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Knowledge of PV system characteristics is needed in different regional PV modelling approaches. It is the aim of this paper to provide that knowledge by a twofold method that focuses on (1) metadata (tilt and azimuth of modules, installed capacity and specific annual yield) as well as (2) the impact of shading.

Metadata from 2,802,797 PV systems located in Europe, USA, Japan and Australia, representing a total capacity of 59 GWp (14.8% of installed capacity worldwide), is analysed. Visually striking interdependencies of the installed capacity and the geographic location to the other parameters tilt, azimuth and specific annual yield motivated a clustering on a country level and between systems sizes. For an eased future utilisation of the analysed metadata, each parameter in a cluster was approximated by a distribution function. Results

show strong characteristics unique to each cluster, however, there are some commonalities across all clusters.

Mean tilt values were reported in a range between 16.1 • (Australia) and 35.6 • (Belgium), average specific annual yield values occur between 786 kWh/kWp (Denmark) and 1,426 kWh/kWp (USA South). The region with smallest median capacity was the UK (2.94 kWp) and the largest was Germany (8.96 kWp).

Almost all countries had a mean azimuth angle facing the equator.

PV system shading was considered by deriving viewsheds for ≈ 48,000 buildings in Uppsala, Sweden (all ranges of solar angles were explored). From these viewsheds, two empirical equations were derived related to irradiance losses on roofs due to shading. The first expresses the loss of beam irradiance as a function of the solar elevation angle. The second determines the view factor as a function of the roof tilt including the impact from shading and can be used to estimate the losses of diffuse and reflected irradiance.

PV systems is referred to as regional PV power 21 modelling. Knowledge of PV system characteris-22 tics is required in the different regional PV mod-23 elling approaches to reconstruct the missing power 24 measurements (Lorenz et al., 2011;Saint-Drenan 25 et al., 2016). Some studies assign simplified as-26 sumptions of the PV system characteristics. This 27 can result in over-exaggerated grid impacts (Bright 28 et al., 2017a). Unfortunately in most cases, charac-29 teristics from PV systems are either unknown or 30 and latitude showed an trend towards steeper an-146 gles at higher latitudes, indicating that metadata 147 might vary with the geographic location.

148

PV system metadata is thus used to successfully 149 improve regional PV power upscaling across Europe 150 in [START_REF] Pfenninger | Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data[END_REF]; Killinger et al. [START_REF] Taylor | Performance of distributed PV in the UK: 1818 a statistical analysis of over 7000 systems[END_REF] and the specific 246 annual yield (Leloux et al., 2012a). Secondly, with 247 exception of a few studies (e.g., Saint-Drenan et al. of either yield or the installed capacity, as the latter is used in some datasets to derive the former through division. Whereas Taylor (2015) applied a statistical based upper limit for outliers, a fixed limit of 2,000 kWh/kWp was used in this paper.

The fixed value was chosen to ensure a reliable filtering even though the quality and range of values may differ for the various datasets. A threshold value of 2,000 kWh/kWp acknowledges the increasing risk of erroneous data beyond this value and is a very cautious limit with the aim of avoiding any erroneous filtering. In fact, this limit was only exceeded in 2.65% of all systems that reported a yield value from openpv.nrel.gov where we observed the largest values within the study and only for 0.084% of all systems in this study.

Please note that, regarding the installed capacity, no pattern was recognised that led us to believe that there were any systematic quality issues.

The same applies for the other parameters that were only available for some datasets, such as information about the network connection for Germany as visualised in Figure 2. Hence, the data was taken on an as-is basis in these cases.

A summary of the impact of our proposed quality control criteria is provided in the appendix in scatter plots with the 25%, 50% and 75% quantiles as coloured lines. Plots on the diagonal are 1D-histograms of that parameter.

Plots above the diagonal are 2D-histograms of the parameter pairs; the change in colour from white to red is an indication of probability and its distribution. The 2D-histograms and scatter plots have the parameter of their column on the x-axis and the parameter of their row on the y-axis. Note that each scatter and 2D-histogram pair have opposite axes but are identical data. 1D-histograms are the only exception with having displayed the density on the y-axis. For reasons of simplification the absolute value of the latitude is taken in these plots to make results from the northern and southern hemisphere comparable.

The bold number in each plot shows the number of countries (n) which are considered in the plot as well as the sampling size (si). The USA was thus split at 37.5 is the installed capacity and yield is the specific annual yield. All systems reported within this figure have a capacity ≤ 25 kWp, see appendix for the same plot for > 25 kWp. Within each of the axes is reported the name of the best fitting distribution type (see section 4.1 for detail), the root mean squared error (RMSE) between the scatter of real data in the histogram against the fitted probability density distribution, the number of data points considered for that cluster (n), and the Pearson correlation coefficient (ρ) of the linear regression. The mean value µ is shown in place of ρ for Yield. All y-axes are scaled between 0% and 50% probability except where a bold red value is assigned to the individual axis.

Approximation of parameters in clusters 742

The intentions of parametrisation are twofold.

743

Firstly, we want to discover whether or not the pa- 

where s is the scaling factor, p is the probability at each bin between the lower and upper bin limit, 2.

a

Discussion of the distributions

The following discussion about clusters and distributions mainly refers to Figure 5 with systems ≤ 25 kWp unless explicitly noted otherwise. The reason for this is that the vast majority of systems are within the ≤ 25 kWp category, and so are of most interest. However, important differences to Results of the shading analysis are presented in section 5.2.

Deriving a simplified shading model

The main results from the shading analysis on ≈ 48,000 buildings in Uppsala, Sweden, are presented in Figure 7. The colour of each bin in the left panel of Figure 7 represents the average ratio of all roof facets being visible to a sky sector, defined 

The average beam irradiance that will fall on a 1262 tilted roof, if shading is considered, could then be 1263 calculated as:

1264 B T = ksB cos θ cos θ Z B H , (3) 
where B H is the unshaded beam irradiance on the 

1299 fsky = 1 + cos(β) 2 -C, (4) 
where the first term is the view factor for a free sky present paper, can be expressed as:

1320 D T = D H (1 -A i )f sky + cos θ cos θ Z A i , (5) 
and

1321 R T = (B H + D H )ρ(1 -f sky ), (6) 
where A i is the anisotropy index and ρ is the surface 1322 albedo, here assumed to be 0.2 for all surfaces (i.e., 1323 ground, trees, buildings etc.).

1324 Hence, Eqs. ( 2) and (4) in the present paper 1325 were not used here, but could be valuable in future 1326 studies where, for instance, the level of detail of the It is likely that the present method over-estimates the reflected irradiance at clear conditions as all trees and buildings seen by a roof could also be themselves shaded, therefore, offering reduced reflected irradiance. To consider this is a complex matter and needs extensive research. For instance ray-tracing could be incorporated in the model but at a computational cost.

Future advancements beyond the scope of this work

The main objective of the paper was to fit distributions to selected metadata and approximate functions that describe the impact of shading. This enables replication of these characteristics and allows a usage in regional PV power modelling ap- proaches with suitable representativeness. 
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  IEA, 2018), the integration of the 3 large amounts of energy generated by the numerous 4 distributed solar power systems into the electricity 5 supply system is an issue ever gaining in impor-6 tance. Modelling of the power generated by those 7 decentralised solar systems is of utmost importance 8 for several issues ranging from energy trading to 9 network flow control. The estimation and forecast 10 of PV power is made difficult by the fact that only a 11 minority of systems continuously report their gen-12 eration and are publicly accessible. 13 Different strategies have been proposed to over-14 come the lack of reporting (e.g. upscaling ap-15 proaches or power simulations based on satellite de-16 rived irradiance); an extensive literature overview is 17 provided in Bright et al. (2017b). Within this pa-18 per, the estimation of the aggregated power gen-19 erated in a given region by a fleet of unknown 20
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 2 2017c); Saint-Drenan (2015); Saint-Drenan et al. 152 (2017, 2018); Kühnert (2016). These works applied 153 information of azimuth, tilt, installed capacity and 154 the geographic location from PV systems to esti-155 mate the power output of a larger PV fleet for sim-156 ilar geographies and different countries. They stand 157 as an powerful and excellent example for how rep-158 resentative metadata distribution statistics can be 159 employed. It is these examples that guide the first 160 usage of our vast dataset towards deriving repre-161 sentative metadata distributions. 162 Excerpts of literature that analyse 163 the performance of PV systems. Performance is 164 more complex than just tilt and azimuth as it is 165 inherently influenced by other components, such as 166 soiling and meteorology. 167 Nordmann et al. (2014) found a positive correla-168 tion between specific annual yield and incoming ir-169 radiance, as well as an observed negative correlation 170 between system performance and ambient temper-171 ature. Their data was obtained via web-scraping of 172 Solar-Log (2,914 systems in the Netherlands, Ger-173 many, Belgium, France and Italy) and collected by 174 participants of the IEA task (>60,000 systems in 175 the USA). 176 Moraitis et al. (2015) observed an increasing yield 177 with decreasing latitude from ≈ 20,000 systems in 178 Netherlands, Germany, Belgium, France and Italy, 179 also achieved using web-scraping techniques. We 180 therefore expect to observe geographical differences 181 due to latitude and climate. 182 Taylor (2015) explored the generation of 4,369 183 distributed systems in the UK to derive the per-184 formance ratio and degradation rate. To allow re-185 producibility, the analysis of the performance ratio 186 was enriched by approximating it with distribution 187 functions. We intend to extend this style of analysis 188 to PV system metadata. 189 Leloux et al. (2012a) examined data from residen-190 tial PV systems in Belgium; Leloux et al. (2012b) 191 focused on France. In Belgium, specific annual 192 yield was analysed for 158 systems in 2009 and 193 normalised by a factor which compared the incom-194 ing irradiance in this year to a 10 year average. 195 The mean value was 836 kWh/kWp. The same ap-196 proach led to a mean value of 1,163 kWh/kWp for 197 1,635 systems in 2010 in France. Weibull distribu-198 tions were used throughout both papers to approxi-199 mate the specific yield and performance indicators; 200 Weibull distributions were selected for visual simi-201 larity and not for robustness of fit -we aim to use a 202 more statistically rigorous approach to distribution 203 type selection. Furthermore, a relative distribution of these PV system parameters could replace this 244 need, though currently are only provided for per-245 formance indicators
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 155 248(2015)), the issue of sample representativeness is 249 often omitted. This is a major omission, for exam-250 ple, a studied dataset including a majority of roof-251 mounted PV system has to be generalised in order 252 to represent a fleet of systems encompassing a lot 253 of rack-mounted PV systems. Thirdly, most of the 254 identified studies focused on particular PV system 255 characteristics; an integrated analysis encompass-256 ing all five key characteristics is required. Further-257 more, the influence of shading is in most articles 258 excessively simplified or more commonly excluded. 259 Lastly, studies are mostly limited to a specific coun-260 try and it is currently difficult to make comparisons 261 between countries to assess applicability. A holistic 262 overview of important parameters of metadata for 263 multiple countries is clearly missing. 264 The objective of this paper is to address the afore-265 mentioned limitations by following the goals below: 266 To collect and process as many data sources 267 as feasible of four identified key metadata pa-268 rameters (tilt, azimuth, installed capacity and 269 specific annual yield) for PV systems installed 270 worldwide (section 2), 271 To explore the characteristics of these key pa-To propose a method that evaluates the im-282 pact of shading (section 5.1) and which derives 283 generalised findings for improved consideration 284 and implementation (section 5.2). 285 The influence of meteorological conditions, panel 286 degradation and soiling are not considered within 287 this research, beyond those losses that are inher-288 ently and statically contained within the specific 289 annual yield. Whilst they are highly interesting 290 topics and research avenues that could be explored, 291 we are more keenly interested in comparisons and 292 parametrisations of PV system metadata and re-293 serve such topics for future research, more ideas of 294 which are presented in section 6. A summary of the 295 paper is then given in section 7. In the Appendix 296 A, the forms of the distributions used in this paper 297 are defined and their fitted variables provided.

298 2 .

 2 Collection and processing of PV system 299 metadata 300 An intensive effort has been conducted to iden-301 tify, collect and prepare good sources of PV sys-302 tem metadata. Some of the major monitoring 303 companies and inverter manufacturers have been 304 contacted. In parallel, free information on sev-305 eral solar portals have also been used to gather 306 our dataset either by downloading or web-scraping 307 techniques. Ultimately, we obtained a dataset con-308 taining 2,802,797 PV systems located in Europe, 309 USA, Japan and Australia, which represents a to-310 tal capacity of 59 GWp (14.8% of installed capacity 311 worldwide). Every system in our records reported 312 an installed capacity. However, the other param-313 eters were not always reported. The systems in 314 our database that reported a valid tilt/azimuth only 315 have a relative share from the worldwide installed 316 capacity of 1.7%. Geographic position was almost 317 as often reported as installed capacity and the rel-318 ative share is 14.5%. The specific annual yield has319 a relative share of 11%. Further detail of the pa-320 rameter shares and subsequent quality filtering are 321 found in Table A.5. 322 An overview of the regions covered by our study, 323 the characteristics of the datasets and their sources 324 are provided in

Figure 1 :

 1 Figure 1: Hybrid graphic with plots of the different parameter pairs from the global dataset. The plots below the diagonal are
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 2324 Figure 2: The installed capacity and its relationship to the relative share of systems for different countries (left). The line width and colours vary to simplify the differentiation. The cumulative installed capacity in case of Germany is shown in the right plot represented by the coloured line (colouration indicating the network connection) whereas the black line represents the cumulative number of systems. The dashed line indicates 25 kWp, which is used to sub-categorise the data in section 3.2.

Figure 5 :

 5 Figure 5: Histograms of real data (bar) with approximated probability distributions (line) for the different clusters (columns) and parameters (rows), where capacity

1 .

 1 744rameters (tilt, azimuth, capacity and yield) can be 745 represented with simple parametric distributions. 746 Secondly, we want to explore the relative differ-747 ences between clusters through comparison between 748 probability distributions. We concede that simple 749 distribution fitting has weaknesses such as not ap-750 propriately capturing a more complex relationship 751 offered by non-parametric fitting, however, repro-752 ducibility of the statistics is encumbered with added 753 complexity. For our first presentation of the sub-754 stantial volume of PV system data collected, we 755 focus on simple distribution fitting as interesting 756 comparisons and individual cluster insights can be 757 drawn, and we are able to comment on the ability 758 for these complex parameters to be represented as Methodology of fitting the distributions 761 In order to enable the utilisation of the aggre-762 gated statistics of each cluster (defined in sec-763 tion 3.2) and for each parameter (defined in sec-764 tion 3.1), individual distributions are fitted to the 765 real-world probability density histograms. The re-766 sults are presented in Figure 5 (≤ 25 kWp) and Fig-767 ure A.10 (> 25 kWp). The total number of avail-768 able data varies between clusters and parameters; 769 there is no further processing beyond the criteria 770 described in section 2; all possible data available 771 is used. Differences in data within a cluster are 772 due to some PV sites not reporting one or more 773 parameters. There are up to 6 years of reported 774 specific annual yield (2012-2017). The normalised 775 value within each year is taken as an individual 776 sample and so there are up to 6n more samples for 777 this parameter. 778 For each cluster and for each parameter, many 779 different distribution types were fitted to the 780 probability density. Distributions were fit us-781 ing the inbuilt fitdist function of the software 782 Matlab R (Matlab, 2018). There are 23 parametric 783 distribution types available, of which all are fitted 784 to the data. Where distribution types require only 785 positive values (for parameters with negative bins) 786 or values between 0 and 1, the data is scaled to sat-787 isfy the distribution requirements and allowed to re-788 scale so that as many distributions could be tested; 789 note that no distribution requiring this treatment 790 was found to be best fitting, and so no further 791 discussion is made regarding this normalising pro-792 cess. Probability density functions are then scaled 793 to only exist between the x-axes limits as indicated 794 in the figure, for example, the tilt distributions are 795 only relevant between 0 • and 90 • . This means that 796 the sum of all probabilities between the prescribed 797 x-axis range must be equal to 1. This is important 798 as some distributions facilitate values way outside 799 of the bin limits resulting in the sum of probabili-800 ties between the bins of interest = 1, and so would 801 not fit the histogram. The disclaimer is, therefore,

  and b, respectively. The resultant fitted distribution is then plotted against the real probability density and tested for linear fit; the root mean squared error (RMSE, percentage) and Pearson correlation coefficient (ρ, dimensionless) are derived. A perfectly fitted distribution would result in y = x with ρ = 1 and an RMSE= 0%. The distribution type with the lowest RMSE was selected for the plot.Should there be more than one distribution type that has the same RMSE, then the type with lowest ρ is selected. Should there still be more than one distribution type after this, one of the remaining types is selected at random. The exact parameterisation for each distribution presented in Figure5and Figure A.10 are detailed in Table A.4. Each distribution has up to 4 coefficients and are employed using different equations, not all 23 parametric distributions are detailed, only those that featured within the study. Whilst Table A.4 details the parameterisation of the coefficients, it is Table A.3 that explains how to use those values to form the distribution. Furthermore, the mean or median values of the whole dataset, exclusive of the 25 kWp separation, are presented in Table

  feature of the azimuth ob-851 servations is the significant probability of an equa-852 torial facing PV system. This is unsurprising as 853 it offers the best annual specific yield by receiving 854 maximum system efficiency at peak solar position.855The topic of extreme probability of an equatorial 856 orientated system was discussed in section 3.1; the 857 prevalence of 0 • is true of all sites for both < 25 and 858 > 25 kWp. The Japan and Netherlands clusters 859 have exaggerated angles of -45 • or +45 • , assumed 860 to be a result of overly simplified reporting. 861 The distributions could not capture the probabil-862 ity of 0 • with exception of the Netherlands where 863 a Stable distribution fitted best. Even with large 864 sample sizes for the USA North and south clusters, 865 a distribution could not be fitted that satisfied the 866 observed probability for an azimuth angle of 0
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 4 Figure 6). Hence, the contribution of diffuse irradiance from each sky sector depends on its size and the angle-of-incidence of the irradiance from the sky sector onto the plane. 5. For each combination of α s and γ s the mean shading of the whole roof facet is calculated, noting that roofs can be partially shaded. This is illustrated in the viewsheds of Figure 6. For a discrete point of the roof, each element of the sky would be either shaded or not shaded corresponding to black or white (0 or 1), respectively, in the left panel of Figure 6. However, if the mean of all points of the roof are considered, the viewshed would be blurred (grey) as illustrated in the right panel of Figure 6. The mean viewshed displayed on the right of Figure 6 is only for illustrative purposes and can be considered to gain understanding as to how the beam, diffuse and reflected irradiance subcomponents are affected by shading for the general region of all facets within this study.

Figure 6 :Figure 7 :

 67 Figure 6: Polar diagrams of viewsheds, where the displayed angles represent the azimuth angle, and the radius the elevation angle. Left) illustrates the viewshed of a single point on the roof. Right) the mean viewshed of all the points on the roof is illustrated. The dotted lines mark the sky sectors for which the viewshed analysis was conducted from their respective centre points. Note that the right plot is purely illustrative and not used within any of the modelling stages.

1265Figure 8 :

 8 Figure 8: The mean f sky as a function of the roof tilt (marked with x) and a fitted curve (dotted) presented in Eq. (4). The solid line represents the first term of Eq. (4)

  the losses due to shading are pre-1306 sented for the three irradiance subcomponents (cal-1307 culated individually for each roof facet), sorted with 1308 respect to decreasing diffuse irradiance losses. In 1309 this analysis, hourly instantaneous Global Hori-1310 zontal Irradiance (GHI) and Direct Normal Irradi-1311 ance (DNI) data from 2014 for Uppsala were used 1312 (SMHI, 2015). B T was calculated through Eq. (3), 1313 if we let ksB here represent the mean value of k sB 1314 for all points on the individual roof facet. D T , 1315 as well as R T , were calculated through equations 1316 (6) and (10) in Lingfors et al. (2017), respectively, 1317 using the f sky derived for each roof facet. These 1318 equations, adapted for the conventions used in the 1319

1327

  building topography in a city is unknown or the 1328 time for making detailed simulations is limited, yet 1329 the impact of shading on solar power generation is 1330 of interest." The in-fold figure illustrates the nega-1331 tive correlation between diffuse (D T ) and reflected 1332 (R T ) irradiance. The diffuse irradiance decreases 1333 (i.e., the losses increase) with a decreasing f sky , 1334 while instead the reflected irradiance increases (i.e., 1335 negative losses in Figure 9). From Figure 8, it is 1336 clear that f sky decreases with an increasing roof tilt, 1337 leading to a higher contribution of reflected irradiance for a highly tilted roof. The mean losses due to shading (expressed in relation to the unshaded global irradiance) for the whole building portfolio are 7.3%, 3.6%, 6.3% and -2.7% for the global, beam, diffuse and reflected irradiance, respectively, where the minus sign is indicative of an added contribution to the total irradiance, since trees, buildings etc. adds to the total reflective area seen by the roof when shading is considered. Hence, diffuse losses contribute the most for Uppsala, which has an annual clear-sky index of 0.63 (calculated as the global horizontal irradiation for 2014 divided by the clear-sky irradiation for the same period (Ineichen and Perez, 2002)). One should also remember that all roofs in Uppsala were considered. If only roofs with installed PV systems on them were considered, the losses would most likely be lower.

Figure 9 :

 9 Figure 9: Beam and diffuse irradiance losses and the added contribution from reflected irradiance to the global irradiance considering shading on the > 90, 000 studied roof facets.The in-folded figure illustrates the negative correlation between the losses of diffuse and reflected irradiance when shading is considered.

Table

  

Table 1 :

 1 . For some countries, data is Regions, parameters and data sources. "Rest of Europe" contains different European countries not already listed with less than 1,000 systems each. The cumulated capacity is given in MWp and, where available, as a relative share of the total installed capacity in a region (own calculations based on IEA (2018) with data from 2016 and National Grid UK (2018) in case of UK with data from 2018).

	325	
	326	derived from multiple sources. It shouldn't be ruled
	327	out that systems could be listed multiple times,
	328	leading to duplicates in the analysis. Due to the
	329	nature of reporting, a single PV system may not
	330	have the same metadata in different datasets and
	331	so it is accepted that this is an inherent error. The
	332	inhomogeneous nature of the datasets motivated us
	333	to apply some preprocessing operations to ensure
	334	that only valid system measurements are considered
	335	in our analysis and all datasets are in a consistent
	336	format. Some of these operations act as quality fil-
		ters. They were developed based on our empiric

337

experiences with the datasets and are shortly justi-338 fied where presented. 339 349 accurate to suit the needs of this paper as they are 350 purely used for trend analysis when studying rough 351 relationships to other parameters and for visualiza-352 tion purposes. The ability to allocate a PV system 353 to a specific country is certain in all cases. 354 Tilt and azimuth: Unfortunately, this impor-355 tant metadata is not available from all sources. In 356 case of Australia the provided data was imprecise 357 (45 • steps in the azimuth) and thus estimated by 358 the approach described in Killinger et al. (2017b) 359 and improved in Killinger et al. (2017a) as the PV 360 power data was available. As Australia is on the 361 southern hemisphere, azimuth angles were trans-362 formed to normalise the angles expressed for both 363 hemispheres. Within this paper, we consider -90 • 364 to be east, 90 • to be west, with 0 • representing 365 south in the Northern hemisphere and north in the 366 Southern hemisphere. Multi-array systems are not 367 considered in this paper. In a few of the listed 368 datasets, an excessive amount of tilt values with 369 0 • or 1 • and azimuth values of -180 • are reported. 370 E.g. the Australian dataset reported 36% of all sys-371 tems having a tilt angle ≤ 1 • . Visual inspections 372 based on aerial images and results from the afore-373 mentioned parametrisation, however, showed that 374 such small tilt angles were very rare and regularly 375 incorrectly reported. From previous work with var-381 eration. Tilt ≤ 1 • or > 89 • and azimuth < -179 • 382 or > 179 • are thus set NA. 383 Specific annual yield: There are many in-384 stances of systems reporting a specific annual yield 385 of 0 kWh/kWp. Without further information 386 from the datasets, it is not possible to distinguish 387 whether this is a default value for missing data or a 388 valid measurement. We expect that both cases reg-389 ularly occur and so we must remove any input of 390 0 kWh/kWp from our analysis. Furthermore, the 391 specific yield of a system is set NA if it was installed 392 within the year of consideration to ensure that a full 393 year of generation is the basis for the annual yield. 394 In order to compensate annual meteorological fluc-395 tuations within a dataset of a country, all values 396 within a year are divided by the ratio between the 397 mean value from all systems in this year and the av-398 erage of the mean values from all reported years. A 399 similar approach is applied in Leloux et al. (2012a). 400 In datasets reporting a continuous time series, the 401 specific annual yield was derived by the summation 402 of the normalised PV power values. Only systems 407 cantly exceed any meteorological potential. We be-408 lieve that such values are either erroneous reports 409

Table A

 A 

		445	same datasets were defined as 0 • and subsequently
		446	filtered post-transformation by the lower threshold
		447	value for azimuth values. Insufficient information
		448	was given to derive the exact location for PV sys-
		449	tems, mostly from pvoutput.org. All valid parame-
		450	ter entries that have passed the quality control are
		451	used for the analysis in the next two sections.
		452	3. Analysis of PV system metadata
		453	3.1. Analysis of parameters and dependencies
		454	The datasets presented in section 2 are very in-
		455	homogeneous with large differences in the number
		456	of systems in each region and the availability of
		457	parameters. Before starting to explore individual
		458	clusters, typical ranges of these parameters and po-
		459	tential dependencies between them shall be studied
		460	on a global dataset. The general principle of the
		461	global dataset is that every region has the same
		462	weight. Consider Table 1, should all data be used
		463	to make global statistics, the results would be bi-
		464	ased towards the countries with more data (USA
		465	and Germany). Therefore, a normalisation method
		466	must be employed to weight countries equally. Its
		467	derivation follows the following procedure:
		468	(1) Specific annual yield is the only parameter
	.5 where percentages of removed data are	469	that exists multiple times for each PV system. To
	presented. Data from pvoutput.org were strongly	470	evenly weight all systems, only one normalised spe-
	affected by the filtering of the low tilt values and	471	cific yield value per system is considered by ran-
	justify the need of such a quality control. There	472	domly selecting a year. This procedure was pre-
	is a significantly higher share of systems filtered	473	ferred to others such as e.g. taking the mean value
	by < -179 • when compared to the filter for az-	474	for all values of a system in order to conserve sys-
	imuths > 179 • . This is because south is defined	475	tem specific variability between years. (2) For each
	as 180 • in some datasets and are therefore trans-	476	combination of two parameters (e.g. tilt and spe-
	formed by subtracting 180 • . Invalid entries in the	477	cific annual yield) the algorithm counts the number

Table 2 :

 2 Mean or median value extracted from entire data set (without separation by capacity size) for each of the parameters of tilt angle, azimuth angle, system capacity and specific annual yield.

		Tilt	Azi.	Cap.	Yield
	Country	( • )	( • )	(kWp)	(kWh/kWp)
		mean	mean	median	mean
	Australia	16.1	8.58	5.00	-
	Austria	31.1	-0.34	5.15	1,040
	Belgium	35.6	-1.69	5.20	921.5
	Denmark	30.0	0.48	6.00	786.0
	France	28.7	-0.28	2.96	1,101
	Germany	31.6	-2.46	8.96	870.2
	Italy	19.8	-15.9	5.88	1,142
	Japan	23.8	-1.20	4.92	1,222
	Netherlands	32.5	0.77	3.30	855.2
	UK	31.8	-1.07	2.94	896.7
	USA North	25.2	0.42	5.81	1,005
	USA South	19.9	9.33	5.26	1,426

system sizes > 25 kWp are mentioned and can be 841 observed in Figure A.10.

842

It is important to note that only rough dependen-843 cies between parameters, regions and system sized 844 can be considered with this clustering approach.

845

The more intricate and established interdependen-846 cies have not been explored within this paper as it 847 is beyond the scope of the initial objective. The 848 authors reserve this for future work.

  As mentioned in section 5.2 the re-

	1458 1668	of building specific parameters would satisfy as dian capacity was UK (2.94 kWp) and the largest formulation for the Linke turbidity coefficient. Solar En-tions of azimuth, tilt, specific annual yield and in-	1424 1491 1561	below. number of stakeholders. The aim of this paper was the view factor as a function of the roof tilt includ-
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	1423 1490	conclusions, see our invitation for collaboration but are either unknown or only accessible for a small of the solar elevation angle. The second determines	1457 1525 1592	most likely also have an impact. Hence, a set
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Table A .

 A 3: Definition of the probability density distributions used in the research. The coefficients correspond to those presented in Table A.4. The distribution name corresponds to the same Matlab R distribution names and readers are encourage to read the detailed descriptions at www.mathworks.com/help/stats/continuous-distributions.html. Each coefficient is defined.The equation is provided from the Matlab R documentation. Note that the Stable distribution is not explicitly a probability density function, but a characteristic function.

	Distribution Name	Coeff. 1	Coeff. 2	Coeff. 3	Coeff. 4	Probability Density Function, f (x|...)
	Burr type XII	α Scale	c Shape 1	k Shape		

Table A .

 A 4: The distribution coefficients corresponding to the definitions in TableA.3. The left side is for capacities ≤ 25 kWp and the right side is for > 25 kWp.Table A.5: Percentages of reported (Rep.) and filtered data due to the quality control procedure sketched in section 2 for tilt, azimuth, installed capacity (Capa.), geographic location (Loca.) and specific annual yield. Numbers are given as percentage and in relation to the total number of systems that were available in each dataset.

	Dist. Type Coeff. 1 Coeff. 2 Coeff. 3 Coeff. 4	Nakagami 28.0028 0.2537	Normal 14.6875 8.4183	Lognormal 4.3491 0.8328 Yield Source	Logistic 0.6107 19.9366 Rep. =0 > 2000	Weibull 26.2683 2.7083 0.00 0.00 0.00 pvoutput.org	GeneralizedExtremeValue 0.4337 8.5691 33.5998	Logistic 1.0144 0.1090 27.64 0.00 0.00 solar-log.com	Logistic -3.5828 19.3034 0.00 0.00 0.00 suntrol-portal.com	Logistic 29.6932 5.1091 95.65 39.93 0.00 sonnenertrag.eu	Loglogistic 3.3900 0.0905 24.11 0.60 0.30 pvoutput.org	tLocationScale 0.8570 0.1623 3.8904	GeneralizedExtremeValue -0.3684 49.6733 -13.0930 49.36 0.00 0.00 solar-log.com	Stable 0.9410 -1.0000 6.5572 41.6962 98.08 67.74 0.03 bdpv.fr	Stable 0.9767 1.0000 2.8140 28.6026 97.41 41.47 0.00 sonnenertrag.eu	Logistic 0.9500 0.0778 25.70 0.00 0.00 solar-log.com	Logistic -2.2831 19.1336	Burr 16.5673 5.0314 0.6793 0.00 0.00 0.00 suntrol-portal.com	Burr 27.9585 19.1798 0.0934 54.98 0.74 0.00 pvoutput.org	tLocationScale 1.1194 0.1111 2.9295 97.38 60.23 0.16 bdpv.fr	Stable 1.0309 -0.0002 9.9430 -0.2506 23.26 Nakagami 1.1890 0.0887 0.00 0.00 solar-log.com	Stable 0.7373 1.0000 5.2331 30.8089 90.75 0.26 0.01 bundesnetzagentur.de	Stable 1.5803 -0.8322 0.0902 0.9530 39.31 0.00 0.00 solar-log.com	ExtremeValue 4.4388 46.3326 0.00 0.00 0.00 suntrol-portal.com	Nakagami 0.6147 0.0448 98.89 Burr 37.2635 8.0048 0.1480 39.36 0.00 sonnenertrag.eu	Logistic 1.1096 0.1246 33.49 0.00 0.00 solar-log.com	Stable 0.4045 0.0010 0.2121 0.0007 28.40 1.03 0.06 pvoutput.org	Weibull 18.9055 2.6245 98.14 41.15 0.00 sonnenertrag.eu	tLocationScale 48.0538 7.9913 1.4353 35.56 Burr 1.4833 13.7688 5.1025 0.00 0.00 jyuri.co.jp	Logistic -0.3912 15.7031 13.43 0.35 0.03 pvoutput.org	Loglogistic 3.0459 0.2311 43.14 0.00 0.00 solar-log.com	Stable 0.6078 1.0000 3.7179 28.2348 96.04 52.02 0.00 sonnenertrag.eu	Stable 1.4819 -0.9477 0.0760 0.9577	Logistic 0.00 0.00 0.00 -0.8287 16.4894 suntrol-portal.com	Gamma 18.19 0.00 0.00 3.9484 4.5939 solar-log.com		GeneralizedExtremeValue 21.61 3.06 0.12 0.5210 10.8742 35.6490 pvoutput.org	Stable 97.24 36.09 0.00 1.3744 -0.8038 0.0638 0.9395 sonnenertrag.eu	tLocationScale 0.1686 12.6681 1.2295	Stable 100.00 0.21 0.38 1.3001 1.0000 4.8192 10.6480 microgen-database.sheffield.ac.uk	GeneralizedExtremeValue 4.33 0.28 0.00 1.1806 31.0335 45.3525 pvoutput.org	Logistic 20.03 0.00 0.53 1.0679 0.0575 openpv.nrel.gov	Stable 7.23 0.44 0.12 0.4000 0.4410 0.2829 0.0822 pvoutput.org	Weibull 0.1647 1.3876	GeneralizedExtremeValue 1.2834 38.6717 49.6038	Logistic 1.4035 0.0579
	Coeff. 4			Loca.	Rep.	96.40		100.00	100.00	100.00	4.8772 67.86		95.77	100.00	99.63	0.8767 100.00		100.00	3.0118 68.45	100.00	63.44	99.78	0.9086 100.00	100.00	19.0462 99.97 4.4130	86.91	78.84	100.00	4.4144 100.00	0.0294 55.06	100.00	100.00	0.9334	100.00	72.88		2.9504 62.37	0.9035 100.00		100.00	62.07	1.0628 94.51	65.53		
	Coeff. 3			3.2434 Capa.	Rep.	100.00	4.8713	2.0439 100.00	100.00	100.00	1.3688 100.00	5.8277	100.00	100.00	2.3622 100.00	0.0948 100.00	5.4215	100.00	0.0345 100.00	7.6129 100.00	100.00	6.2413 100.00	0.1152 100.00	2.1254 100.00	5.5359 100.00 1.5334	2.5624 100.00	100.00	100.00	1.0384 100.00 2.7755	11.2285 100.00	100.00	1.6898 100.00	0.0893	100.00	3.3818 100.00		0.5898 100.00	0.0776 100.00		100.00	4.6450 100.00	0.0666 100.00	100.00	3.0306	2.2109
	Coeff. 2	34.2603	6.0136	1.4855	17.6159 > 179 •	3.6381 0.00	2.9111	0.0971 0.00	24.3969 0.71	7.8703 0.00	0.9578 0.00	9.2775	20.6455 0.00	0.2256 0.00	1.5014 0.00	-0.8035 0.00	34.5161	0.4144 1.27	0.5250 0.00	0.1416 0.17	23.0048 0.00 9.6547	3.5745 0.00	-0.9423 0.10	32.9151 1.01	1.0000 0.03 0.9411	0.1415 0.00	15.9481 0.00	6.4206 0.00	0.9774 0.00 11.1707	0.0001 0.00	11.6153 0.09	1.3462 0.00	-0.8354	26.0886 0.34	4.6591 0.00		-0.0544 0.00	0.0000 0.00	28.1468	0.2061 0.00	2.5493 0.00	-0.7411 0.03	29.3711 0.00	3.8106	2.5724	0.0963
	Coeff. 1	8.3472	15.0891	4.9355 Azimuth	0.4566 < -179 •	34.6425 0.00	0.1633	1.0668 2.60	-1.2365 0.00	39.8100 1.12	1.4734 6.25	0.5814	1.5526 0.99	-1.1441 0.48	5.7414 0.74	1.2818 2.57	0.3346	-1.2139 0.00	0.4000 4.43	1.1011 0.61	-0.1366 5.02 38.0648	0.1143 0.00	1.6611 2.77	-5.2371 0.00	1.8917 1.13 0.9088	1.1774 4.71	-0.7254 4.59	27.6791 0.56	1.3094 0.32 1.3730	1.0309 7.08	38.8465 1.79	3.2381 0.55	1.3553	0.2461 0.00	31.5952 13.18		1.8937 21.38	1.6851 5.26	0.4600	-1.2944 0.08	0.0868 4.64	1.3201 0.00	8.5676 7.54	20.4150	0.3092	1.4898
	Dist. Type	Logistic	Logistic	tLocationScale Tilt	Logistic ≤1 • > 89 • Rep.	Weibull 0.00 0.00 26.95	GeneralizedExtremeValue	tLocationScale 2.34 0.00 100.00	Logistic 0.71 1.07 100.00	ExtremeValue 1.87 0.00 100.00	Stable 28.57 0.89 93.75	Burr	Logistic 1.65 0.44 100.00	Loglogistic 0.48 0.06 100.00	tLocationScale 1.48 0.00 100.00	Stable 2.25 0.11 100.00	tLocationScale	Lognormal 0.63 0.00 100.00	Stable 11.62 0.00 98.34	tLocationScale 0.25 0.10 99.99	Logistic 4.84 ExtremeValue 0.36 100.00	GeneralizedExtremeValue 0.00 0.00 0.00	Stable 2.30 0.49 100.00	tLocationScale 0.76 0.06 100.00	Stable 1.72 Stable 0.09 100.00	tLocationScale 3.63 0.56 100.00	Logistic 26.12 0.09 96.35	ExtremeValue 1.40 0.00 100.00	Stable 0.00 Burr 0.00 100.00	Stable 18.44 0.10 97.09	ExtremeValue 1.26 0.45 100.00	tLocationScale 0.55 0.22 100.00	Stable	Logistic 0.69 0.34 100.00	tLocationScale 7.30 1.76 100.00		Stable 32.33 0.00 96.29	Stable 3.76 0.00 100.00	Logistic	Loglogistic 0.06 0.00 100.00	16.23 0.00 GeneralizedExtremeValue 97.16	Stable 0.05 0.01 35.59	Logistic 20.63 0.00 98.30	tLocationScale	Burr	ExtremeValue
	Parameter	Azimuth	Tilt	Capacity	Azimuth Rep.	Tilt 26.95	Capacity	FLH 100.00	Azimuth 100.00	Tilt 100.00	Capacity 83.04	FLH	Azimuth 100.00	Tilt 100.00	Capacity 100.00	FLH 100.00	Azimuth	Tilt 100.00	Capacity 93.54	FLH 100.00	Azimuth 100.00 Tilt	Capacity 0.00	FLH 100.00	Azimuth 100.00	Tilt 100.00 Capacity	FLH 100.00	Azimuth 86.42	Tilt 100.00	Capacity 100.00 FLH	Azimuth 92.08	Tilt 100.00	Capacity 100.00	FLH	Azimuth 100.00	Tilt 100.00		Capacity 88.16	FLH 100.00	Azimuth	Tilt 99.15	Capacity 81.71	FLH 37.56	Azimuth 93.57	Tilt	Capacity	FLH
	Cluster		Australia	Region		Austria Australia		Austria		Belgium			Belgium	Denmark		Denmark			France	France		Germany Germany			Italy	Italy		Japan	Japan	Netherlands	Netherlands				Rest of	UK	Europe			UK	USA North	USA		USA South	

/ 0.14 suntrol-portal.com

The usage of the fitted distributions is sketched of Tokyo, was invaluable in guiding us to the Within each of the axes is reported the name of the best fitting distribution type, the root mean squared error (RMSE) between the scatter of real data in the histogram against the fitted probability density distribution, the number of data points considered for that cluster (n), and the Pearson correlation coefficient (ρ) of the linear regression. The mean value µ is shown in place of ρ for Yield. All y-axes are scaled between 0 and 50% probability except where a bold red value is assigned to the individual axis.