
HAL Id: hal-01882896
https://hal.science/hal-01882896

Submitted on 27 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CP-based cloud workload annotation as a preprocessing
for anomaly detection using deep neural networks

Gilles Madi Wamba, Nicolas Beldiceanu

To cite this version:
Gilles Madi Wamba, Nicolas Beldiceanu. CP-based cloud workload annotation as a preprocessing for
anomaly detection using deep neural networks. ITISE 2018 - International Conference onTime Series
and Forecasting, Sep 2018, Granada, Spain. pp.1-12. �hal-01882896�

https://hal.science/hal-01882896
https://hal.archives-ouvertes.fr

CP-based cloud workload annotation as a
preprocessing for anomaly detection

using deep neural networks

Gilles Madi Wamba, and Nicolas Beldiceanu

Institut Mines-Telecom Atlantique, LS2N, Nantes, France
last-name.first-name@imt-atlantique.fr

Abstract. Over the last years, supervised learning has been a subject
of great interest. However, in presence of unlabelled data, we face the
problem of deep unsupervised learning. To overcome this issue in the
context of anomaly detection in a cloud workload, we propose a method
that relies on constraint programming (CP). After defining the notion of
quasi-periodic extreme pattern in a time series, we propose an algorithm
to acquire a CP model that is further used to annotate the cloud workload
dataset. We finally propose a neural network model that learns from the
annotated data to predict anomalies in a cloud workload. The relevance
of the proposed method is shown by running simulations on real-world
data traces and by comparing the accuracy of the predictions with those
of a state of the art unsupervised learning algorithm.

1 Introduction

With the increase of the use of cloud computing technologies, more and more
applications rely on a cloud infrastructure. This model is named Infrastructure
as a Service (IaaS). Since failures are common in such large systems [21], the
cloud provider needs to ensure the integrity of the infrastructure, prevent failures
or fix them as soon as possible.

Most predictive machine learning algorithms rely on historical data to learn a
predictive model that can predict the outcome of a given observation. Generally,
cloud providers have large quantity of historical data obtained by monitoring
some metrics. Such cloud workloads are modelled by time series that are gen-
erally not labelled. To address this issue, some data scientists require human
intelligence through crowdsourcing services like Amazon Mechanical Turk [20,
17]. The drawback of such approach is its cost in time and money, and even
more the reliability of the produced annotations [13]. In the absence of labels,
the problem of deep unsupervised learning has been studied in [10]. Most of
these approaches rely on k-means clustering [14]. As shown in Section 4.2, a
clustering approach is not well suited for anomaly detection in the context of
cloud workloads.

In this context, the contribution of this paper is twofold. First we introduce
the generic notions of extreme patterns (i.e. pattern occurrences within a time

series for which one or several feature values take very small or very large values
relatively to the rest of the time series), and of quasi-periodic pattern group
within a time series. Second, we propose a three-step method to solve the problem
of predicting malfunction in a cloud data centre infrastructure given its workload:

– Using the notion of extreme patterns, we first acquire a constraint program-
ming (CP) model that is able to discriminate between a workload presenting
a malfunction and one that does not.

– Then we use the acquired CP model to automatically label the historical
workload dataset.

– Finally, we train a deep neural network to predict the malfunctions.

The rest of the paper is organised as follows. Section 2 provides the necessary
background on time series in the context of constraint programming. Section 3
details our main contribution, namely the definition of quasi-periodic extreme
patterns and the illustration how to use it to annotate cloud workloads. In Sec-
tion 4, we present two methods, the first one based on supervised learning, and
the second one based on unsupervised learning (through the k-means algorithm)
to predict anomalies in a cloud workload. Finally, we evaluate and compare both
models in Section 5 and conclude in Section 6.

2 Background

A time series is a sequence corresponding to measurements taken over time.
We use time series to model resource production or consomption, e.g. energy,
memory, cpu, bandwidth [6, 15]. These type of time series are constrained by
physical or organizational (in general structural) limits as well as by business
rules, which restrict the evolution of the series.

Definition 1 (signature). Given a time series x = x1, x2, . . . , xn, the sig-
nature of x is the sequence s = s1, s2, . . . , sn−1, where every si is defined by
(xi < xi+1 ⇔ si = ‘ < ’) ∧ (xi = xi+1 ⇔ si = ‘ = ’) ∧ (xi > xi+1 ⇔ si = ‘ < ’).

Definition 2 (s-occurrence, i-occurrence, e-occurrence, found index).
Consider a time series x = x1, x2, . . . , xn, its signature sequence s =
s1, s2, . . . , sn−1, a regular expression σ over the alphabet {‘ < ’, ‘ = ’, ‘ > ’}, two
natural numbers b and a, and a subsignature si, si+1, . . . sj with 1 ≤ i ≤ j ≤ n−2,
forming a maximal word in s matching σ. The s-occurrence of σ is the index
sequence i, . . . , j; The i-occurrence of σ is the index sequence i + b, . . . , j; The
e-occurrence of σ is the index sequence i+ b, . . . , j + 1− a; The found index is
the smallest index k in the interval [i, j] such that the word sisi+1 . . . sk is an
occurrence of σ.

An s-occurrence identifies a maximal occurrence of a pattern in a signature
sequence, while an i-occurrence identifies a maximal occurrence of a pattern in
an input sequence. Note that, by Definition 2, i-occurrences of the same pattern
never overlap. The feature value of a pattern occurrence is computed from the
e-occurrence, where the constants b and a are used for respectively trimming the
left and the right borders of the regular expression σ.

3 Detection of quasi-periodic extreme patterns in CP

Housssam et al. present in [2] a formalisation of arrhythmia detection algorithms.
Their algorithm relies on quantitative regular expressions [3] for peak detection.
Scholkmann et al. [18] propose another parameter free algorithm for peak detec-
tion in periodic or quasi-periodic signals. While those algorithms are designed
for peak detection only, our framework [5, 11] is compatible with a large class of
regular expressions [11] and offers more than 700 time-series constraints [4].

First, since we aim at extracting relevant maximal occurrence of patterns, we
formally define the notion of extreme pattern occurrences. Second, since we also
aim at quantifying how regularly such maximal occurrence of patterns appear
we define the notion of quasi-periodic extreme pattern. All the corresponding
definitions will be illustrated on a concrete example at the end of this section.

3.1 Defining extreme pattern occurrences

In the same way we already synthesise a register automaton for computing the
result associated with a time-series function, we also synthesise a register au-
tomaton for computing the feature values of each maximal occurrence of a given
pattern in a time series in linear time wrt the time-series length. This will be
used to extract the extreme feature value, a notion that we now define.

Definition 3 (extreme feature value of a pattern occurrence). Given a
regular expression σ, a feature f , a time series ts containing at least one maximal
occurrence of σ, and a threshold τ ∈ [0, 1], the ith maximal occurrence of σ within
ts is extreme iff

fσ(i) ∈ [minf,σ(ts), minf,σ(ts) + τ ·minf,σ(ts)] ∨
fσ(i) ∈ [maxf,σ(ts)− τ ·maxf,σ(ts), maxf,σ(ts)], where

– fσ(i) is the feature value of ith maximal occurrence of σ,
– minf,σ(ts) (resp. maxf,σ(ts)) is the minimum (resp. maximum) feature value

among all maximal occurrences of σ within ts.

Definition 4 (extreme pattern occurrence). Given a regular expression σ
and a set of distinct features f1, f2, . . . fk, a maximal occurrence of σ in a time
series ts is an extreme occurrence of σ wrt f1, f2, . . . fk iff all corresponding
feature values are extreme feature values for σ in ts.

3.2 Identifying quasi-periodic extreme patterns

Definition 5 (footprint). Given a time series ts = x0, x1, . . . , xn−1 and a
pattern p, the footprint of p over ts is the sequence fp = q0, q1, . . . , qn−1 of the
same length as ts where each qk ∈ fp is an integer between 0 and n such that:

– qk = 0 if index k does not occur in any i-occurrence of the pattern p in the
input time series ts.

– qk = j > 0 if index k belongs to the jth i-occurrence of the pattern p when
reading the time series ts.

Definition 6 (footprint distance). The footprint distance between the jth

and the (j+1)th maximal occurrence of a pattern p in a time series ts is the num-
ber of zeros in the footprint of p over ts between the end of the jth i-occurrence
of p in ts and the start of the (j + 1)th i-occurrence of p in ts.

Definition 7 (found distance). The found distance between the jth and the
(j + 1)th occurrence of a pattern p in a time series ts is the difference between
the two corresponding found indices.

Definition 8 (distance). Consider a pattern p for which the length of its small-
est occurrence is ` > 0. The distance between the jth and the (j + 1)th maximal
occurrence of a pattern p in a time series ts is the footprint distance iff, given
any occurrence o of the pattern p, all prefixes and suffixes of o for which the
minimum length is greater than or equal to ` are also occurrences of the pattern
p, and the found distance otherwise.

Definition 9 (quasi-periodic pattern of order g). Let g and δ be two na-
tural numbers with g > 0, p a pattern, ts a time series and op the sequence of all
maximal occurrences of p in ts. In addition let ep be a subsequence of op of size
at least ` = 3g. Let dp and dp be resp. the minimum and the maximum distance

between any jth and (j+ g)th maximal occurrences of p in ep, with i ∈ [1, `− g].
Then p is said to be a quasi-periodic pattern of order g and period [dp, dp] iff

1. dp − dp ≤ δ,
2. the first maximal occurrence of p ∈ ep is located at a distance d ≤ dp from

the beginning of ts,
3. the last maximal occurrence of p ∈ ep is located at a distance d′ ≤ dp from

the end of ts.

When ep corresponds to all maximal occurrences (resp. all extreme occurrences)
of p then p is a periodic pattern (resp. periodic extreme pattern) of order g.

Example 1. We illustrate the previous definitions on the time series 0, 2, 9, 8, 10,
1, 0, 0, 3, 0, 8, 1, 9, 1, 1, 1, 2, 9, 9, 2, 2, 8, 0, 1, 0. For this purpose we consider the peak
(resp. steady sequence) pattern defined by ‘ < (= | <)∗(> | =)∗ > ’ (resp.
‘ =+ ’) and by the trimming parameters b = a = 1 (resp. b = a = 0). The eight
(resp. four) subsequences outlined in yellow between two vertical red bars on top
(resp. at the bottom) of Figure 1 correspond to the eight s-occurrences of the
peak (resp. steady sequence) pattern.

The distance of the peak pattern is defined as the found distance since not
all large enough suffixes of a maximal occurrence of peak correspond to a peak,
i.e. the suffix ‘ >> ’ of the second maximal occurrence of peak ‘ <>> ’ is not a
peak itself. Consequently the distances 2, 4, 2, 2, 6, 3, 2 between consecutive max-
imal occurrences of peaks are defined as the difference between their correspond-
ing found positions, outlined with a vertical arrow in the upper part of Figure 1.

The distance of the steady sequence pattern is defined at the footprint dis-
tance since all large enough prefixes and suffixes of ‘ =+ ’ also correspond to a
steady sequence. Consequently the distances 6, 2, 1 between consecutive maximal
occurrences of steady sequences are defined as the difference between the start
of a maximal occurrence of the pattern and the end of the maximal occurrence
of the previous pattern.

We now focus on the extreme occurrences of the peak pattern wrt the max
feature assuming a threshold τ = 0.2. Such feature values 9, 10, 3, 8, 9, 9, 8, 1 are
shown in the lower part of Figure 1. Among them only the values 9, 10, 8, 9, 9, 8
belong to the interval [10(1 − τ), 10], and consequently only the first, second,
fourth, fifth, sixth and seventh peak maximal occurrences are extreme. Now as-
sume a period threshold δ = 2. Since the minimum/maximum distance between
any j and j + 1 positions of extreme pattern occurrences is equal to 2/6, the
correspond range 6−2 is greater than δ = 2. Consequently the corresponding se-
quence of extreme peaks is not quasi-periodic of order 1. But it is quasi-periodic
of order 2 because (1) the minimum/maximum distance between any j and j+2
positions is equal to 8/10, and (2) the first (resp. last) occurrence of peak is not
too far from the leftmost (resp. rightmost) border.

0

10
< < > < > > = < > < > < > = = < < = > = < > < >

< < > < > > = < > < > < > = = < < = > = < > < >

9 1
0 3 8 9 9 8 1

0 0 0 0 0 0 1 0 0 0 0 0 0 2 2 0 0 3 0 2 0 0 0 0

2 4 2 2 6 3 2

6 2 1

8 8

8 9

quasi period of order 2 of
extreme peaks wrt feature
max and τ = 0.2, δ = 2

︷︸︸︷
︷

︸︸
︷

found distance
signature sequence

time series

signature sequence
footprint sequence
footprint distance

peak

steady sequence

Fig. 1: Illustrating the notions of signature, found distance, footprint distance,
extreme patterns and quasi-periodic extreme patterns wrt the peak=‘ < (= | <
)∗(> | =)∗ > ’ and steady sequence=‘ =+ ’ patterns

3.3 CP-based time series annotation

In all what follows, a positive (respectively negative) workload trace or time series
is a workload trace or time series that do not present any anomaly (respectively
that is abnormal). The purpose is to label a set of historical traces as being

either positive or negative. As a first step, we begin with a small set of time
series that are prelabelled as positives. From those sample time series, we identify
a set Ep = p1, . . . pn of quasi-periodic extreme patterns and we compute their
respective periods. This process is presented in Algorithm 1, where:

– procedure compute extreme occurrences(st, f, p, et) uses Definition 4 to com-
putes the list of all extreme occurrences of the pattern p with respect to the
feature f and the threshold et.

– procedure compute period(EV, pt, g) uses Definition 9 to check if the extreme
occurrences in the list EV are quasi-periodic of order g. If yes computes and
return the period, else it returns the empty set.

Algorithm 1 Algorithm to acquire a CP model out of positive time series

PROCEDURE LearnCPModel(S, P, F, et, pt) : (Model)
1: S: Positive time series set,
2: P : Set of patterns to consider,
3: F : Set of features to consider,
4: et ∈ [0, 1]: Extreme value threshold,
5: pt ∈ N: Period threshold.
6:
7: st← {}
8: Model← {}
9: for all s ∈ S do

10: st← st
⊕

s . Concatenate all positive time series into st
11: end for
12: g ←max order to consider
13: Periods← ∅
14: for all (f, p) ∈ F × P do
15: for all g ∈ [1, g] do
16: EV ← compute extreme occurrences(st, f, p, et)
17: Periodf,p,g ← compute period(EV, pt, g)
18: Periods← Periods

⋃
Periodf,p,g

19: end for
20: Model←Model

⋃
(f, p, Periods)

21: end for
22: return Model

Each of the remaining traces is labelled as positive if it presents all the quasi-
periodic extreme patterns of P , with compatible periods (periods whose inter-
section is non-empty) i.e. if it satisfies the CP model acquired by Algorithm 1.
The traces that do not satisfy the constraints of the model are labelled as neg-
atives. This process is described in Algorithm 2. The next step trains a model
that can detect anomalies at run time. The next section details the specificities
of our model.

Algorithm 2 Using an acquired CP model to label time series

PROCEDURE LabelT imeSeries(st,M, et, pt) : (ts, label)
1: st: Time series to label,
2: M : Learned model,
3: et ∈ [0, 1]: Extreme value threshold,
4: pt ∈ N: Period threshold.
5:
6: for all [(f, p, Periods)] ∈M × P do
7: EV ← compute extreme occurrences(st, f, p, et)
8: for all Periodf,p,g ∈ Periods do
9: TSPeriodf ,p,g ← compute period(EV, pt, g)

10: if ¬IsCompatible(TSPeriodf ,p,g , P eriodf,p,g) then
11: label← negative
12: return (st, label)
13: end if
14: end for
15: end for
16: label← positive
17: return (st, label)

4 Anomalies detection

Given a workload trace, an anomaly is said to occur iff a quasi-periodic extreme
pattern, identified by the CP model acquisition step, does not occur at an ex-
pected location. In Sections 4.1 and 4.2, we propose two distinct approaches to
predict those anomalies. The first one relies on a constrain programming model
as a pre-training step while the second one relies on k-means clustering.

4.1 Supervised learning method

Supervised learning [9] is a class of machine learning algorithms that aim at
learning a function that computes an output from an input observation. In order
to compute that function, supervised learning algorithms rely on input examples
together with the expected output value.

In this section we show how we use a deep neural network to detect malfunc-
tions in a cloud infrastructure.

Neural network model There is no state-of-the-art method to set the pa-
rameters of a neural network [16]. This section presents all the empiric choices
relative to our model.

Deep neural network architecture

– Input layer. The choice here is intuitive. Our workload traces are made up
of time series representing daily workloads with a time step of 10 minutes. It
means that each workload trace is a time series of 144 values, we thus chose
144 as the number of neurons in the input layers.

– Hidden layers. We empirically chose 2 hidden layers of 10 neurons each.
– Output layer with two neurons.

Having two neurons in the output layer, the results are interpreted in the
following way. The first neuron’s value is the probability that we predict the
first category i.e. abnormal, and the second neuron’s value is the probability
that we predict the second category normal.

Optimisation

– Activate function. We chose softmax as activation function since we need to
output probabilistic values between two discriminative classes [16].

– Stochastic gradient descent. The output y of a neural network given an input
X is given by Equation 1 where f is the activate function, W is the weight
matrix and B is the bias matrix [16].

y = f(WX +B) (1)

To set the parameters W and B during the learning, we used the standard
stochastic gradient descent technique with randomly shuffling the training
examples. As shown in [7], it performs better than sequential selection of
examples that are grouped by classes as it is the case in our model.

4.2 Unsupervised learning method

Unsupervised leaning [12] is a machine learning technique that consists in infer-
ring a discriminative function out of an unlabelled set of data.

One of the most popular and yet simple unsupervised learning algorithm
is k-means [14]. k-means partitions a set of unlabelled data into k partitions
according to a given metric. One difficulty in using k-means is to choose k the
number of clusters, as there is no mathematical criterion [19].

In the context of our application, we did not encounter that difficulty, as
we already know, that we want to discriminate between two categories, normal
and abnormal. Therefore we set k = 2 and we use the Euclidean distance as the
distance metric.

The steps required to use the k-means clustering algorithm to predict an
anomaly in a time series ts are the following:

1. Learning step: The purpose is to partition the dataset into two clusters.
– Select a known normal time series tsn and a known abnormal one tsa.
– Set tsa and tsn to be the initial centroids for k-means clustering.
– Cla and Cln are the two clusters obtained from the dataset, such that
tsa ∈ Cla and tsn ∈ CLn

2. Prediction step:

– Computes the centroids ca and cn of Cla and Cln respectively.
– ts is normal (positive) if d(ts, cn) ≤ d(ts, ca) and abnormal otherwise,

where d(x, y) is the Euclidean distance between the points x and y.

5 Experiments

In this section, we evaluate each step of our method to predict malfunction in
a data centre, we also show the necessity of reinforcing the learned constraint
programming model with the neural network of Section 4.1. We further evaluate
the unsupervised based learning of Section 4.2.

5.1 Dataset

The initial input to our framework is a set of historical workload traces pro-
vided by a French SME company specialised in virtualised data centre analysis.
Figure 2 shows an instance of raw historical workload traces. Each curve of the
figure represents the CPU workload of a VM in a data centre for a whole day in
the interval 23rd of February 2017 to 26th of October 2017.

Fig. 2: Unlabeled historical data

5.2 Implementation of the CP based labelling

We implemented Algorithm 2 of Section 3.3 with SICStus Prolog [8].

Figures 3 and 4 shows how the initial unlabelled dataset of Figure 2 is par-
titioned into two distinct subsets using Algorithm 2 of Section 3.3.

Fig. 3: Workloads automatically
labelled as normal by the
CP model

Fig. 4: Workloads automatically la-
belled as abnormal by the CP model

From Figure 3 we can observe that the quasi-periodic pattern acquired by the
CP model is the occurrence of two extreme peaks every day between midnight
and 3AM. However, as we will see in Section 5.3, we should take care of some
false negative annotations.

5.3 Neural network reinforcement of the CP model

The constraint programming model learned using Algorithm 1 can be used with
Algorithm 2 to label workload traces, i.e. it can also be used to detect malfunc-
tions in a given workload. However, the quality of the CP model strongly rely on
the threshold τ ∈ [0, 1] of Definition 3. This threshold sets the magnitude above
and below which a feature value is considered extreme.

Figure 5 shows that the choice of value of τ ∈ [0, 1] is a trade-off between the
percentage of false positive and false negative predicted by the model.

Figure 5 induces the following observations:

– For a threshold value above 0.4, i.e. for τ ∈ [0.4, 1] the percentage of false
positive predictions of the models grows exponentially. This is not suitable
as a false positive prediction is when the model fails to predict a malfunction.

– On the other τ ∈ [0, 0.4], the percentage of false negative prediction is close
to 100. This is also not suitable as it means that the model predicts a mal-
function in almost every workload.

The best trade-off threshold value is thus 0.4. Although τ = 0.4 implies a
perfect 0% false positive predictions, it also implies around 12% false negative
predictions. This is the reason why we use a neural network on top of the CP
model. The CP model provides a good learning base for the neural network.

5.4 Neural network versus K-means prediction

The purpose of the neural network in our framework is to capture hidden struc-
tures within the dataset. We implemented the model presented at Section 4.1
in Python using Tensorflow [1]. The amount of false positive and false negative
predictions using the so trained neural network are both 0%.

Figure 6 shows how the precision of the model gets high over the learning
steps. The precision is evaluated with the cross entropy loss function.We can see
that the loss rapidly converges to value 0.

On the other hand, the prediction using the k-means method suffers from the
fact that it is based on a notion of closeness through Euclidean distance. The
dataset depicted at Figure 2 is therefore separated in two partitions. The direct
consequence is the amount of false positive prediction that is above 70%. While
a model with a reasonable false negative prediction rate may remain exploitable,
the inverse is not desirable. A false negative prediction in our context means that
the model fails to predict a malfunction. A 70% false positive rate makes the
k-means model not exploitable in this context.

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

Theshold

P
er

ce
n
ta

g
e

False negative

False positive

Fig. 5: False positive against false
negative trade-off of the CP model

0 100 200 300 400 500

0

5

10

15

Learning steps

C
ro

ss
-e

n
tr

o
p
y

lo
ss

Fig. 6: Learning graph of the neural
network model

6 Conclusion

In this paper we first introduced the generic notions of extreme patterns and
quasi-periodic pattern group to capture the behaviour of a time series. Using
those notions, we described a machine learning framework for anomaly detec-
tion in a cloud workload trace. To overcome the problem of deep unsupervised
learning, we proposed a method that relies on constraint programming through
the definition of quasi-periodic extreme pattern to annotate the workload time
series. After acquiring a constraint programming model, the data set is automat-
ically annotated and fed to a neural network for prediction. Experimental results
on real workload traces show that state of the art unsupervised learning meth-
ods like K-means are not exploitable in our context, and that the combination
of a constraint programming model and a neural network produces better results.

Acknowledgement This work was done as part of the PIA HYDDA project funded

by the French government. The authors would also like to thank Frederico Alvares from

EasyVirt for his active feedback.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system
for large-scale machine learning. In OSDI, volume 16. 265–283.

2. Abbas, H., Rodionova, A., Bartocci, E., Smolka, S. A., & Grosu, R.
(2017). Quantitative regular expressions for arrhythmia detection algorithms. In
Int. Conf. on Computational Methods in Systems Biology. Springer, 23–39.

3. Alur, R., Fisman, D., & Raghothaman, M. (2016). Regular programming
for quantitative properties of data streams. In Thiemann, P., editor, ESOP 2016,
volume 9632 of LNCS. Springer, 15–40.

4. Arafailova, E., Beldiceanu, N., Douence, R., Carlsson, M., Flener, P.,
Rodŕıguez, M. A. F., Pearson, J., & Simonis, H. (2016). Global constraint
catalog, volume ii, time-series constraints. arXiv preprint arXiv:1609.08925.

5. Beldiceanu, N., Carlsson, M., Douence, R., & Simonis, H. (2016). Using
finite transducers for describing and synthesising structural time-series constraints.
Constraints, 21(1), 22–40.

6. Beldiceanu, N., Ifrim, G., Lenoir, A., & Simonis, H. (2013). Describing and
generating solutions for the EDF unit commitment problem with the modelseeker.
In Schulte, C., editor, CP 2013, volume 8124 of LNCS. Springer, 733–748.

7. Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks
of the trade. Springer, 421–436.

8. Carlsson, M., Widen, J., Andersson, J., Andersson, S., Boortz, K., Nils-
son, H., & Sjöland, T. (1988). SICStus Prolog user’s manual, volume 3. Swedish
Institute of Computer Science Kista, Sweden.

9. Caruana, R. & Niculescu-Mizil, A. (2006). An empirical comparison of su-
pervised learning algorithms. In Proceedings of the 23rd international conference
on Machine learning. ACM, 161–168.

10. Coates, A. & Ng, A. Y. (2012). Learning Feature Representations with K-
Means. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-35289-8,
561–580. doi:10.1007/978-3-642-35289-8 30.

11. Francisco Rodŕıguez, M. A., Flener, P., & Pearson, J. (2017). Automatic
generation of descriptions of time-series constraints. In Virvou, M., editor, IC-
TAI 2017. IEEE Computer Society.

12. Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning.
In The elements of statistical learning. Springer, 485–585.

13. Ipeirotis, P. G., Provost, F., & Wang, J. (2010). Quality management on
Amazon Mechanical Turk. In Proceedings of the ACM SIGKDD workshop on
human computation. ACM, 64–67.

14. Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern recognition
letters, 31(8), 651–666.

15. Madi-Wamba, G., Li, Y., Orgerie, A., Beldiceanu, N., & Menaud, J.
(2017). Green energy aware scheduling problem in virtualized datacenters. In
ICPADS 2017. IEEE Computer Society, 648–655.

16. Nielsen, M. A. (2015). Neural networks and deep learning. Determination Press.
17. Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments

on amazon mechanical turk.
18. Scholkmann, F., Boss, J., & Wolf, M. (2012). An efficient algorithm for

automatic peak detection in noisy periodic and quasi-periodic signals. Algorithms,
5(4), 588–603.

19. Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of
clusters in a data set via the gap statistic. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 63(2), 411–423.

20. Turk, A. M. (2012). Amazon Mechanical Turk. Retrieved August, 17, 2012.
21. Vishwanath, K. V. & Nagappan, N. (2010). Characterizing cloud computing

hardware reliability. In Proceedings of the 1st ACM symposium on Cloud comput-
ing. ACM, 193–204.

