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a b s t r a c t

In this paper, we present a unified framework for the analysis of video databases by using Markov
spatio-temporal random walks on graph. The proposed framework provides an efficient approach for
clustering, data organization, dimension reduction and recognition. The aim of our work is to develop a
vision-based approach for human behaviour recognition. Our contribution lies in three aspects. First,
we employ 3D Zernike moments to encode the object of interest in a video clip. Then, we propose a new
method to represent the video database as a weighted undirected graph where each vertex is a video
clip. The weight of an edge between two video clips is defined by a Gaussian kernel on their 3D Zernike
moments and their respective neighbourhoods in the feature space. Our objective is to obtain a robust
low-dimensional space through spectral graph embedding which provides efficient keypoints tran-
scription into an euclidean manifold, and allows to achieve higher classification accuracy through
agglomerative categorization. Finally, we describe a variational framework for manifold denoising
based on p-Laplacian, thereby lessening the negative impact of outliers, enhancing keypoints
classification and thus, boosting the recognition accuracy. The proposed method is tested on the
Weizmann and KTH human action datasets and on a hand gesture dataset. The retrieved results using
the 3D Zernike moments prove that the proposed method can effectively capture the form of the
behaviours with low order moments. Moreover, our framework allows to classify various behaviours
and achieves a significant recognition rate.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In many applications, such as video surveillance, unusual
behaviour detection and sign language translation, it is important
to recognize the human activity in order to interpret its behaviour.
This latter can be defined as a temporal succession of primitive
actions being performed by the human subject along the video clip
and that may be composed to form a complex activity. The
recognition of actions and gestures remains a challenging research
problem. Most of the methods proposed to deal with this problem
are based on computing either 2D or 3D appearance models from a
silhouette, where a typical important task consists in identifying
different body parts such as heads, hands, feet and joints. Other

methods seek to monitor and interpret the human behaviour using
motion estimation and description techniques, such as optical flow.
To recognize human behaviour, Ali et al. [1] use person silhouettes
to classify a continuous set of actions by extracting skeleton
properties from the shape. Star skeleton features have been
introduced by Fujiyoshi et al. [2] to extract 2D posture from a
silhouette in real time. A feature star distance is defined so that
feature vectors could be mapped into symbols by Vector Quantiza-
tion. Based on this distance, the classification of actions is achieved
by Hidden Markov Models (HMM). Another approach presented by
Ahmad et al. [3] consists in extracting optical flow and body shape
features from multiple viewpoints to recognize actions. The silhou-
ette of a person is represented by its lower-dimensional subspace
using PCA, and each action is represented using a set of multi-
dimensional discrete HMMs modelled independently for any view-
ing direction. Lawrence et al. in [4,5] have introduced the Gaussian
Process Latent Variable Model (GPLVM) for non-linear dimension-
ality reduction allowing the visualization of high dimensional
data. Unlike PCA, this method performs data mapping from the
embedded space (latent space) to the data space. In [6], this model
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is used to estimate the 3D articulated human pose from silhouettes.
Inspired by Lawrence and Hyvarinen [5], Wang et al. in [7] have
introduced the Gaussian Process Dynamic Model (GPDM) which
comprises a low-dimensional latent space with associated
dynamics, and a mapping from the latent space to an observation
space. Effectively, GPLVM and GPDM can learn a non-linear map-
ping between the human motion parameter space and a latent
space by providing an inverse mapping. They allow the description
of the humanmotion in a low-dimensional latent space. Wang et al.
in [7] use the GPDM to learn models of human pose and motion
from high-dimensional motion capture data. Urtasun et al. in [8]
use GPLVM and GPDM to learn prior models for tracking 3D human
walking styles. They obtained good results even in the case of
serious occlusion. Efros et al. in [9] compare two actions based on
the features extracted from optical flow measurements in the
spatio-temporal space. Manor and Irani [10] propose multi-scale
distributions of temporal gradient for isolating and clustering
events within long continuous video sequences.

To detect video events, Zhu et al. [11] propose a spatio-
temporal descriptor composed of low level image attributes, such
as image gradients and optical flows, to capture the character-
istics of actions in terms of their appearance and motion patterns
in a space–time cube. A set of bag-of-words (BoW) features are
constructed from this descriptor at multiple spatial pyramid
resolution levels. Then, the action category is identified by fusing
the classification results of SVM classifiers at all spatial pyramid
levels. In [12], Laptev et al. compare two actions by matching
points of interest (Harris). Blank et al. [13] use a stack of points,
where silhouettes are extracted and evaluated by using the
Poisson equation for each point. Bobick and Davis suggest the
use of motion energy images (MEI) and those of motion history
(MHI) [14] to represent how an action is performed using
different levels of intensity based on the time since the silhouette
was captured. At another level, the methods proposed for hand
gesture recognition are mainly divided into two approaches.
The Data-Glove based approaches which use sensor devices for
digitizing hand and fingers, and the vision based approaches
which require only a camera. This poses a challenging problem
for hand postures and gesture recognition regardless of a number
of issues including the complicated nature of static and dynamic
hand gestures, complex backgrounds, and occlusions. Early
methods dedicated to the hand gesture recognition problem
consist in detecting the presence of the color of markers on the
fingers in order to identify which ones are active in the gesture.
A review of existing methods for the interpretation of hand
gestures is presented in [15]. Recent methods based on advanced
computer vision techniques do not require markers. Concretely,
and from a different point of view, these methods could be
divided into two further main approaches: on the one hand, the
3D hand model based approaches [16], which require the use of
geometrical models (mesh) and animation techniques to capture
the hand articulations and motion. On the other hand, appearance
based approaches [17], which use image features to model the
visual appearance of the hand. In [18], Chang et al. propose the
use of curvature space method to perform hand gesture recogni-
tion, which involves finding the boundary contours of the hand.
Other computer vision tools, used for 2D and 3D hand gesture
recognition, include specialized mappings architecture [19] and
particle filters [20].

1.1. Outline

In this paper we develop a new framework which allows a
vision-based approach for human behaviour recognition. The
proposed framework is composed of three phases which may be
executed separately but sequentially. First, we use 3D Zernike

moments to describe the object of interest (OI) in the video clip.
These descriptors are scale, rotation and translation invariants.
In addition, they allow the capture of both temporal and spatial
information. Extracting OI have its own problems, therefore, we
assume that it has been already segmented and that it represents
one person. After that, we propose a diffusion framework for
dimensionality reduction which provides a sound and efficient
framework for embedding coordinates and classifying videos in
an euclidean manifold. In light of this we will describe a varia-
tional framework for manifold denoising to enhance keypoints
classification, thereby lessening the negative impact of outliers
onto our variational shape framework. The major novelties of our
work lie in making the proposed approach more robust (less
susceptible to particularities of the data or to noise) and achieving
higher classification accuracy through agglomerative categoriza-
tion. The proposed framework will be validated through two
applications: (1) Human actions categorization and (2) A vision-
based approach for object properties identification. The basic idea
of our work is to consider all videos as a weighted graph,
where its vertices (video clips) are represented by the 3D volumes
(3D Zernike descriptors), and its edges represent the similarity
between connected vertices. The weight of an edge between
two video clips is defined by a Gaussian kernel on their 3D
Zernike moments and their respective neighbourhoods in the
feature space. The salient points of our Graph-based frame-
work are:

1. The spectral clustering reduces the clustering problem to a
graph partitioning problem. A spectral decomposition of this
graph is achieved by computing the eigenvalue decomposition
of the normalized graph Laplacian. Then, a low-dimensional
euclidean manifold embedding is inferred from this decom-
position. The proposed algorithm captures and exploits the
similarity between patterns, in the complete graph, dynami-
cally without training. As additional information, we use an
euclidean distance between vertices in the measure space.

2. To enhance robustness, we proceed to a regularization of the
graph that allows denoising and simplifying data. In this stage,
we can select ‘‘reliable’’ set of neighbours for each vertex in its
non-local neighbourhood. Thus, the clustering is performed in
the inferred regularized euclidean manifold.

Note that our framework relies on three hypotheses:

1. Preservation of the distance relationship.
2. Uniformity of the elements sampling.
3. Convexity of the elements.

It is worth mentioning that at each phase, we will use a
different graph (i.e.: a graph in the feature space to allow spectral
embedding, and a graph in the measure space (the embedded
space) to manifold regularization). Tests have been conducted on
three video datasets. The obtained performance evaluation results
show that our framework allows to classify efficiently the videos
and achieve an accurate recognition rate. The rest of this paper is
structured as follows: Section 2 presents the background and the
preliminaries of the proposed framework. In Section 3, we detail
how the 3D Zernike moments are used to describe the OI in the
video clip. Section 4 gives an overview of our spectral embedding
framework. We explain in Section 5, a discrete regularization on
the graph in the embedded space to enhance data robustness.
Experimental results are presented and commented in Section 6.
In the last section, we conclude our paper and discuss future
extensions.
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2. Preliminaries

The basic idea behind our framework is to represent a
database by a weighted undirected graph G¼ ðV ,E,wÞ, where
V ¼ ðv1,v2, . . . ,vnÞ, is a finite set of vertices representing a finite
data set, and EDV $ V , a finite set of edges representing the
similarity between connected vertices. Let f(v) be a function
defined on each vertex v of the dataset V, in a q-dimensional
space, and represented by the tuple: ðf 1,f 2, . . . ,f qÞARq. Thus,
every vertex vAV is assigned with a local feature vector denoted
by f ðvÞARq. Many choices can be considered for f(v). In the
simplest case, one can consider f(v)¼v. There exist several
popular methods that transform the set V with a given pairwise
similarity measure w into a graph G¼(V,E,w). Among the existing
methods, we can quote the e-neighbourhood graph where two
points u, vAV are connected by an edge if Jf ðuÞ%f ðvÞJre, e40.
We denote then by u& v the fact that the vertex u belongs to the
e-neighbourhood of v ðuAN eðvÞÞ, which is defined by:

N eðvÞ ¼ fuAV ,f ðuÞ ¼ ðf 01, . . . ,f
0
qÞ9 9f i%f 0i9rei, 0o irqg ð1Þ

Another important graph is the k-nearest neighbours graph
where two points u, vAV are connected by an edge if u is among
the k-nearest neighbours of v. For images, classical graph repre-
sentations are the grid graph and the region adjacency graph.

Constructing similarity graphs consists in modelling local and
non-local neighbourhood relationships between data points. The
similarities between these points are estimated by comparing
their respective features which depend, generally, on the function
f and the set V. Then, let us define a non-local feature vector
denoted by FðvÞARp, and computed from the patch surrounding
the vertex v as follows:

FðvÞ ¼ ½f ðuÞ,uABsðvÞDN eðvÞ(T ð2Þ

BsðvÞ is a bounding box of size s centred at v. Therefore, the
weight function w associated to a graph G can incorporate local
and/or non-local features according to the topology of the
considered graph. It gives a measure of the similarity between a
vertex and its neighbours that can incorporate local and non-local
features, and is defined as follows:

wðu,vÞ ¼
exp %

Jf ðuÞ%f ðvÞJ2

h2
1

 !

:exp %
JFðuÞ%FðvÞJ2

h2
2

 !

for each u& v

0 otherwise

8
><

>:

ð3Þ

The scale parameter hi can be estimated using the standard
deviation depending on the variations of Jf ðuÞ%f ðvÞJ and JFðuÞ%
FðvÞJ over the graph, respectively.

3. 3D Zernike moments

To interpret the human behaviour within a video clip, the
Object of Interest (OI), should be extracted and identified before
its characterization. Extracting voxels is itself a difficult task
having its own problems and is not studied in this paper.
We assume that the OIs have been already extracted by using
an adequate method such as the graph cut algorithm [21,22],
which is useful to separate objects from the background. In a
previous work [23], we have used this algorithm to perform an
interactive video object segmentation. That was motivated by the
fact that it is allowed for a straightforward incorporation of prior
knowledge into its formulation.

Each OI is referred to by a vertex vAGðVÞ and can be viewed as
a binary volume expressed by g(x,y,t). For each voxel of the OI, let
g0 represent its initial color/intensity and, x,y,t its spatio-temporal
coordinates. To represent how an action is performed, we use 3D

Zernike moments to describe the spatio-temporal features (x,y,t)
of the object of interest.

Let Zv
nlmðx,y,tÞ be the 3D Zernike functions:

Zv
nlmðx,y,tÞ ¼ RnlðrÞ ) Ylmðy,fÞ ð4Þ

where Rnl(r) is the radial term, and Ylmðy,fÞ are the spherical
harmonics of the l-th degree orthonormal on the surface of the
unit sphere with m ranging from % l to l and n% l being an even
non-negative integer (n% l¼2k). The equality (n% l)/2¼k is the
orthonormality condition of the 3D Zernike polynomials inside
the unit sphere (more details are in [24]). Ylmðy,fÞ is the angular
term. Znlm

v can be written in a more compact form as a linear
combination of monomials of order up to n:

Zv
nlmðx,y,tÞ ¼

X

pþqþ rrn

Xpqr
nlmx

pyqtr ð5Þ

where, for k¼ ðn%lÞ=2:

Xpqr
nlm ¼ clm2

%m
Xk

s ¼ 0

qkls
Xs

a ¼ 0

s

a

! " Xs%a

b ¼ 0

s%a
b

 !
Xm

r ¼ 0

ð%1Þm%r m

r

! "

ir
Xðl%mÞ=2

m ¼ 0

ð%1Þm2%2m l

m

 !
l%m
mþm

 !
Xm

s ¼ 0

m
s

! "
ð6Þ

and the normalization factor Clm is given by:

clm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1ÞðlþmÞ!ðl%mÞ!

p

l!
ð7Þ

and

qkls ¼
ð%1Þk

22k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ4kþ3

3

r
2k

k

! "
ð%1Þs

k

k

! "
2ðkþ lþsÞþ1Þ

2k

! "

kþ lþs

k

! " ð8Þ

Since Znlm
v forms a complete orthonormal system, it is possible

to approximate the original function g by a finite number of 3D
Zernike moments Ov

nlm as follows:

gðx,y,tÞ ¼
X1

n ¼ 0

Xn

l ¼ 0

Xl

m ¼ %l

Ov
nlmZ

v
nlmðx,y,tÞ ð9Þ

The 3D Zernike moments are defined by

Ov
nlm ¼

3
4p

X

pþqþ rrn

ð%1ÞmXpqr
nlmm

v
pqr ð10Þ

mpqr
v denotes the geometrical moments of order (pþqþr) of

the binary volume, and is defined by:

mv
pqr ¼

XNx%1

x ¼ 0

XNy%1

y ¼ 0

XNt%1

t ¼ 0

xpyqtrgðx,y,tÞ ð11Þ

The choice of the maximum order among the 3D Zernike
moments is crucial to describe the subject behaviour and conse-
quently, carry more or less details on the video binary volume.
It is selected experimentally to form the descriptor vector f(v) of
each video v. It is defined by (2lþ1) moments as follows:

f ðvÞ ¼ fVv
nl ¼ JOv

nlmJ : nA ½0,N(,lA ½0,n(,mA ½%l,l(g ð12Þ

The distance between two videos represented by u and v,
respectively, is computed using their 3D Zernike moments as
follows:

Jf ðuÞ%f ðvÞJ¼ JVu
nl%Vv

nlJ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

n ¼ 0

Xn

l ¼ 0

ðVu
nl%Vv

nlÞ
2

vuut ð13Þ
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4. Behaviour subspace embedding

The goal of subspace embedding is to find an optimized low-
dimensional space where relevant information is captured, and
similarity between 3D Zernike moments, and therefore between
video clips, can be easily expressed. So, from the set of the
3D Zernike moments VARp, obtained in the previous phase of
the framework, we develop an appropriate euclidean mapping
Y ¼ fy1,y2, . . . ,yngARq, representing the low-dimensional space
(q5p). To this end, we construct an undirected graph G on V to
learn a kernel matrix that represents the provided side-informa-
tion as well as the local/nonlocal geometry of the features.
Through the eigendecomposition of the matrix associated to the
random walks on G, we define a diffusion distance Dtðyi,yjÞ. This
transformation is now commonly used for data analysis and
dimension reduction [25,26].

The transition matrix P on G given by: P¼ fpð1Þðu,vÞ ¼wðu,vÞ=P
v & uwðu,vÞg, explicits all possible one time step transitions, and

provides therefore, the first order information of the graph structure.
Let Pt be the t power of the matrix P that denotes the set of all
transition probabilities pðtÞðu,vÞ of going from one vertex to another
one in t-time steps. This t-time steps transition probability satisfy the
Chapman–Kolmogorov equation, that for any k such that 0okot:

pðtÞðu,vÞ ¼ PrðXt ¼ v9X0 ¼ uÞ ¼
X

yAV

pðkÞðu,yÞ ) pðt%kÞðy,vÞ ð14Þ

For clustering purposes, a connection with the spectral decom-
position of Pt is established (see for detail [27]) to generate an
euclidean coordinates for the low-dimensional representation of
the vertices of the graph G at time t, where for each vertex, these
coordinates are given by:

CtðuÞ ¼ ðlt1c
1ðuÞ,lt2c

2ðuÞ, . . . ,ltnc
nðuÞÞT ð15Þ

{lti , c
iðuÞ} are the eigenvalues and the eigenvectors associated

with the normalized graph Laplacian of Pt. They correspond to the
non-linear embedding of the vertices of the graph G onto the new
euclidean low-dimensional space. Thus, the diffusion distance,
D2
t ðu,vÞ, between the vertices (3D Zernike moments) of the graph

G can be expressed in the embedded space by

D2
t ðu,vÞ ¼

X

iZ1

lt2i ðciðuÞ%ciðvÞÞ
2 ¼ JCtðuÞ%CtðvÞJ2 ð16Þ

We note in particular that this new distance depends on the
time parameter t which is considered here as a precision para-
meter, where for large values, more information on the structure
of the graph is captured. The retrieved eigenvalues are unique and
ordered so that: 1¼ 9l19Z9l29Z ) ) ) Z9ln9Z0. Consequently, the
first largest eigenvalues and eigenvectors carry the relevant
information of the initial complex vectors (3D Zernike moments),
and are well-suited to define the new euclidean coordinates.
Practically, one can use the subjective scree-test of Cattell [28] to
determine the most important k-th dimensions that catch the
pertinent information. This criterion is based on the analysis of
differences between consecutive eigenvalues, where a breakpoint
would be located where there is the biggest change in the slope of
the curve of eigenvalues. The first k-th eigenvalues correspond,
then, to the number of dimensions to retain (see for detail [29]).
Another simple way is to consider the first dominant eigenvalues
for which their sum is great than a defined threshold (e.g. Z80%).

Applying a clustering algorithm using these new coordinates
allows to categorize the actions of the video database. Fig. 1
shows a clustering of the KTH dataset actions in the feature space
(i.e. by using the 3D Zernike moments vectors directly, (a class
of action per colour)). We can easily point out the ambiguities
in actions classification, particularly between jogging, walking,
running and boxing.

In contrast, Fig. 2 shows the projection of same dataset actions
in the reduced space. Each action is represented by the first 10-th
coordinates, corresponding to the low space mapping of the 3D
Zernike moments. For display convenience, we keep only the first
three axes. Here the actions classes are correctly separated and
the dataset categorization is clearly visible.

It is worth mentioning that for large databases one can use
iterative solvers to determine the eigenvalues of a subset, and

Fig. 1. The KTH actions, projected in the feature space.

Fig. 2. The KTH actions, projected in the reduced space.
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therefore, performs clustering on a restricted set. In [30], a
description of the Nyström method is presented. This latter can
be used also for incremental clustering, especially in the case
where the size of the database is not known in advance, and is
filled in as and when capturing videos. This would be very
suitable for online video processing.

5. 3D eigenbehaviour regularization

Our motivation for this section is to transcribe the variational
methods on a discrete graph. For that purpose, we propose to
extend the scope of discrete regularization [31] to high-dimen-
sional data. We have implemented algorithms for regularization
on graphs with p-Laplacian with pA (0,þ1½, for denoising and
simplification of data in embedded space. Readers can refer for
further details on this formalism to [32].

Recall that the function f0 is an observation of an original
function f affected by noise n:f0¼ fþn. The discrete regularization
of f 0AHðVÞ using the weighted Laplacian operator consists to
seek a function f nAHðVÞ which is smooth enough on G, and
sufficiently close to f0. Variational models of regulation can be
described by the following minimization problem:

f n ¼ min
f AHðVÞ

1
2

X

vAV

J,f vJ
2
2þ

l
2
Jf%f 0J2HðVÞ

( )

ð17Þ

The fidelity parameter l specifies the trade-off between the first
energy term, the smoothness term or regularizer, and the second
term, called fitting term. The solution of this regularization
problem can be obtained by using the Gauss–Jacobi iterative
algorithm presented as follows, where, for all (u,v) in E:

f ð0Þ ¼ f 0

f kþ1ðvÞ ¼
1

lþ
P

u & vwðu,vÞ
ðlf 0ðvÞþ

P
u & v

wðu,vÞf ðuÞkÞ

8
><

>:
ð18Þ

The new value f ðkþ1ÞðvÞ depends on the original value f0(v) and a
weighted average of the existing values in a neighbourhood of v.
Fig. 3 represents the projection of videos dataset over the three
principal axis of the embedded space. The graph is built in this
space and the new coordinates are classified. As we can see, we
observe the difference between Fig. 3-left and Fig. 3-right. More

simplification of the graph is obtained, the manifold shape is
more clear and the classification process is improved when the
manifold is regularized.

6. Experimental validation

To assess the reliability of our approach, we consider two
applications: (1) human actions categorization and (2) a vision-
based approach for objects properties identification. We conduct
our experiments on three videos datasets. Two of them are
devoted to human actions categorization, namely: the KTH [12]
and Weizmann datasets [13]. The Third dataset, EPHE dataset,
contains hand gestures video clips and is the property of the
‘‘Ecole Pratique des Hautes Etude, Sorbonne’’. The KTH and
Weizmann datasets are widely studied under various aspects,
and multiple results are available. Therefore, they offer an inter-
esting challenging benchmark to evaluate our results. Moreover,
the hand gestures dataset allows to test our framework under
another aspect, and thus consolidate the obtained results.
We recall that our framework is composed of three phases where,
first, a binary volume, representing the object of interest (OI) is
characterized by using 3D Zernike moments. Secondly, an eucli-
dean low-dimensional mapping of these descriptors is computed
through spectral graph embedding and, finally, to boost the
classification accuracy, a graph regularization in the inferred
embedded space is performed.

6.1. Human actions categorization

The silhouettes of the OI are provided with both the KTH and
Weizmann datasets. Thus, one can describe them directly by
using the 3D descriptors.

6.1.1. The Weizmann dataset
This dataset contains a total of 90 video clips performed by

different individuals. Each video clip contains one person per-
forming an action. There are ten categories of actions involved in
the dataset, namely, walk, run, skip, jack, jump, jump in place, side,
wave with one hand, wave with two hands, bend, and they are

Fig. 3. Discrete regularization of manifold with linear Laplacian.
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referred to, hereafter, by (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10),
respectively. Fig. 4 shows some clips from this dataset.

The choice of the proper order among the 3D Zernike moments
is crucial to describe the subject behaviour and consequently
carry more or less details on the video binary volume. A common
approach consists in choosing the moment order which allows a
better reconstruction of the Object of Interest. In [33], a grey-level
image was reconstructed using Zernike moments of increasing
order. It was illustrated that using Zernike moments of order
6 resulted in a reconstruction with an error of 10%. This error was
of 6% using Zernike moments of order 20. However, this result
may vary depending on the case studied, and the optimal order
depends on the nature of the objects to reconstruct and therefore
cannot be generalized. Moreover, in terms of sensitivity to
additive random noise, it has been shown in [34] that in the
presence of noise, the image is best reconstructed by using
moments of up to a certain optimal order. Reconstructing the
image by using moments of orders higher than the optimal order
will degrade its quality because higher order moments are more
vulnerable to white noise. In this paper, we are primarily inter-
ested in human activity recognition and consequently in the
overall performance of the proposed framework. To select a
proper order of moment which allows a better recognition rate,
we have tested different ones. Before performing the regulariza-
tion phase, Table 1 shows the changes of the recognition rates
with different orders of moment. As we can see, a higher
recognition rate is obtained by using the moment of order 7,
which has practically no difference with that obtained by using
the moment of order 6.

Using the moment of order 7 and after the graph regulariza-
tion in the reduced space, we obtain the confusion matrix for the
10 actions of this dataset shown in Table 2.

It is quite clear that performing discrete regularization in the
inferred reduced space enhances significantly the actions recog-
nition rates. Overall, the mean accuracy is 96.33%, whereas for the
same order, without regularization, the mean accuracy is 91.08%.
The results obtained from this experiment are compared with
those reported in other works [10,35–38] (see Table 3). From this
comparison, it turns out that our method performs competitively

with other state-of-the-art methods, and achieves encouraging
results compared with some previously published ones.

6.1.2. The KTH dataset
We have tested our approach on a second dataset: the KTH

human motion dataset. The video clips of this dataset include six
types of human actions (i.e., walking, jogging, running, boxing,
hand waving, and hand clapping). Each of these actions is
performed by a total of 25 individuals in four different settings
(i.e., outdoors, outdoors with scale variation, outdoors with
different clothes, and indoors). Fig. 5 shows some clips from this
dataset.

After characterizing the OIs by the 3D Zernike moments, a low-
dimensional mapping is inferred, and new euclidean coordinates
are generated for each OI. The projection of the video clips in this
reduced space by using these new coordinates is illustrated in
Fig. 6.

Though, the video dataset is clearly categorized, still some
ambiguities remain. These ambiguities are better separated in
Fig. 7, which projects the same video clips in the regularized
reduced space.

Table 4 illustrates the confusion matrix for this dataset. We
can see that the results obtained with regularization are con-
siderably better. Overall, the mean accuracy is 95.17%.

To confirm the reliability of our framework, the results
obtained for this experiment are, also, compared with those
obtained with other state-of-the-art methods [35,37–40] (see
Fig. 8 and Table 5). As we can see, the results are compared
favourably and our contribution is contrasted.

6.2. A vision-based approach for objects properties identification

In a similar way, we have also tested our approach for hand
gesture recognition. The key problem, in this context, is how to
make hand gestures understood by computers in order to recog-
nize some object properties using only a camera. In this paper, we
aim to recognize the texture and the consistency of an object
through the video analysis of the hand actions. Two properties of
the object are studied: the texture, which could be either smooth

Fig. 4. Example of actions from Weizmann dataset.

Table 1
Actions recognition rates comparison.

Moment order Actions recognition rates (%) Mean accuracy

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Order7 93.1 95 87.2 96 79 93 89 91.3 93.2 94 91.08
Order6 92.5 94.8 86.4 95.9 78.2 93 88.8 90.6 92.9 93.7 90.68
Order5 91.1 90.7 85.9 92 77.3 84.8 84.5 85.2 87.1 91 86.96
Order4 88.7 86 84.7 85 75 76.3 79.3 78 80.7 88.3 82.2
Order3 85 80 83 75 70 65 73 68 71 81 75.1

Table 2
Confusion matrix by using 3D Zernike moments of order 7.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 100 0 0 0 0 0 0 0 0 0
a2 2 98 0 0 0 0 0 0 0 0
a3 0 3 97 0 0 0 0 0 0 9
a4 0 0 0 100 0 0 0 0 0 0
a5 10 0 0 0 83 7 0 0 0 0
a6 0 0 2 0 0 98 0 0 0 0
a7 0 0 0 0 0 0 96.3 1.3 2.4 0
a8 0 0 0 0 2 0 0 96 0 2
a9 0 0 0 0 0 0 0 4 96 0
a10 0 0 0 0 0 0 0 1 0 99
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or granular, and the consistency, which could either be hard or
soft. We are inspired from the seminal description of Lederman
and Klatzky [41], and we studied four exploratory procedures:

1. Lateral Motion for Smooth Object (LMSO).
2. Lateral Motion for Granular Object (LMGO).
3. Pressure for Soft Object (PSO).
4. Pressure for Hard Object (PHO).

We conducted experiments on the EPHE corpora composed of
21 gesture video clips representing manipulation of different

objects by both the left and the right hand. Fig. 9 shows the
manipulated objects and some frames extracted from the
video clips.

To verify the effectiveness of the 3D Zernike moments in our
approach, we applied the same process separately on each hand
(left/right hand). Fig. 10 shows the result of projecting separate
hands by using the Fiedler vector, which allows to categorize left
and right hands, respectively. For the classification of the ges-
tures, we opted for the separation of the two hands. Each hand is
represented by its 3D moments. The distance between two
gestures is calculated by:

Jf ðvÞright%f ðuÞrightJþJf ðvÞleft%f ðuÞleftJ
2

:

The result of the recognition of the left hands and right hands in
these videos was 100%. The recognition rates of the gestures in
the video clips is summarized in Table 6. Once more, discrete

Table 3
Performance comparison on Weizmann dataset.

Method Actions recognition rates (%) Mean accuracy

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Our approach 100 98 97 100 83 98 96.3 96 96 99 96.33
Kellokumpu et al. [37] 100 100 100 100 89 100 100 100 100 100 98.9
Xinghua et al. [35] 100 90 90 100 100 100 100 100 100 100 97.8
Dhillon et al. [38] 91 93 69 94 92 92 90 91 92 95 89.9
Vezzani et al. [36] 100 99 68 87 81 95 57 100 86 94 86.7
Zelnik et al. [10] 82.4 34.7 43.5 95.5 29.2 84.9 50.8 29.6 51.9 86.6 58.91

Fig. 5. Example of actions from KTH dataset.

Fig. 6. The KTH actions, projected in the reduced space.

Fig. 7. The KTH actions, projected in the regularized reduced space.

Table 4
Confusion matrix without and with regularization.

bx jg rg wg hd-cl hd-wa

Boxing 95.6/98 0 0 3/2 1.4/0 0
Jogging 1.6/0 84.2/89 6.2/6 8/5 0 0
Running 0 3/1 95.4/98 1.6/1 0 0
Walking 1/0 2/0 0 97/100 0 0
Hand-clapping 6/5 0 0 0 89.5/92 4.5/3
Hand-waving 5.6/4 0 0 0 5/2 89.4/94
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graph regularization in the inferred reduced space allows to
achieve better results. This consolidates the results obtained in
the first application and, thus, confirms the effectiveness of our
approach.

7. Conclusions

In this paper we propose a new method for the recognition
of human behaviour based on an extension of the Zernike
moments to the spatio-temporal domain in order to characterize
human actions in video clips. In fact, 3D Zernike moments have

interesting properties for describing structural and temporal
information of a time varying video sequence. Our approach is
composed of three main steps. The first one uses 3D Zernike
moments to describe the silhouette and the dynamic of the object
of interest (OI) in the video clip. Next, in the second step, we
construct a visual similarity network, by computing the pairwise
similarity, based on the latter 3D features. The basic idea
behind this step is to consider all videos as a weighted graph
whose vertices (video clips) are represented by the 3D volumes
(3D Zernike descriptors), and edges represent the similarity
between connected vertices. Finally, we describe a variational
approach for manifold denoising that allows us to exploit the
geometry of the data distribution.

We validated this framework through two applications: (1)Human
actions categorization and (2) a vision-based approach for objects
properties identification. In light of the obtained results for both
applications, it turns out that our framework achieves a significant
recognition rates with respect to other state-of-the-art methods and
that the 3D Zernike moments can effectively capture the form of the
behaviours with low order moments, which confirms the effective-
ness of the proposed approach.

Our framework has a natural connection to reproducing Kernel
Hilbert Space. Under this space, we can consider the problem of
learning a relationship between two structured input and output

Fig. 8. Actions recognition based on our approach compared with some state of
the art methods (KTH dataset).

Table 5
Performance comparison on KTH dataset.

Methods Rates (%)

Our approach 95.17
Xinghua et al. [35] 94.0
Costantini et al. [39] 91.17
Ballan et al. [40] 92.17
Kellokumpu et al. [37] 93.77
Dhillon et al. [38] 84.67

Fig. 9. Manipulated objects and frames extracted from the video clips.

Fig. 10. Fiedler vector to order left and right hands.

Table 6
Gesture recognition based on 3D Zernike moments without and with
regularization.

Recognised gesture Recognition rates (%)

Without regularization With regularization

LMSO 90 93.6
LMGO 85.7 89.2
PSO 71.4 77.4
PHO 80 85.9
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datasets from labelled and unlabelled samples. Thus, as an
extension to the current work, one can consider the use of
incremental solvers like the nyström extension to categorize large
video databases where a subset has been already classified.
Indeed, this can be very useful for many applications such as
online video categorization.
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