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INTRODUCTION

As gaze tracking technology improves in the last 30 years, gaze tracker offers a powerful tool for diverse study fields, in particular eye movement analysis and human-computer interaction (HCI). Nowadays most commercial gaze trackers use feature-based method to estimate gaze coordinates, which relies on video-based pupil detection and the reflection of infrared LEDs. In general, there are two principal methods: 1) Pupil-Corneal Reflection(P-CR) method [START_REF] Morimoto | Pupil detection and tracking using multiple light sources[END_REF], [START_REF] Zhu | Novel eye gaze tracking techniques under natural head movement[END_REF], [START_REF] Belkin | Laplacian eigenmaps and spectral techniques for embedding and clustering[END_REF]) 3D model based method [START_REF] Shih | A novel approach to 3d gaze tracking using stereo cameras[END_REF], [START_REF] Wang | Estimating the eye gaze from one eye[END_REF]. IR light and extraction of pupil and iris are important for these feature-based methods, and the calibration of cameras and geometry data of system is also required.

Appearance-based methods do not explicitly extract features like the feature-based method, but rather use the cropped eye images as input with the intention of mapping these directly to gaze coordinates [START_REF] Hansen | In the eye of the beholder: A survey of models for eyes and gaze[END_REF]. The advantage is that they do not require calibration of cameras and geometry data like feature-based method. Moreover, they can be less expensive in materials than feature-based method since they don't have to work on the same quality images like feature-based method does. But they still need a relatively high number of calibration points to get accurate precision. Different works can be seen in multilayer networks [START_REF] Baluja | Non-intrusive gaze tracking using artificial neural networks[END_REF], [START_REF] Stiefelhagen | Tracking eyes and monitoring eye gaze[END_REF], [START_REF] Xu | A novel approach to real-time non-intrusive gaze finding[END_REF], or Gaussian process [START_REF] Nguyen | Eye gaze tracking[END_REF], [START_REF] Williams | Sparse and semi-supervised visual mapping with the s3p[END_REF], or manifold learning [START_REF] Martinez | Gaze estimation using local features and non-linear regression[END_REF], [START_REF] Tan | Appearance-based eye gaze estimation[END_REF]. Williams et al. [START_REF] Williams | Sparse and semi-supervised visual mapping with the s3p[END_REF] introduces the sparse, semi-supervised Gaussian Process (S 3 GP) to learn mappings from semi-supervised training sets. Fukuda et al. [START_REF] Fukuda | Modelbased eye-tracking method for low-resolution eye-images. 2nd Workshop on Eye Gaze in Intelligent Human Machine Interaction[END_REF] propose a gaze-estimation method that uses both image processing and geometrical processing to reduce various kinds of noise in low-resolution eye-images and thereby achieve relatively high accuracy of gaze estimation.

Manifold learning is widely applied to solve many problems in computer vision, in pattern recognition etc [START_REF] Lee | Online learning of probabilistic appearance manifolds for video-based recognition and tracking[END_REF], [START_REF] Rahimi | Learning appearance manifolds from video[END_REF], [START_REF] Weinberger | Unsupervised learning of image manifolds by semidefinite programming[END_REF], [START_REF] Zhang | Manifold learning and applications in recognition[END_REF]. Manifold learning, often also referred to as non-linear dimensionality reduction, is also one of the approaches applied in appearance-based gaze tracking [START_REF] Tan | Appearance-based eye gaze estimation[END_REF], and one of the reason to apply manifold learning techniques is to reduce computational costs. Manifold learning means the process of estimating a lowdimensional structure which underlies a collection of highdimensional data, also preserves characteristic properties of the set of high-dimensional data. Here we are interested in the case where the manifold lies in a high dimensional space D , but will be homeomorphic with a low dimensional space d (d < D). Laplacian Eigen maps [START_REF] Belkin | Laplacian eigenmaps and spectral techniques for embedding and clustering[END_REF], [START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF] most faithfully preserves proximity relations of a high-dimensional non-linear data set in the low dimensional space, by using spectral graph technique.

Another important technique in an appearance-based gaze tracking system is the predictive uncertainty. In other words, how to map a new image of eye or an eye manifold to 2D screen coordinates. Supervised learning requires an arduous calibration process to form the training set with the number of samples. In contrast, a large number of unlabelled samples can be easily collected. The semi-supervised learning has attracted an increasing amount of interest recently. It is a promising family of techniques that exploit the "manifold structure" of the data; such methods are generally based upon an assumption that similar unlabelled data should be given the same classification. In addition, sparse techniques such as the SVM and RVM have been proven efficient in the gaze tracking application. The related works can be seen in [START_REF] Lu | Inferring human gaze from appearance via adaptive linear regression[END_REF], [START_REF] Martinez | Gaze estimation using local features and non-linear regression[END_REF], [START_REF] Noris | Calibration-free eye gaze direction detection with gaussian processes[END_REF], [START_REF] Tan | Appearance-based eye gaze estimation[END_REF], [START_REF] Williams | Sparse and semi-supervised visual mapping with the s3p[END_REF]. Lu et al.

[8] use 15D feature vector to represent eye image content, and propose an Adaptive Linear Regression via l 1 -optimization to estimate gaze coordinates. Martinez et al. [START_REF] Martinez | Gaze estimation using local features and non-linear regression[END_REF] employ multilevel Histograms of Oriented Gradients(HOG) features as appearance descriptor for eyes, and learn the mapping by Support Vector Regression(SVR). Noris et al. [START_REF] Noris | Calibration-free eye gaze direction detection with gaussian processes[END_REF] present a wearable gaze estimation system based on Support Vector Machines(SVM), Gaussian Process Regression(GPR), and image appearance which is reduced by PCA (Principal Components Analysis). [START_REF] Williams | Sparse and semi-supervised visual mapping with the s3p[END_REF] uses a sparse regression model to infer eye-gaze mapping in real-time, which shows the performance of semi-supervised technique and the efficiency of sparsity in the experimental results.

Our contributions are:

•

A subregion CS-LBP concatenated histogram is used as eye appearance feature which not only reduce the dimension of raw images, but also can be robust against the changes in illumination.

• Laplacian Eigen maps is introduced to project eye feature samples to a subspace in order to get the clusters of these samples.

• A sparse semi-supervised Gaussian process regression method infers the gaze coordinates by an active set which can be built on-line with limited numbers of samples and their manifold structures.

The rest of the paper is organized as follows. Section 2 describes the eye manifold learning to the proposed eye feature. Section 3 presents the proposed regression method to infer the gaze coordinates. Section 4 shows the experimental setup and results. Finally section 5 concludes the paper.

EYE APPEARANCE MANIFOLD LEARNING

Eye appearance descriptor

Let an eye image I be a two-dimensional M by N array of intensity values, and it may also be considered as a vector of dimension M ×N. The proposed gaze tracker captures left and right eyes together and combines them into one image. Our eye image of size 160 by 40 becomes a vector of dimension 6400. Appearance-based gaze tracking methods mostly rely on the eye images as input. Extracting eye appearance descriptor not only helps to reduce the dimension of eye images, but also preserves the feature and variation of eye movements.

There exist a number of eye appearance feature extraction methods for gaze tracking system, like multi-level HOG [START_REF] Martinez | Gaze estimation using local features and non-linear regression[END_REF], eigeneyes by PCA [START_REF] Noris | Calibration-free eye gaze direction detection with gaussian processes[END_REF], and subregions feature vector 

Spectral clustering

Graph Laplacians are the main tools in spectral graph theory.

Here we focus on two kinds of graph Laplacian:

• Unnormalized graph Laplacian.
where W is the symmetric weight matrix with positive entries for edge weights between vertices. If w ij = 0, then vertices i and j are not connected.

D is the degree matrix:

d ii = • j=1 n w ij and d ij = 0 i!j. • Normalized graph Laplacian.
where L sym is a symmetric matrix, and L rw is closely related to a random walk.

There are 3 properties:

1)

• is an eigenvalue of L rw with eigenvector v if and only if

• and v solve the generalized eigenproblem Lv = •Dv.

2)

L rw is positive semi-definite with the first engenvalue • 1 = 1 and the constant one vector 1 the corresponding eigenvector.

3)

All eigenvectors are real and it holds that: ). Gaussian Process (GP) is used to calculate this predictive distribution because it can be used as prior for Bayesian inference and it is known to be accurate both in terms of mean predictions and predictive uncertainty [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF]. According to GP prior, joint distribution of and • is:

1 = |• 1 |•|• 2 |• ... •|• n | .
The joint distribution is a Gaussian process with zero mean and Taking a test data point x • , the covariance function K is calculated among all possible combinations of these points:

,

).

If K(x i ,x j ) has a high positive value, our prior belief is that y i and y j are highly correlated.

In the training set , all the data are labelled with . In order to minimize the degree of uncertainty of distribution of function f, we need to have sufficient labelled data. But in reality, labelled data are often, however, very time consuming and expensive to obtain, as they require the efforts of human annotators, who must often be quite skilled. For example, the calibration phase of appearance-base gaze tracking needs to select the best eye data corresponding the coordinates of calibration point. Generally, a training set can have only some labelled data , and a number of unlabelled data ={( i ) |i = 1, 2,...,m}. So the problem of effectively combining unlabelled data with labelled data is therefore of central importance in machine learning.

Semi-supervised learning can be applied to have some supervision information on the distribution of the unlabelled data. In order to obtain a low run-time cost of the predictive uncertainty process, an active set

= { 1 ,..., k } (k < n) is
proposed as a sparse solution, and is done by 4 steps:

• Sort the clusters U of each visual pattern in section 2.2 by their associated weights W and take the cluster with the most important size as U labelled .

• Get the near centre exemplars set X labelled = { 1 ,..., i } as labelled data (Fig. 4a) where || i

• • i || < T, i U labelled , i n.
• i is the centre of the cluster U labelled and T is a threshold.

• Form X unlabelled = { 1 ,... j } (Fig. 4b) where j U labelled , and || j • i || > T 2 .

• For each unlabelled exemplars j , make prediction j = P( j | j ,X labelled ), and = X labelled X unlabelled (Fig. 4c). 

Eye detection and tracking

The distance between the subject and the camera is about 40 -70 cm. To the entire RGB image captured from camera, we firstly use a face components detection model, which is based on Active Shape Model [START_REF] Cootes | Active shape models-their training and application[END_REF], to localize the eye regions and the corners. We introduce then Lukas-Kanade method to track the corner points in the following frames. Finally we combine the left and right eye regions to the eye appearance pattern, which is converted to grayscale and used as the input data for gaze estimation process. The process of eye detection and tracking is shown in Fig. 5. The eye appearance pattern is an image of 160×40. Fig. 6 shows eye samples of five subjects. As introduced in section 2.1, the pattern is divided into 40 subregions and we calculate CS-LBP histogram for each subregion. The size of the feature vector is 640. 
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Calibration phase

The calibration phase will vary depending on application. Sometimes it takes more calibration points to get a more precise result, but sometimes it needs to be quick and efficient. 

Eye Manifolds

We propose a 24-points visual pattern scenario Fig. 8(d) as a test for our gaze estimation. The size is 754 × 519 pixels. With the screen in which pixel is 0.225mm/pixel, the real size is about 17cm × 11.6cm. Each point appears one by one in the screen for about 1 second. Figure 7 shows the distribution of 3D eye manifolds projected by Laplacian Eigen maps. Notice that there are some degrees of similarity between the manifold surface and position plane of the 24 points. Taking eye samples of five subjects such as Fig. 6 who follow the 16 points outsideround the screen, we can see that the distributions of their eye manifolds are relatively similar (Figure 9), despite the difference between their eyes' form. If taking eye samples Here we analyse the structure of eye manifolds projected by Laplacian Eigen maps in 2 different conditions as the illumination changes and the head movement. We also compare our subregion CS-LBP descriptor with the original subregion method, which calculates the feature vector as the equation( 1) shown in Sec. 2.1.

•

Illumination changes

Here the subject follows the 4 points in the screen (Figure 8a) 2 times within 20 seconds, while the indoorillumination changes as Figure 11. We extract the eye appearance descriptor from the 500 eye images by our proposed CS-LBP descriptor, also by the original subregion descriptor as a comparative method. From the observations (Figure 12) of projection by Laplacian Eigen maps, CS-LBP descriptor gives the translation of eye movement structure for the changes of illumination, while sub-region descriptor is totally disturbed by the changes illumination. • Head movements Different humans vary widely in the tendency to move the head for a given amplitude of gaze shift. We are interested in the difference of eye manifold structure between a limited natural head movement as Figure 13 and the movement keeping the head still. Here the subject is asked to follow a point which moves along the edge line of screen. The size of screen is 33cm × 22cm. The distance between the subject and the screen is about 60 cm. From the result as shown in Figure 14, we can see that both the descriptors can keep the structure of eye movement while moving the head slightly, but the scale of structure changes. 

Gaze estimation results

The Fig. 10 shows the comparison between our sparse GPR method and conventional GPR method. The results are presented by degree min , degree mean and degree max . As for the sparsity, the number of unlabelled samples varies depending on the subject's behaviour during the calibration phase.

Generally there are about 20 50 samples for 5-points calibration. The result demonstrates also with more calibration point, the more efficient and accurate of using a sparse semisupervised solution to predict the gaze. The 5-points calibration can be more efficient to learn eye manifold structure, and it provides a result of 0.9 as mean error degree, and 2.624 as max error degree. Moreover it takes about 20 -30 ms for the consuming time. The consuming time for spectral clustering to a 150 eye samples is about 206 ms (Figure 15). The sparse method takes about 0.55 ms to get the prediction for each eye data by a sparse degree of 0.3 -0.6. The Figure 16 shows the visual gaze estimation results. Table 1 shows that our method offers little reduction in accuracy compared to the others by using less number of training samples. 

CONCLUSIONS

We presented our appearance-based gaze tracker which uses subregion CS-LBP concatenated histogram as eye appearance feature. The feature not only can reduce the dimensionality of eye images, but also can be robust against the changes in illumination. Additionally, we introduced our sparse semisupervised Gaussian Process Regression method with the supervision information of data by using spectral clustering. Spectral clustering to the eye data helps to learn about the "manifold structure" and give an efficient calibration phase. As a consequence, sparse semi-supervised GPR provides a more accurate prediction even when the number of calibration samples is limited. Here our gaze tracker can lead to a better result of 0.9 with 5-points calibration. The efficiency and reasonable accuracy can help to provide a real-time application.

  [START_REF] Lu | Inferring human gaze from appearance via adaptive linear regression[END_REF].Lu et al. have proven the efficiency of using 15D subregions feature vector in[START_REF] Lu | Inferring human gaze from appearance via adaptive linear regression[END_REF]. To compute this feature vector, the eye image I i is divided into N • subregions of size w ×h. Let S j denote the sum of pixel intensities in j th subregion, then feature vector X i of the image I i is represented by Here we introduce our subregion methods with Center-Symmetric Local Binary Pattern (CS-LBP) to calculate low dimensional feature vector for raw eye image content. Local Binary Pattern (LBP) operator has been highly successful for various computer vision problems such as face recognition, texture classification etc. The histogram of the binary patterns computed over a region is used for feature vector. The operator describes each pixel by the relative graylevels of its neighbouring pixels. If the graylevel of the neighbouring pixel is higher or equal, the value is set to one, otherwise to zero.We calculate the CS-LBP[START_REF] Heikkilä | Description of interest regions with local binary patterns[END_REF] histogram, which is a new texture feature based on the LBP operator, for each subregion in Fig.1(a) and concatenate them to form the eye appearance feature vector. Instead of describing a centre pixel by comparing its neighbouring pixels with it in LBP, CS-LBP compares the centre-symmetric pairs of pixels in Fig.1(b). (a) (b) Figure 1. a) 40 subregions of an eye image sample b) CS-LBP for a neighbourhood of eight pixels.The CS-LBP value of a centre pixel in position (x,y) is calculated as follows:where s(t) = , n i and n i+(N•2) are the gray values of centre-symmetric pairs of pixels of N equally spaced pixels on a circle with radius R , and the threshold T is a small value. From this equation, the value of CS-LBP may be any integer from 0 to 2 N•2 • 1, and the histogram dimension will be 2 N•2 . CS-LBP is fast to compute and its histogram has been proven to be robust against the changes in illumination as a texture descriptor[START_REF] Heikkilä | Description of interest regions with local binary patterns[END_REF].

Laplacian

  Eigen maps use spectral graph technique to compute the low-dimensional representation of a high-dimensional nonlinear data set, and they most faithfully preserves proximity relations, mapping nearby input patterns to nearby outputs. The algorithm of Laplacian Eigen maps has a similar structure as LLE. First, one constructs the symmetric undirected graph G = (V,E), whose vertices represent input patterns and whose edges indicate neighbourhood relations (in either direction). Second, one assigns positive weights W ij to the edges of this graph; typically, the values of the weights are either chosen to be constant, say W ij = 1!k, or a heat kernel, as where l is a scale parameter. In the third step of the algorithm, one obtains the embeddings ! i m by minimizing the cost function: This cost function encourages nearby input patterns to be mapped to nearby outputs, with "nearness" measured by the weight matrix W. To compute the embeddings, we find the eigenvalues 0 = • 1 ! • 2 ! ... ! • n and eigenvectors v 1 ,...,v n of the generalized eigenproblem: Lv = •Dv. The embeddings " : i # (v 1 (i),...,v m (i)). Spectral clustering refers to a class of techniques which rely on the eigen-structure of a similarity matrix to partition points into disjoint clusters with points in the same cluster having high similarity and points in different clusters having low similarity. We follow the works of Shi and Malik (2000). Their algorithm of spectral clustering computes the normalized graph Laplacian L rw , and its first k generalized eigenvectors v 1 ,...,v k as embeddings, and then utilise k-means to cluster the points.From the section 2.1 we've introduced our subregion CS-LBP methods to extract the eye appearance feature descriptor. Here we'd like to at first obtain eye manifold distribution by using Laplacian Eigen maps, and then we apply the normalized spectral clustering. The Fig.2shows eye samples of the subject's eye movements when the subject follows the visual pattern(green points) shown in the screen. The Fig.3 demonstrate the distribution of embeddings in the subspace. (a) gives the distribution of a dataset of 240 points which contains only the eye samples on the 8 points in the screen , while (b) contains only 120 eye samples from the 4 points in the corner(up right, up left, down left, down right). For a given number C of visual patterns, generally we can get l clusters U = {U 1 ,U 2 ,...,U l } associated with weights W = {w 1 ,w2,...,w l } by the size of cluster, where C ! l < n.

Figure 2 .

 2 Figure 2. Eye calibration of 8 points

  covariance function K, where Given n data points from training set and n • test data points, K( , • ) denotes the n × n • matrix of the covariances evaluated at all pairs of training and test points, and similarly for the other entries K( , ), K( • , • ) and K( • , ).

Figure 4 .

 4 Figure 4. Generation of active set

Figure 5 .Figure 6 .

 56 Figure 5. Eye localization and tracking

Figure 8

 8 Fig. 8 shows 3 different calibration plan: calibration of 4-points(upright, up-left, down-right, down-left) such as Figure 8(a), 8points calibration in Fig. 8(b), and the proposed 5-points calibration in Figure 8(c). Each point appears in the screen for one second, and the subject is expected to follow it. Each point is associated with a label which corresponds to the point's 2D screen coordinates. The 30Hz camera can capture 240 images during the 8-points calibration phase, while 150 images for 5. a) 4-points calibration b) 8-points calibration c) 5points calibration d) 24-points visual pattern test scenario

Figure 9 .Figure 10 .

 910 Figure 9. Each line of figures represents the eye manifold distribution for each subject mentioned above. • = 0.8 l = 100 a & b) 750 eye samples c & d) 120 eye samples

Figure 11 .

 11 Figure 11. Demonstration of the changes of illumination by 2 sample frames

Figure 12 .

 12 Figure 12. Comparison of using CS-LBP and subregion methods as eye descriptor in the condition of changes of illumination (500 eye samples). The different colours show the changes of illumination. a) CS • LBP 1,8,0.01 feature vector projected in 3D by Laplacian Eigen maps (l = 10000). b) original subregion feature vector by Laplacian Eigen maps (l = 700).

Figure 13 .Figure 14 .

 1314 Figure 13. Demonstration of the free-head movement while the subject follows the points in the screen. The distance between the subject and the screen is about 60 cm.

Figure 15 .Figure 16 .

 1516 Figure 15. Consuming time of spectral clustering to different numbers of eye samples

Table 1 . Comparison with other methods Method Error Training samples

 1 

	proposed	0.92	5 labelled and 20 ~ 50 unlabelled
	S 3 GP+ edge+filter[21]	0.83	16 labelled and 75 unlabelled
	S 3 GP[21]	1.32	16 labelled and 75 unlabelled
	Tan et al. [17]	0.5	252 labelled
	Baluja et al. [1]	1.5	2000 labelled
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