. Poligone and J. Vinals, Two-phases binary fluids and immiscible
fluids described by an order parameter, Math. Models Methods Appl. Sci. 6(6) (1996)
815-831.

[14] B. Haspot, Existence of global strong solutions in critical spaces for barotropic vis-
cous fluids, Arch. Rational. Mech. Anal, 202, Issue 2 (2011), 427-460.

[15] B. Haspot, Existence of solutions for compressible fluid models of Korteweg type,
Annales Mathématiques Blaise Pascal 16, 431-481 (2009).

[16] B. Haspot, Existence of global strong solution for Korteweg system with large infinite
energy initial data, Journal of Mathematical Analysis and Applications 438 (2016), pp.
395-443.

[17] H. Hattori and D. Li. The existence of global solutions to a fluid dynamic model for
materials for Korteweg type. J. Partial Differential Equations, 9(4): 323-342, 1996.

[18] D. Jamet, O. Lebaigue, N. Coutris and J.M. Delhaye, The second gradient method
for the direct numerical simulation of liquid-vapor flows with phase change. J. Comput.
Phys, 169(2): 624-651, (2001).

[19] T.Kato. The Navier-Stokes equation for an incompressible fluid in R? with a measure
as the initial vorticity. Differ. Integral Eqs. 7(34), 949-966 (1994).

[20] D.J. Korteweg. Sur la forme que prennent les équations du mouvement des fluides si
l'on tient compte des forces capillaires par des variations de densité. Arch. Néer. Sci.
Ezxactes Sér. 11, 6 :1-24, 1901.

[21] H. Koch and D. Tataru. Well-posedness for the Navier-Stokes equations, Adv. Math..
157, 2001, 22-35.

[22] P.-G. Lemarié, Recent developments in the Navier-Stokes problem, Chapman and
Hall/CRC research Notes in Mathematics, 431 Chapman and Hall/CRC, Boca Raton,
FL, 2002

[23] J. S. Rowlinson, Translation of J.D van der Waals, The thermodynamic theory of
capillarity under the hypothesis of a continuous variation of density. J.Statist. Phys.,
20(2): 197-244, 1979.

[24] C. Truedell and W. Noll. The nonlinear field theories of mechanics. Springer-Verlag,
Berlin, second edition, 1992.

[25] J. F. Van der Waals, Thermodynamische Theorie der Kapillaritdt unter Vorausset-
zung stetiger Dichtednderung, Phys. Chem. 13, 657-725 (1894).

29



