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ABSTRACT 

Two of the challenges in appearance-based gaze tracking are: 1) 

prediction accuracy, 2) the efficiency of calibration process, 

which can be considered as the collection and analysis phase of 

labelled and unlabelled eye data. In this paper, we introduce an 

appearance-based gaze tracking model with a rapid calibration. 

First we propose to concatenate local eye appearance Center-

Symmetric Local Binary Pattern(CS-LBP) descriptor for each 

subregion of eye image to form an eye appearance feature 

vector. The spectral clustering is then introduced to get the 

supervision information of eye manifolds on-line. Finally, 

taking advantage of eye manifold structure, a sparse semi-

supervised Gaussian Process Regression(GPR) method is 

applied to estimate the subject�s gaze coordinates. Experimental 
results demonstrate that our system with an efficient and 

accurate 5-points calibration not only can reduce the run-time 

cost but also can lead to a better accuracy result of 0.9°.    

Keywords 

Appearance-based gaze estimation,  spectral clustering,  

Gaussian process regression  

1. INTRODUCTION 
As gaze tracking technology improves in the last 30 years, gaze 

tracker offers a powerful tool for diverse study fields, in 

particular eye movement analysis and human-computer 

interaction (HCI). Nowadays most commercial gaze trackers 

use feature-based method to estimate gaze coordinates, which 

relies on video-based pupil detection and the reflection of infra-

red LEDs. In general, there are two principal methods: 1) Pupil-

Corneal Reflection(P-CR) method [10], [24], [2]) 3D model 

based method [15], [19]. IR light and extraction of pupil and iris 

are important for these feature-based methods, and the 

calibration of cameras and geometry data of system is also 

required. 

Appearance-based methods do not explicitly extract features 

like the feature-based method, but rather use the cropped eye 

images as input with the intention of mapping these directly to 

gaze coordinates [5]. The advantage is that they do not require 

calibration of cameras and geometry data like feature-based 

method. Moreover, they can be less expensive in materials than 

feature-based method since they don�t have to work on the same 
quality images like feature-based method does. But they still 

need a relatively high number of calibration points to get 

accurate precision. Different works can be seen in multilayer 

networks [1], [16], [22], or Gaussian process [11], [21], or 

manifold learning [9], [17]. Williams et al. [21] introduces the 

sparse, semi-supervised Gaussian Process (S3GP) to learn 

mappings from semi-supervised training sets. Fukuda et al. [4] 

propose a gaze-estimation method that uses both image 

processing and geometrical processing to reduce various kinds 

of noise in low-resolution eye-images and thereby achieve 

relatively high accuracy of gaze estimation.  

Manifold learning is widely applied to solve many problems in 

computer vision, in pattern recognition etc [7], [13], [20], [23]. 

Manifold learning, often also referred to as non-linear 

dimensionality reduction, is also one of the approaches applied 

in appearance-based gaze tracking [17], and one of the reason to 

apply manifold learning techniques is to reduce computational 

costs. Manifold learning means the process of estimating a low-

dimensional structure which underlies a collection of high-

dimensional data, also preserves characteristic properties of the 

set of high-dimensional data. Here we are interested in the case 

where the manifold lies in a high dimensional space D, but 

will be homeomorphic with a low dimensional space d (d < 

D). Laplacian Eigen maps [2], [3] most faithfully preserves 

proximity relations of a high-dimensional non-linear data set in 

the low dimensional space, by using spectral graph technique. 

Another important technique in an appearance-based gaze 

tracking system is the predictive uncertainty. In other words, 

how to map a new image of eye or an eye manifold to 2D 

screen coordinates. Supervised learning requires an arduous 

calibration process to form the training set with the number of 

samples. In contrast, a large number of unlabelled samples can 

be easily collected. The semi-supervised learning has attracted 

an increasing amount of interest recently. It is a promising 

family of techniques that exploit the �manifold structure� of the 
data; such methods are generally based upon an assumption that 

similar unlabelled data should be given the same classification. 

In addition, sparse techniques such as the SVM and RVM have 

been proven efficient in the gaze tracking application. The 

related works can be seen in [8], [9], [12], [17], [21]. Lu et al. 
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[8] use 15D feature vector to represent eye image content, and 

propose an Adaptive Linear Regression via l1-optimization to 

estimate gaze coordinates. Martinez et al.[9] employ multilevel 

Histograms of Oriented Gradients(HOG) features as appearance 

descriptor for eyes, and learn the mapping by Support Vector 

Regression(SVR). Noris et al.[12] present a wearable gaze 

estimation system based on Support Vector Machines(SVM), 

Gaussian Process Regression(GPR), and image appearance 

which is reduced by PCA (Principal Components Analysis). 

[21] uses a sparse regression model to infer eye-gaze mapping 

in real-time, which shows the performance of semi-supervised 

technique and the efficiency of sparsity in the experimental 

results. 

Our contributions are: 

· A subregion CS-LBP concatenated histogram is used as 

eye appearance feature which not only reduce the 

dimension of raw images, but also can be robust against 

the changes in illumination.  

· Laplacian Eigen maps is introduced to project eye feature 

samples to a subspace in order to get the clusters of these 

samples.  

· A sparse semi-supervised Gaussian process regression 

method infers the gaze coordinates by an active set which 

can be built on-line with limited numbers of samples and 

their manifold structures. 

The rest of the paper is organized as follows. Section 2 

describes the eye manifold learning to the proposed eye feature. 

Section 3 presents the proposed regression method to infer the 

gaze coordinates. Section 4 shows the experimental setup and 

results. Finally section 5 concludes the paper.  

2. EYE APPEARANCE MANIFOLD 

LEARNING 

2.1 Eye appearance descriptor 
Let an eye image I be a two-dimensional M by N array of 

intensity values, and it may also be considered as a vector of 

dimension M ×N. The proposed gaze tracker captures left and 

right eyes together and combines them into one image. Our eye 

image of size 160 by 40 becomes a vector of dimension 6400. 

Appearance-based gaze tracking methods mostly rely on the eye 

images as input. Extracting eye appearance descriptor not only 

helps to reduce the dimension of eye images, but also preserves 

the feature and variation of eye movements. 

There exist a number of eye appearance feature extraction 

methods for gaze tracking system, like multi-level HOG [9], 

eigeneyes by PCA [12], and subregions feature vector [8]. Lu et 

al. have proven the efficiency of using 15D subregions feature 

vector in [8]. To compute this feature vector, the eye image Ii is 

divided into N� subregions of size w ×h. Let S j denote the sum 

of pixel intensities in j th subregion, then feature vector Xi of 

the image Ii is represented by 

Here we introduce our subregion methods with Center-Sym- 

metric Local Binary Pattern (CS-LBP) to calculate low 

dimensional feature vector for raw eye image content. Local 

Binary Pattern (LBP) operator has been highly successful for 

various computer vision problems such as face recognition, 

texture classification etc. The histogram of the binary patterns 

computed over a region is used for feature vector. The operator 

describes each pixel by the relative graylevels of its 

neighbouring pixels. If the graylevel of the neighbouring pixel 

is higher or equal, the value is set to one, otherwise to zero.  

We calculate the CS-LBP [6] histogram, which is a new texture 

feature based on the LBP operator, for each subregion in 

Fig.1(a) and concatenate them to form the eye appearance 

feature vector. Instead of describing a centre pixel by 

comparing its neighbouring pixels with it in LBP, CS-LBP 

compares the centre-symmetric pairs of pixels in Fig.1(b). 

(a) (b) 

Figure 1. a) 40 subregions of an eye image sample b) CS-

LBP for a neighbourhood of eight pixels. 

 

The CS-LBP value of a centre pixel in position (x,y) is 

calculated as follows: 

where s(t) = , ni and ni+(N�2) are the gray values of 

centre-symmetric pairs of pixels of N equally spaced pixels on a 

circle with radius R , and the threshold T is a small value. From 

this equation, the value of CS-LBP may be any integer from 0 

to 2N�2 � 1, and the histogram dimension will be 2N�2. CS-LBP 

is fast to compute and its histogram has been proven to be 

robust against the changes in illumination as a texture descriptor 

[6]. 

2.2 Spectral clustering 
Graph Laplacians are the main tools in spectral graph theory. 

Here we focus on two kinds of graph Laplacian:  

· Unnormalized graph Laplacian.  

where W is the symmetric weight matrix with positive 

entries for edge weights between vertices. If wij = 0, then 

vertices i and j are not connected.  

D is the degree matrix: dii = � j=1
nw ij and dij = 0 i!j.  

· Normalized graph Laplacian.  

 

where Lsym is a symmetric matrix, and Lrw is closely 

related to a random walk. 
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There are 3 properties:  

1) � is an eigenvalue of Lrw with eigenvector v if and only if 

� and v solve the generalized eigenproblem Lv = �Dv.  

2) Lrw is positive semi-definite with the first engenvalue �1 

= 1 and the constant one vector 1 the corresponding 

eigenvector.  

3) All eigenvectors are real and it holds that: 1 = |�1|�|�2|� ... 

�|�n| . 

Laplacian Eigen maps use spectral graph technique to compute 

the low-dimensional representation of a high-dimensional non-

linear data set, and they most faithfully preserves proximity 

relations, mapping nearby input patterns to nearby outputs. The 

algorithm of Laplacian Eigen maps has a similar structure as 

LLE. First, one constructs the symmetric undirected graph G = 

(V,E), whose vertices represent input patterns and whose edges 

indicate neighbourhood relations (in either direction). Second, 

one assigns positive weights Wij to the edges of this graph; 

typically, the values of the weights are either chosen to be 

constant, say Wij = 1!k, or a heat kernel, as 

 where l is a scale parameter. In the 

third step of the algorithm, one obtains the embeddings !i  

m by minimizing the cost function: 

This cost function encourages nearby input patterns to be 

mapped to nearby outputs, with �nearness� measured by the 
weight matrix W. To compute the embeddings, we find the 

eigenvalues 0 = �1 ! �2 ! ... ! �n and eigenvectors v1,...,vn of 

the generalized eigenproblem: Lv = �Dv. The embeddings " : 
 i # (v1(i),...,vm(i)). 

Spectral clustering refers to a class of techniques which rely on 

the eigen-structure of a similarity matrix to partition points into 

disjoint clusters with points in the same cluster having high 

similarity and points in different clusters having low similarity. 

We follow the works of Shi and Malik (2000). Their algorithm 

of spectral clustering computes the normalized graph Laplacian 

Lrw, and its first k generalized eigenvectors v1,...,vk as 

embeddings, and then utilise k-means to cluster the points. 

From the section 2.1 we�ve introduced our subregion CS-LBP 

methods to extract the eye appearance feature descriptor. Here 

we�d like to at first obtain eye manifold distribution by using 
Laplacian Eigen maps, and then we apply the normalized 

spectral clustering. The Fig.2 shows eye samples of the 

subject�s eye movements when the subject follows the visual 
pattern(green points) shown in the screen. The Fig.3 

demonstrate the distribution of embeddings in the subspace. (a) 

gives the distribution of a dataset of 240 points which contains 

only the eye samples on the 8 points in the screen , while (b) 

contains only 120 eye samples from the 4 points in the 

corner(up right, up left, down left, down right). For a given 

number C of visual patterns, generally we can get l clusters U = 

{U1,U2,...,Ul} associated with weights W = {w1,w2,...,wl} by 

the size of cluster, where C ! l < n.

 

Figure 2. Eye calibration of 8 points 

                        (a)                      (b) 

Figure 3. (a) Eye manifolds in the phase of 8-points 

calibration 

(b) Eye manifolds in the phase of 4-points 

calibration (up-right, up-left, down-left, 

down-right) 

3. SPARSE SEMI-SUPERVISED GAUSSIAN 

PROCESS REGRESSION  METHOD 

In order to map feature vector X  M� to gaze coordinate 

output Y   × , which has two values (x-coordinate, y-

coordinate), we have a training set  = {( i, i)|i = 1, 2,...,n}, 

where i denotes an input vector of dimension M� and  i 

denotes a scalar output, n is the number of observations. Given 

this training set , we wish to make predictions for the new 

inputs � which is not in the training set. So we need to move 

from the finite training data  to a function f that makes 

predictions for all possible input values, where �
 ! f( �) = 

P( � |�, ), and P is the posterior distribution for the training 

set ). Gaussian Process (GP) is used to calculate this 

predictive distribution because it can be used as prior for 

Bayesian inference and it is known to be accurate both in terms 

of mean predictions and predictive uncertainty[14]. According 

to GP prior, joint distribution of  and � is: 

The joint distribution is a Gaussian process with zero mean and 

covariance function K, where 

Given n data points from training set  and n� test data points, 

K( , �) denotes the n × n� matrix of the covariances evaluated 

at all pairs of training and test points, and similarly for the other 

entries K( , ), K( �, �) and K( �, ). 

Taking a test data point x�, the covariance function K is 

calculated among all possible combinations of these points: 

, ).
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If  K(xi,xj)  has  a  high positive value,  our prior belief  is that     

yi and yj are highly correlated.                                                                            

In the training set , all the data  are labelled with . In 

order to minimize the degree of uncertainty of distribution of 

function f, we need to have sufficient labelled data. But in 

reality, labelled data are often, however, very time consuming 

and expensive to obtain, as they require the efforts of human 

annotators, who must often be quite skilled. For example, the 

calibration phase of appearance-base gaze tracking needs to 

select the best eye data corresponding the coordinates of 

calibration point. Generally, a training set can have only some 

labelled data , and a number of unlabelled data  ={(  i ) 

|i = 1, 2,...,m}. So the problem of effectively combining 

unlabelled data with labelled data is therefore of central 

importance in machine learning. 

Semi-supervised learning can be applied to have some 

supervision information on the distribution of the unlabelled 

data. In order to obtain a low run-time cost of the predictive 

uncertainty process, an active set  = { 1,..., k} (k < n) is 

proposed as a sparse solution, and is done by 4 steps: 

· Sort the clusters U of each visual pattern in section 

2.2 by their associated weights W and take the cluster 

with the most important size as Ulabelled.  

· Get the near centre exemplars set Xlabelled = { 1,...,

i} as labelled data (Fig. 4a) where  || i � �i|| < T, 

i  Ulabelled, i  n. �i is the centre of the cluster 

Ulabelled and T is a threshold.  

· Form Xunlabelled = { 1,... j} (Fig. 4b) where j

Ulabelled, and || j � i|| > T2.  

· For each unlabelled exemplars j, make  prediction 

j = P( j| j,Xlabelled), and  = Xlabelled  

Xunlabelled (Fig. 4c). 

Figure 4. Generation of active set 

4.  EXPERIMENTATION 
This section evaluates our proposed methods presented in the 

previous sections. Our experimentation is tested on MacBook 

Pro 8,1 with Intel Core i5-2415M CPU. Microsoft LifeCam 

HD-5000 is used for image acquisition of gaze tracking system 

in the experiments. The USB colour webcam captures 30 

frames per second with a resolution of 640 × 480.  

4.1 Eye detection and tracking 
The distance between the subject and the camera is about 40 - 

70 cm. To the entire RGB image captured from camera, we 

firstly use a face components detection model, which is based 

on Active Shape Model [18], to localize the eye regions and the 

corners. We introduce then Lukas-Kanade method to track the 

corner points in the following frames. Finally we combine the 

left and right eye regions to the eye appearance pattern, which is 

converted to grayscale and used as the input data for gaze 

estimation process. The process of eye detection and tracking is 

shown in Fig. 5. The eye appearance pattern is an image of 

160×40. Fig. 6 shows eye samples of five subjects. As 

introduced in section 2.1, the pattern is divided into 40 

subregions and we calculate CS-LBP histogram for each 

subregion. The size of the feature vector is 640. 

 
Figure 5. Eye localization and tracking 

Figure 6. Five eye samples in different light condition. The 

subjects have head-free movement and the distance between 

the subject and the camera is about 40 - 70 cm. 

                        (a)                         (b)  

 

                                                (c)  

Figure 7.  Projection of 990 eye gaze samples on 24 points 

in the screen (Fig. 8 d) by Laplacian 

Eigenmaps.  

a & b) 3D eye manifolds ei = {vi
1

,v i
2
,v i

3} 

c) 3D eye manifolds ei = {�i
1

v i
1
,� i

2
v i

2
,� i

3
v i
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4.2 Calibration phase 
The calibration phase will vary depending on application. 
Sometimes it takes more calibration points to get a more precise 
result, but sometimes it needs to be quick and efficient. Fig. 8 
shows 3 different calibration plan: calibration of 4-points(up-
right, up-left, down-right, down-left) such as Figure 8(a), 8-
points calibration in Fig. 8(b), and the proposed 5-points 
calibration in Figure 8(c). Each point appears in the screen for 
one second, and the subject is expected to follow it. Each point 
is associated with a label which corresponds to the point�s 2D 
screen coordinates. The 30Hz camera can capture 240 images 
during the 8-points calibration phase, while 150 images for 5-
points calibration.  

                    (a)                     (b)  

  

                     (c)                     (d)  

Figure 8. a) 4-points calibration b) 8-points calibration c) 5-

points calibration d) 24-points visual pattern test scenario 

4.3 Eye Manifolds 
We propose a 24-points visual pattern scenario Fig. 8(d) as a 
test for our gaze estimation. The size is 754 × 519 pixels. With 
the screen in which pixel is 0.225mm/pixel, the real size is 
about 17cm × 11.6cm. Each point appears one by one in the 
screen for about 1 second. Figure 7 shows the distribution of 3D 
eye manifolds projected by Laplacian Eigen maps. Notice that 
there are some degrees of similarity between the manifold 
surface and position plane of the 24 points. Taking eye samples 
of five subjects such as Fig. 6 who follow the 16 points outside-
round the screen, we can see that the distributions of their eye 
manifolds are relatively similar (Figure 9), despite the 
difference between their eyes� form. If taking eye samples  

Here we analyse the structure of eye manifolds projected by 
Laplacian Eigen maps in 2 different conditions as the 
illumination changes and the head movement. We also compare 
our subregion CS-LBP descriptor with the original subregion 
method, which calculates the feature vector as the equation(1) 
shown in Sec. 2.1.  

· Illumination  changes 
Here the subject follows the 4 points in the screen (Figure 
8a) 2 times within 20 seconds, while the indoor-
illumination changes as Figure 11. We extract the eye 
appearance descriptor from the 500 eye images by our 
proposed CS-LBP descriptor, also by the original 
subregion descriptor as a comparative method. From the 
observations (Figure 12) of projection by Laplacian Eigen 
maps, CS-LBP descriptor gives the translation of eye 
movement structure for the changes of illumination, while 
sub-region descriptor is totally disturbed by the changes 
illumination.  

(a)                        (b)                       (c)                     (d)

Figure 9.  Each line of figures represents the eye manifold 

distribution for each subject mentioned above. 

� = 0.8 l = 100 

a & b) 750 eye samples 

c & d) 120 eye samples 
 

 
Figure 10. Comparison between our proposed sparse GPR 

method and conventional GPR method with 

different calibration plans. 

Figure 11. Demonstration of the changes of illumination 

by 2 sample frames

· Head movements 

 Different humans vary widely in the tendency to move the 

head for a given amplitude of gaze shift. We are 

interested in the difference of eye manifold structure 

between a limited natural head movement as Figure 13 
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and the movement keeping the head still. Here the subject 

is asked to follow a point which moves along the edge 

line of screen. The size of screen is 33cm × 22cm. The 

distance between the subject and the screen is about 60 

cm. From the result as shown in Figure 14, we can see 

that both the descriptors can keep the structure of eye 

movement while moving the head slightly, but the scale 

of structure changes. 

  
                    (a)                                                  (b)

Figure 12. Comparison of using CS-LBP and subregion 

methods as eye descriptor in the condition of 

changes of illumination (500 eye samples). The 

different colours show the changes of 

illumination. 

 a) CS � LBP1,8,0.01 feature vector projected in 

3D by Laplacian Eigen maps (l = 10000). 

 b) original subregion feature vector by Laplacian 

Eigen maps (l = 700). 

 
Figure 13. Demonstration of the free-head movement 

while the subject follows the points in the 

screen. The distance between the subject and 

the screen is about 60 cm. 

  
                (a)                                  (b) 

Figure 14. Comparison of using CS-LBP and subregion 

methods as eye descriptor for the head 

movement (520 eye samples). Blue points 

represent the structure with fixed head and 

black points represent the structure with slight 

head movements.  

a) CS � LBP1,8,0.01 feature vector projected in 

3D by Laplacian Eigen maps (l = 9000). 

b) original subregion feature vector by Laplacian 

Eigen maps (l = 900). 

 

Figure 15. Consuming time of spectral clustering to 

different numbers of eye samples 

  
Figure 16. The gaze estimation result with a mean degree 

of 0.66, max degree of 1.45. 

4.4 Gaze estimation results  
The Fig. 10 shows the comparison between our sparse GPR 

method and conventional GPR method. The results are 

presented by degreemin,  degreemean and degreemax. As for 

the sparsity, the number of unlabelled samples varies depending 

on the subject�s behaviour during the calibration phase. 

Generally there are about 20 50 samples for 5-points 

calibration. The result demonstrates also with more calibration 

point, the more efficient and accurate of using a sparse semi-

supervised solution to predict the gaze. The 5-points calibration 

can be more efficient to learn eye manifold structure, and it 

provides a result of 0.9  as mean error degree, and 2.624  as 

max error degree. Moreover it takes about 20 -30 ms for the 

consuming time. The consuming time for spectral clustering to 

a 150 eye samples is about 206 ms (Figure 15). The sparse 

method takes about 0.55 ms to get the prediction for each eye 

data by a sparse degree of 0.3 - 0.6. The Figure 16 shows the 

visual gaze estimation results. Table 1 shows that our method 

offers little reduction in accuracy compared to the others by 

using less number of training samples.  

Table 1. Comparison with other methods 

Method Error Training samples 

proposed 0.92  
5 labelled and 20 ~ 50 

unlabelled 

S3GP+ 

edge+filter[21] 
0.83  

16 labelled and 75 

unlabelled 

S3GP[21] 1.32  
16 labelled and 75 

unlabelled 

Tan et al. [17] 0.5  252 labelled 

Baluja et al. [1] 1.5  2000 labelled 
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5. CONCLUSIONS 
We presented our appearance-based gaze tracker which uses 

subregion CS-LBP concatenated histogram as eye appearance 

feature. The feature not only can reduce the dimensionality of 

eye images, but also can be robust against the changes in 

illumination. Additionally, we introduced our sparse semi-

supervised Gaussian Process Regression method with the 

supervision information of data by using spectral clustering. 

Spectral clustering to the eye data helps to learn about the 

�manifold structure� and give an efficient calibration phase. As 

a consequence, sparse semi-supervised GPR provides a more 

accurate prediction even when the number of calibration 

samples is limited. Here our gaze tracker can lead to a better 

result of 0.9  with 5-points calibration. The efficiency and 

reasonable accuracy can help to provide a real-time application.  
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